Skip to main content
Log in

HspB5/αB-crystallin increases dendritic complexity and protects the dendritic arbor during heat shock in cultured rat hippocampal neurons

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The small heat shock protein ΗspΒ5 (αB-crystallin) exhibits generally cytoprotective functions and possesses powerful neuroprotective capacity in the brain. However, little is known about the mode of action of ΗspΒ5 or other members of the HspB family particularly in neurons. To get clues of the neuronal function of HspBs, we overexpressed several HspBs in cultured rat hippocampal neurons and investigated their effect on neuronal morphology and stress resistance. Whereas axon length and synapse density were not affected by any HspB, dendritic complexity was enhanced by HspB5 and, to a lesser extent, by HspB6. Furthermore, we could show that this process was dependent on phosphorylation, since a non-phosphorylatable mutant of HspB5 did not show this effect. Rarefaction of the dendritic arbor is one hallmark of several neurodegenerative diseases. To investigate if HspB5, which is upregulated at pathophysiological conditions, might be able to protect dendrites during such situations, we exposed HspB5 overexpressing neuronal cultures to heat shock. HspB5 prevented heat shock-induced rarefaction of dendrites. In conclusion, we identified regulation of dendritic complexity as a new function of HspB5 in hippocampal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kitagawa K, Matsumoto M, Tagaya M et al (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24

    Article  CAS  PubMed  Google Scholar 

  2. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247

    Article  CAS  PubMed  Google Scholar 

  3. Moncayo J, de Freitas GR, Bogousslavsky J, Altieri M, van Melle G (2000) Do transient ischemic attacks have a neuroprotective effect? Neurology 54:2089–2094

    Article  CAS  PubMed  Google Scholar 

  4. Kitagawa K (2012) Ischemic tolerance in the brain: endogenous adaptive machinery against ischemic stress. J Neurosci Res 90:1043–1054

    Article  CAS  PubMed  Google Scholar 

  5. Ritossa FM (1962) A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  6. Vos MJ, Hageman J, Carra S, Kampinga HH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47:7001–7011

    Article  CAS  PubMed  Google Scholar 

  7. Welch WJ (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72:1063–1081

    CAS  PubMed  Google Scholar 

  8. Kappe G, Franck E, Verschuure P et al (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 8:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kappe G, Boelens WC, de Jong WW (2010) Why proteins without an alpha-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Stress Chaperones 15:457–461

    Article  CAS  PubMed  Google Scholar 

  10. Bellyei S, Szigeti A, Pozsgai E et al (2007) Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol 86:161–171

    Article  CAS  PubMed  Google Scholar 

  11. Kirbach BB, Golenhofen N (2011) Differential expression and induction of small heat shock proteins in rat brain and cultured hippocampal neurons. J Neurosci Res 89:162–175

    Article  CAS  PubMed  Google Scholar 

  12. Ray PS, Martin JL, Swanson EA et al (2001) Transgene overexpression of αB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. Faseb J 15:393–402

    Article  CAS  PubMed  Google Scholar 

  13. Golenhofen N, Redel A, Wawrousek EF, Drenckhahn D (2006) Ischemia-induced increase of stiffness of alphaB-crystallin/HSPB2-deficient myocardium. Pflugers Arch 451:518–525

    Article  CAS  PubMed  Google Scholar 

  14. Morrison LE, Whittaker RJ, Klepper RE, Wawrousek EF, Glembotski CC (2004) Roles for alphaB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion-induced damage in a KO mouse model. Am J Physiol Heart Circ Physiol 286:H847–H855

    Article  CAS  PubMed  Google Scholar 

  15. Arac A, Brownell SE, Rothbard JB et al (2011) Systemic augmentation of alphaB-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proc Natl Acad Sci USA 108:13287–13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ousman SS, Tomooka BH, van Noort JM et al (2007) Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature 448:474–479

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Martin E, Gonzales V, Borchelt DR, Lee MK (2008) Differential regulation of small heat shock proteins in transgenic mouse models of neurodegenerative diseases. Neurobiol Aging 29:586–597

    Article  PubMed  Google Scholar 

  18. Brownell SE, Becker RA, Steinman L (2012) The protective and therapeutic function of small heat shock proteins in neurological diseases. Front Immunol 3:74

    Article  PubMed  PubMed Central  Google Scholar 

  19. Golenhofen N, Bartelt-Kirbach B (2015) HspB5/alpha-B-crystallin in the brain. In: Tanguay RM, Hightower LE (eds) The big book of small heat shock proteins. Springer, Berlin, pp 365–381

    Chapter  Google Scholar 

  20. Wilhelmus MM, Otte-Holler I, Wesseling P et al (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32:119–130

    Article  CAS  PubMed  Google Scholar 

  21. Renkawek K, Voorter CE, Bosman GJ, van Workum FP, de Jong WW (1994) Expression of alpha B-crystallin in Alzheimer’s disease. Acta Neuropathol 87:155–160

    Article  CAS  PubMed  Google Scholar 

  22. Head MW, Corbin E, Goldman JE (1993) Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease. Am J Pathol 143:1743–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwaki T, Kume-Iwaki A, Liem RK, Goldman JE (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57:71–78

    Article  CAS  PubMed  Google Scholar 

  24. Iwaki T, Iwaki A, Tateishi J, Sakaki Y, Goldman JE (1993) Alpha B-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol 143:487–495

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29

    Article  CAS  PubMed  Google Scholar 

  26. Gusev NB, Bogatcheva NV, Marston SB (2002) Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Mosc) 67:511–519

    Article  CAS  Google Scholar 

  27. Verschuure P, Croes Y, van den IJssel PR et al (2002) Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition. J Mol Cell Cardiol 34:117–128

    Article  CAS  PubMed  Google Scholar 

  28. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    Article  CAS  PubMed  Google Scholar 

  29. Golenhofen N, Arbeiter A, Koob R, Drenckhahn D (2002) Ischemia-induced association of the stress protein alpha B-crystallin with I-band portion of cardiac titin. J Mol Cell Cardiol 34:309–319

    Article  CAS  PubMed  Google Scholar 

  30. Golenhofen N, Ness W, Koob R et al (1998) Ischemia-induced phosphorylation and translocation of stress protein alpha B-crystallin to Z lines of myocardium. Am J Physiol 274:H1457–H1464

    CAS  PubMed  Google Scholar 

  31. Shao W, Zhang SZ, Tang M et al (2013) Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature 494:90–94

    Article  CAS  PubMed  Google Scholar 

  32. Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 272:2613–2627

    Article  CAS  PubMed  Google Scholar 

  34. Ito H, Okamoto K, Nakayama H, Isobe T, Kato K (1997) Phosphorylation of alphaB-crystallin in response to various types of stress. J Biol Chem 272:29934–29941

    Article  CAS  PubMed  Google Scholar 

  35. Chiesa R, Gawinowicz-Kolks MA, Kleiman NJ, Spector A (1987) The phosphorylation sites of the B2 chain of bovine alpha-crystallin. Biochem Biophys Res Commun 144:1340–1347

    Article  CAS  PubMed  Google Scholar 

  36. Morrison LE, Hoover HE, Thuerauf DJ, Glembotski CC (2003) Mimicking phosphorylation of alphaB-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis. Circ Res 92:203–211

    Article  CAS  PubMed  Google Scholar 

  37. Li R, Reiser G (2011) Phosphorylation of Ser45 and Ser59 of alphaB-crystallin and p38/extracellular regulated kinase activity determine alphaB-crystallin-mediated protection of rat brain astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem 118:354–364

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt T, Bartelt-Kirbach B, Golenhofen N (2012) Phosphorylation-dependent subcellular localization of the small heat shock proteins HspB1/Hsp25 and HspB5/alphaB-crystallin in cultured hippocampal neurons. Histochem Cell Biol 138:407–418

    Article  CAS  PubMed  Google Scholar 

  39. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    CAS  PubMed  Google Scholar 

  41. Acunzo J, Katsogiannou M, Rocchi P (2012) Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 44:1622–1631

    Article  CAS  PubMed  Google Scholar 

  42. Head MW, Goldman JE (2000) Small heat shock proteins, the cytoskeleton, and inclusion body formation. Neuropathol Appl Neurobiol 26:304–312

    Article  CAS  PubMed  Google Scholar 

  43. van Noort JM, Bsibsi M, Nacken P, Gerritsen WH, Amor S (2012) The link between small heat shock proteins and the immune system. Int J Biochem Cell Biol 44:1670–1679

    Article  Google Scholar 

  44. Iwaki T, Kume-Iwaki A, Goldman JE (1990) Cellular distribution of alpha B-crystallin in non-lenticular tissues. J Histochem Cytochem 38:31–39

    Article  CAS  PubMed  Google Scholar 

  45. Head MW, Corbin E, Goldman JE (1994) Coordinate and independent regulation of alpha B-crystallin and hsp27 expression in response to physiological stress. J Cell Physiol 159:41–50

    Article  CAS  PubMed  Google Scholar 

  46. Head MW, Hurwitz L, Goldman JE (1996) Transcription regulation of alpha B-crystallin in astrocytes: analysis of HSF and AP1 activation by different types of physiological stress. J Cell Sci 109(Pt 5):1029–1039

    CAS  PubMed  Google Scholar 

  47. Kato K, Goto S, Hasegawa K, Inaguma Y (1993) Coinduction of two low-molecular-weight stress proteins, alpha B crystallin and HSP28, by heat or arsenite stress in human glioma cells. J Biochem 114:640–647

    CAS  PubMed  Google Scholar 

  48. Iwaki T, Iwaki A, Fukumaki Y, Tateishi J (1995) Alpha B-crystallin in C6 glioma cells supports their survival in elevated extracellular K+: the implication of a protective role of alpha B-crystallin accumulation in reactive glia. Brain Res 673:47–52

    Article  CAS  PubMed  Google Scholar 

  49. Iwaki T, Wisniewski T, Iwaki A et al (1992) Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol 140:345–356

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kato S, Hirano A, Umahara T et al (1992) Comparative immunohistochemical study on the expression of alpha B crystallin, ubiquitin and stress-response protein 27 in ballooned neurons in various disorders. Neuropathol Appl Neurobiol 18:335–340

    Article  PubMed  Google Scholar 

  51. Kato S, Hirano A, Umahara T et al (1992) Ultrastructural and immunohistochemical studies on ballooned cortical neurons in Creutzfeldt-Jakob disease: expression of alpha B-crystallin, ubiquitin and stress-response protein 27. Acta Neuropathol 84:443–448

    CAS  PubMed  Google Scholar 

  52. Lowe J, Errington DR, Lennox G et al (1992) Ballooned neurons in several neurodegenerative diseases and stroke contain alpha B crystallin. Neuropathol Appl Neurobiol 18:341–350

    Article  CAS  PubMed  Google Scholar 

  53. Minami M, Mizutani T, Kawanishi R, Suzuki Y, Mori H (2003) Neuronal expression of alphaB crystallin in cerebral infarction. Acta Neuropathol 105:549–554

    CAS  PubMed  Google Scholar 

  54. Bustos FJ, Varela-Nallar L, Campos M et al (2014) PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors. PLoS One 9:e94037

    Article  PubMed  PubMed Central  Google Scholar 

  55. Grabrucker A, Vaida B, Bockmann J, Boeckers TM (2009) Synaptogenesis of hippocampal neurons in primary cell culture. Cell Tissue Res 338:333–341

    Article  PubMed  Google Scholar 

  56. Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M (2005) Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 25:11300–11312

    Article  CAS  PubMed  Google Scholar 

  57. Niwa M, Hara A, Taguchi A et al (2009) Spatiotemporal expression of Hsp20 and its phosphorylation in hippocampal CA1 pyramidal neurons after transient forebrain ischemia. Neurol Res 31:721–727

    Article  CAS  PubMed  Google Scholar 

  58. Irobi J, Almeida-Souza L, Asselbergh B et al (2010) Mutant HSPB8 causes motor neuron-specific neurite degeneration. Hum Mol Genet 19:3254–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Williams KL, Rahimtula M, Mearow KM (2005) Hsp27 and axonal growth in adult sensory neurons in vitro. BMC Neurosci 6:24

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ito H, Kamei K, Iwamoto I et al (2001) Phosphorylation-induced change of the oligomerization state of alpha B-crystallin. J Biol Chem 276:5346–5352

    Article  CAS  PubMed  Google Scholar 

  61. Voorter CE, de Haard-Hoekman WA, Roersma ES et al (1989) The in vivo phosphorylation sites of bovine alpha B-crystallin. FEBS Lett 259:50–52

    Article  CAS  PubMed  Google Scholar 

  62. Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski CC (2000) alpha B-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response. J Biol Chem 275:23825–23833

    Article  CAS  PubMed  Google Scholar 

  63. Launay N, Goudeau B, Kato K, Vicart P, Lilienbaum A (2006) Cell signaling pathways to alphaB-crystallin following stresses of the cytoskeleton. Exp Cell Res 312:3570–3584

    Article  CAS  PubMed  Google Scholar 

  64. Adhikari AS, Singh BN, Rao KS, Rao ChM (2011) alphaB-crystallin, a small heat shock protein, modulates NF-kappaB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-alpha induced cytotoxicity. Biochim Biophys Acta 1813:1532–1542

    Article  CAS  PubMed  Google Scholar 

  65. Spector A, Chiesa R, Sredy J, Garner W (1985) cAMP-dependent phosphorylation of bovine lens alpha-crystallin. Proc Natl Acad Sci USA 82:4712–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Renkawek K, Stege GJ, Bosman GJ (1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson’s disease. Neuroreport 10:2273–2276

    Article  CAS  PubMed  Google Scholar 

  67. Braak H, Del Tredici K, Sandmann-Kiel D, Rub U, Schultz C (2001) Nerve cells expressing heat-shock proteins in Parkinson’s disease. Acta Neuropathol 102:449–454

    CAS  PubMed  Google Scholar 

  68. Ecroyd H, Carver JA (2009) Crystallin proteins and amyloid fibrils. Cell Mol Life Sci 66:62–81

    Article  CAS  PubMed  Google Scholar 

  69. Wilhelmus MM, Boelens WC, Otte-Holler I et al (2006) Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res 1089:67–78

    Article  CAS  PubMed  Google Scholar 

  70. Shammas SL, Waudby CA, Wang S et al (2011) Binding of the molecular chaperone alphaB-crystallin to Abeta amyloid fibrils inhibits fibril elongation. Biophys J 101:1681–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rekas A, Adda CG, Andrew Aquilina J et al (2004) Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol 340:1167–1183

    Article  CAS  PubMed  Google Scholar 

  72. Tue NT, Shimaji K, Tanaka N, Yamaguchi M (2012) Effect of alphaB-crystallin on protein aggregation in Drosophila. J Biomed Biotechnol 2012:252049

    Article  PubMed  PubMed Central  Google Scholar 

  73. Waudby CA, Knowles TP, Devlin GL et al (2010) The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J 98:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kulkarni VA, Firestein BL (2012) The dendritic tree and brain disorders. Mol Cell Neurosci 50:10–20

    Article  CAS  PubMed  Google Scholar 

  75. Cochran JN, Hall AM, Roberson ED (2014) The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res Bull 103:18–28

    Article  CAS  PubMed  Google Scholar 

  76. Tanzi RE (2005) The synaptic Abeta hypothesis of Alzheimer disease. Nat Neurosci 8:977–979

    Article  CAS  PubMed  Google Scholar 

  77. Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  PubMed  Google Scholar 

  78. de Ruiter JP, Uylings HB (1987) Morphometric and dendritic analysis of fascia dentata granule cells in human aging and senile dementia. Brain Res 402:217–229

    Article  PubMed  Google Scholar 

  79. Hanks SD, Flood DG (1991) Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer’s disease. I. CA1 of hippocampus. Brain Res 540:63–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Bianca Mekle, Stephanie Sues and Diana Reinhardt for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Golenhofen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 491 kb)

Supplementary material 2 (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartelt-Kirbach, B., Moron, M., Glomb, M. et al. HspB5/αB-crystallin increases dendritic complexity and protects the dendritic arbor during heat shock in cultured rat hippocampal neurons. Cell. Mol. Life Sci. 73, 3761–3775 (2016). https://doi.org/10.1007/s00018-016-2219-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2219-9

Keywords

Navigation