Skip to main content

Advertisement

Log in

Generation of small molecules to interfere with regulated necrosis

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Interference with regulated necrosis for clinical purposes carries broad therapeutic relevance and, if successfully achieved, has a potential to revolutionize everyday clinical routine. Necrosis was interpreted as something that no clinician might ever be able to prevent due to the unregulated nature of this form of cell death. However, given our growing understanding of the existence of regulated forms of necrosis and the roles of key enzymes of these pathways, e.g., kinases, peroxidases, etc., the possibility emerges to identify efficient and selective small molecule inhibitors of pathologic necrosis. Here, we review the published literature on small molecule inhibition of regulated necrosis and provide an outlook on how combination therapy may be most effective in treatment of necrosis-associated clinical situations like stroke, myocardial infarction, sepsis, cancer and solid organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Linkermann A, Stockwell BR, Krautwald S, Anders HJ (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14(11):759–767. doi:10.1038/nri3743

    Article  CAS  PubMed  Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ellis RE, Yuan JY, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698. doi:10.1146/annurev.cb.07.110191.003311

    Article  CAS  PubMed  Google Scholar 

  4. Yuan J, Horvitz HR (2004) A first insight into the molecular mechanisms of apoptosis. Cell 116(2 Suppl):S53–S56 (51 p following S59)

    Article  CAS  PubMed  Google Scholar 

  5. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22(53):8543–8567. doi:10.1038/sj.onc.1207107

    Article  CAS  PubMed  Google Scholar 

  6. Nieminen AL (2003) Apoptosis and necrosis in health and disease: role of mitochondria. Int Rev Cytol 224:29–55

    Article  CAS  PubMed  Google Scholar 

  7. Kitanaka C, Kuchino Y (1999) Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 6(6):508–515. doi:10.1038/sj.cdd.4400526

    Article  CAS  PubMed  Google Scholar 

  8. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11(7):725–730. doi:10.1038/nm1263

    Article  PubMed  CAS  Google Scholar 

  9. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495. doi:10.1038/82732

    Article  CAS  PubMed  Google Scholar 

  10. Fiers W, Beyaert R, Boone E, Cornelis S, Declercq W, Decoster E, Denecker G, Depuydt B, De Valck D, De Wilde G, Goossens V, Grooten J, Haegeman G, Heyninck K, Penning L, Plaisance S, Vancompernolle K, Van Criekinge W, Vandenabeele P, Vanden Berghe W, Van de Craen M, Vandevoorde V, Vercammen D (1995) TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflamm 47(1–2):67–75

    CAS  PubMed  Google Scholar 

  11. Vercammen D, Vandenabeele P, Beyaert R, Declercq W, Fiers W (1997) Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 9(11):801–808. doi:10.1006/cyto.1997.0252

    Article  CAS  PubMed  Google Scholar 

  12. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119. doi:10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  13. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS, Weinlich R, Vanden Berghe T, Vandenabeele P, Pasparakis M, Bleich M, Weinberg JM, Reichel CA, Brasen JH, Kunzendorf U, Anders HJ, Stockwell BR, Green DR, Krautwald S (2014) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 111(47):16836–16841. doi:10.1073/pnas.1415518111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471(7338):368–372. doi:10.1038/nature09857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471(7338):363–367. doi:10.1038/nature09852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321. doi:10.1038/nchembio.83

    Article  CAS  PubMed  Google Scholar 

  17. Christofferson DE, Li Y, Hitomi J, Zhou W, Upperman C, Zhu H, Gerber SA, Gygi S, Yuan J (2012) A novel role for RIP1 kinase in mediating TNFalpha production. Cell Death Dis 3:e320. doi:10.1038/cddis.2012.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Najjar M, Suebsuwong C, Ray SS, Thapa RJ, Maki JL, Nogusa S, Shah S, Saleh D, Gough PJ, Bertin J, Yuan J, Balachandran S, Cuny GD, Degterev A (2015) Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Rep 10(11):1850–1860. doi:10.1016/j.celrep.2015.02.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie T, Peng W, Liu Y, Yan C, Maki J, Degterev A, Yuan J, Shi Y (2013) Structural basis of RIP1 inhibition by necrostatins. Structure 21(3):493–499. doi:10.1016/j.str.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Z, Wu H, Wang L, Liu Y, Knapp S, Liu Q, Gray NS (2014) Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem Biol 9(6):1230–1241. doi:10.1021/cb500129t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maki JL, Smith EE, Teng X, Ray SS, Cuny GD, Degterev A (2012) Fluorescence polarization assay for inhibitors of the kinase domain of receptor interacting protein 1. Anal Biochem 427(2):164–174. doi:10.1016/j.ab.2012.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palmieri L, Rastelli G (2013) AlphaC helix displacement as a general approach for allosteric modulation of protein kinases. Drug Discov Today 18(7–8):407–414. doi:10.1016/j.drudis.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  23. Choi S, Keys H, Staples RJ, Yuan J, Degterev A, Cuny GD (2012) Optimization of tricyclic Nec-3 necroptosis inhibitors for in vitro liver microsomal stability. Bioorg Med Chem Lett 22(17):5685–5688. doi:10.1016/j.bmcl.2012.06.098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jagtap PG, Degterev A, Choi S, Keys H, Yuan J, Cuny GD (2007) Structure-activity relationship study of tricyclic necroptosis inhibitors. J Med Chem 50(8):1886–1895. doi:10.1021/jm061016o

    Article  CAS  PubMed  Google Scholar 

  25. Teng X, Degterev A, Jagtap P, Xing X, Choi S, Denu R, Yuan J, Cuny GD (2005) Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett 15(22):5039–5044. doi:10.1016/j.bmcl.2005.07.077

    Article  CAS  PubMed  Google Scholar 

  26. Teng X, Keys H, Jeevanandam A, Porco JA Jr, Degterev A, Yuan J, Cuny GD (2007) Structure-activity relationship study of [1,2,3]thiadiazole necroptosis inhibitors. Bioorg Med Chem Lett 17(24):6836–6840. doi:10.1016/j.bmcl.2007.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Teng X, Keys H, Yuan J, Degterev A, Cuny GD (2008) Structure-activity relationship and liver microsome stability studies of pyrrole necroptosis inhibitors. Bioorg Med Chem Lett 18(11):3219–3223. doi:10.1016/j.bmcl.2008.04.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Li J, Degterev A, Hsu E, Yuan J, Yuan C (2007) Structure-activity relationship analysis of a novel necroptosis inhibitor, necrostatin-5. Bioorg Med Chem Lett 17(5):1455–1465. doi:10.1016/j.bmcl.2006.11.056

    Article  CAS  PubMed  Google Scholar 

  29. Wu Z, Li Y, Cai Y, Yuan J, Yuan C (2013) A novel necroptosis inhibitor-necrostatin-21 and its SAR study. Bioorg Med Chem Lett 23(17):4903–4906. doi:10.1016/j.bmcl.2013.06.073

    Article  CAS  PubMed  Google Scholar 

  30. Zheng W, Degterev A, Hsu E, Yuan J, Yuan C (2008) Structure-activity relationship study of a novel necroptosis inhibitor, necrostatin-7. Bioorg Med Chem Lett 18(18):4932–4935. doi:10.1016/j.bmcl.2008.08.058

    Article  CAS  PubMed  Google Scholar 

  31. Degterev A, Maki JL, Yuan J (2013) Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 20(2):366. doi:10.1038/cdd.2012.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R, Van Hauwermeiren F, Libert C, Declercq W, Callewaert N, Prendergast GC, Degterev A, Yuan J, Vandenabeele P (2012) Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3:e437. doi:10.1038/cddis.2012.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2005) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11(3):312–319. doi:10.1038/nm1196

    Article  CAS  PubMed  Google Scholar 

  34. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370(5):455–465. doi:10.1056/NEJMra1310050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Silke J, Rickard JA, Gerlic M (2015) The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 16(7):689–697. doi:10.1038/ni.3206

    Article  CAS  PubMed  Google Scholar 

  36. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320. doi:10.1038/nature14191

    Article  CAS  PubMed  Google Scholar 

  37. Saeed WK, Jun DW (2014) Necroptosis: an emerging type of cell death in liver diseases. World J Gastroenterol 20(35):12526–12532. doi:10.3748/wjg.v20.i35.12526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou W, Yuan J (2014) Necroptosis in health and diseases. Semin Cell Dev Biol 35:14–23. doi:10.1016/j.semcdb.2014.07.013

    Article  PubMed  CAS  Google Scholar 

  39. Harris PA, Bandyopadhyay D, Berger SB, Campobasso N, Capriotti CA, Cox JA, Dare L, Finger JN, Hoffman SJ, Kahler KM, Lehr R, Lich JD, Nagilla R, Nolte RT, Ouellette MT, Pao CS, Schaeffer MC, Smallwood A, Sun HH, Swift BA, Totoritis RD, Ward P, Marquis RW, Bertin J, Gough PJ (2013) Discovery of small molecule RIP1 kinase inhibitors for the treatment of pathologies associated with necroptosis. ACS Med Chem Lett 4(12):1238–1243. doi:10.1021/ml400382p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Berger SB, Harris P, Nagilla R, Kasparcova V, Hoffman S, Swift B, Dare L, Schaeffer M, Capriotti C, Ouellette M, King BW, Wisnoski D, Cox J, Reilly M, Marquis RW, Bertin J, Gough PJ (2015) Characterization of GSK′963: a structurally distinct, potent and selective inhibitor of RIP1 kinase. Cell Death Discov 1:15009. doi:10.1038/cddiscovery.2015.9. http://www.nature.com/articles/cddiscovery20159-supplementary-information

  41. Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, Mocarski ES, Pouliot K, Chan FK, Kelliher MA, Harris PA, Bertin J, Gough PJ, Shayakhmetov DM, Goguen JD, Fitzgerald KA, Silverman N, Lien E (2014) Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci USA 111(20):7391–7396. doi:10.1073/pnas.1403477111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fauster A, Rebsamen M, Huber KV, Bigenzahn JW, Stukalov A, Lardeau CH, Scorzoni S, Bruckner M, Gridling M, Parapatics K, Colinge J, Bennett KL, Kubicek S, Krautwald S, Linkermann A, Superti-Furga G (2015) A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis 6:e1767. doi:10.1038/cddis.2015.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Geel RM, Beijnen JH, Schellens JH (2012) Concise drug review: pazopanib and axitinib. Oncologist 17(8):1081–1089. doi:10.1634/theoncologist.2012-0055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277(11):9505–9511. doi:10.1074/jbc.M109488200

    Article  CAS  PubMed  Google Scholar 

  45. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. doi:10.1016/j.cell.2009.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111. doi:10.1016/j.cell.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  47. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336. doi:10.1126/science.1172308

    Article  CAS  PubMed  Google Scholar 

  48. Newton K, Sun X, Dixit VM (2004) Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol 24(4):1464–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150(2):339–350. doi:10.1016/j.cell.2012.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A, Andrake M, Rall GF, Degterev A, Balachandran S (2013) Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci USA 110(33):E3109–E3118. doi:10.1073/pnas.1301218110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu XN, Yang ZH, Wang XK, Zhang Y, Wan H, Song Y, Chen X, Shao J, Han J (2014) Distinct roles of RIP1–RIP3 hetero- and RIP3–RIP3 homo-interaction in mediating necroptosis. Cell Death Differ 21(11):1709–1720. doi:10.1038/cdd.2014.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11(3):290–297. doi:10.1016/j.chom.2012.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, Janke LJ, Kelliher MA, Kanneganti TD, Green DR (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5):1189–1202. doi:10.1016/j.cell.2014.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodriguez DA, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon CP, Oberst A, Quarato G, Low J, Cripps JG, Chen T, Green DR (2015) Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. doi:10.1038/cdd.2015.70

    Google Scholar 

  55. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227. doi:10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  56. Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, Pierotti C, Garnier JM, Dobson RC, Webb AI, Tripaydonis A, Babon JJ, Mulcair MD, Scanlon MJ, Alexander WS, Wilks AF, Czabotar PE, Lessene G, Murphy JM, Silke J (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA 111(42):15072–15077. doi:10.1073/pnas.1408987111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen X, Li W, Ren J, Huang D, He WT, Song Y, Yang C, Li W, Zheng X, Chen P, Han J (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121. doi:10.1038/cr.2013.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J, Gough PJ, Savvides S, Martinou JC, Bertrand MJ, Vandenabeele P (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7(4):971–981. doi:10.1016/j.celrep.2014.04.026

    Article  CAS  PubMed  Google Scholar 

  59. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X, Yang Z, Wu SQ, Chen L, Han J (2013) Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 23(8):994–1006. doi:10.1038/cr.2013.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xie T, Peng W, Yan C, Wu J, Gong X, Shi Y (2013) Structural insights into RIP3-mediated necroptotic signaling. Cell Rep 5(1):70–78. doi:10.1016/j.celrep.2013.08.044

    Article  CAS  PubMed  Google Scholar 

  61. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288(43):31268–31279. doi:10.1074/jbc.M113.462341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, Ouellette M, King BW, Wisnoski D, Lakdawala AS, DeMartino MP, Casillas LN, Haile PA, Sehon CA, Marquis RW, Upton J, Daley-Bauer LP, Roback L, Ramia N, Dovey CM, Carette JE, Chan FK, Bertin J, Gough PJ, Mocarski ES, Kaiser WJ (2014) RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 56(4):481–495. doi:10.1016/j.molcel.2014.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li JX, Feng JM, Wang Y, Li XH, Chen XX, Su Y, Shen YY, Chen Y, Xiong B, Yang CH, Ding J, Miao ZH (2014) The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis 5:e1278. doi:10.1038/cddis.2014.241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li D, Xu T, Cao Y, Wang H, Li L, Chen S, Wang X, Shen Z (2015) A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci USA 112(16):5017–5022. doi:10.1073/pnas.1505244112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park SY, Shim JH, Chae JI, Cho YS (2015) Heat shock protein 90 inhibitor regulates necroptotic cell death via down-regulation of receptor interacting proteins. Pharmazie 70(3):193–198

    CAS  PubMed  Google Scholar 

  66. Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9(1):1–20

    Article  CAS  PubMed  Google Scholar 

  67. Murphy JM, Lucet IS, Hildebrand JM, Tanzer MC, Young SN, Sharma P, Lessene G, Alexander WS, Babon JJ, Silke J, Czabotar PE (2014) Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL. Biochem J 457(3):369–377. doi:10.1042/BJ20131270

    Article  CAS  PubMed  Google Scholar 

  68. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, Young SN, Varghese LN, Tannahill GM, Hatchell EC, Majewski IJ, Okamoto T, Dobson RC, Hilton DJ, Babon JJ, Nicola NA, Strasser A, Silke J, Alexander WS (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453. doi:10.1016/j.immuni.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  69. Yoon S, Bogdanov K, Kovalenko A, Wallach D (2015) Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ. doi:10.1038/cdd.2015.92

    PubMed Central  Google Scholar 

  70. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8(3):297–303

    Article  CAS  PubMed  Google Scholar 

  71. Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, Hall C, Spall SK, Phesse TJ, Abud HE, Cengia LH, Corbin J, Mifsud S, Di Rago L, Metcalf D, Ernst M, Dewson G, Roberts AW, Alexander WS, Murphy JM, Ekert PG, Masters SL, Vaux DL, Croker BA, Gerlic M, Silke J (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157(5):1175–1188. doi:10.1016/j.cell.2014.04.019

    Article  CAS  PubMed  Google Scholar 

  72. Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T, Goncalves A, Sze M, Gilbert B, Kourula S, Goossens V, Lefebvre S, Gunther C, Becker C, Bertin J, Gough PJ, Declercq W, van Loo G, Vandenabeele P (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513(7516):95–99. doi:10.1038/nature13706

    Article  CAS  PubMed  Google Scholar 

  73. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M, Pasparakis M (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513(7516):90–94. doi:10.1038/nature13608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaiser WJ, Daley-Bauer LP, Thapa RJ, Mandal P, Berger SB, Huang C, Sundararajan A, Guo H, Roback L, Speck SH, Bertin J, Gough PJ, Balachandran S, Mocarski ES (2014) RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci USA 111(21):7753–7758. doi:10.1073/pnas.1401857111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Berger SB, Kasparcova V, Hoffman S, Swift B, Dare L, Schaeffer M, Capriotti C, Cook M, Finger J, Hughes-Earle A, Harris PA, Kaiser WJ, Mocarski ES, Bertin J, Gough PJ (2014) Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J Immunol 192(12):5476–5480. doi:10.4049/jimmunol.1400499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Polykratis A, Hermance N, Zelic M, Roderick J, Kim C, Van TM, Lee TH, Chan FK, Pasparakis M, Kelliher MA (2014) Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J Immunol 193(4):1539–1543. doi:10.4049/jimmunol.1400590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cho Y, McQuade T, Zhang H, Zhang J, Chan FK (2011) RIP1-dependent and independent effects of necrostatin-1 in necrosis and T cell activation. PLoS One 6(8):e23209. doi:10.1371/journal.pone.0023209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schworer SA, Smirnova II, Kurbatova I, Bagina U, Churova M, Fowler T, Roy AL, Degterev A, Poltorak A (2014) Toll-like receptor-mediated down-regulation of the deubiquitinase cylindromatosis (CYLD) protects macrophages from necroptosis in wild-derived mice. J Biol Chem 289(20):14422–14433. doi:10.1074/jbc.M114.547547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moriwaki K, Bertin J, Gough PJ, Chan FK (2015) A RIPK3-caspase 8 complex mediates atypical pro-IL-1beta processing. J Immunol 194(4):1938–1944. doi:10.4049/jimmunol.1402167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Linkermann A, Brasen JH, De Zen F, Weinlich R, Schwendener RA, Green DR, Kunzendorf U, Krautwald S (2012) Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-alpha-induced shock. Mol Med 18:577–586. doi:10.2119/molmed.2011.00423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, Vandenabeele P, Bertrand MJ (2013) RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ 20(10):1381–1392. doi:10.1038/cdd.2013.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moriwaki K, Chan FK (2014) Necrosis-dependent and independent signaling of the RIP kinases in inflammation. Cytokine Growth Factor Rev 25(2):167–174. doi:10.1016/j.cytogfr.2013.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, Smith R, Lessnick SL, Sahasrabudhe S, Stockwell BR (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447(7146):864–868. doi:10.1038/nature05859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. doi:10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62. doi:10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, Elia A, Berger T, Cescon DW, Adeoye A, Brustle A, Molyneux SD, Mason JM, Li WY, Yamamoto K, Wakeham A, Berman HK, Khokha R, Done SJ, Kavanagh TJ, Lam CW, Mak TW (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27(2):211–222. doi:10.1016/j.ccell.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  87. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. doi:10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Radmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Forster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191. doi:10.1038/ncb3064

    Article  CAS  PubMed  Google Scholar 

  89. Conrad M, Friedmann Angeli JP (2015) Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol Cell Oncol 2(3):e995047. doi:10.4161/23723556.2014.995047

    Article  CAS  Google Scholar 

  90. Biton S, Ashkenazi A (2011) NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-alpha feedforward signaling. Cell 145(1):92–103. doi:10.1016/j.cell.2011.02.023

    Article  CAS  PubMed  Google Scholar 

  91. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6):922–930. doi:10.1038/cdd.2009.184

    Article  CAS  PubMed  Google Scholar 

  92. Kim HJ, Koo SY, Ahn BH, Park O, Park DH, Seo DO, Won JH, Yim HJ, Kwak HS, Park HS, Chung CW, Oh YL, Kim SH (2010) NecroX as a novel class of mitochondrial reactive oxygen species and ONOO(−) scavenger. Arch Pharm Res 33(11):1813–1823. doi:10.1007/s12272-010-1114-4

    Article  CAS  PubMed  Google Scholar 

  93. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183. doi:10.1146/annurev.pharmtox.47.120505.105122

    Article  CAS  PubMed  Google Scholar 

  94. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922. doi:10.1007/s10495-007-0756-2

    Article  CAS  PubMed  Google Scholar 

  95. Choi JM, Park KM, Kim SH, Hwang DW, Chon SH, Lee JH, Lee SY, Lee YJ (2010) Effect of necrosis modulator necrox-7 on hepatic ischemia-reperfusion injury in beagle dogs. Transplant Proc 42(9):3414–3421. doi:10.1016/j.transproceed.2010.08.050

    Article  CAS  PubMed  Google Scholar 

  96. Chung HK, Kim YK, Park JH, Ryu MJ, Chang JY, Hwang JH, Lee CH, Kim SH, Kim HJ, Kweon GR, Kim KS, Shong M (2015) The indole derivative NecroX-7 improves nonalcoholic steatohepatitis in ob/ob mice through suppression of mitochondrial ROS/RNS and inflammation. Liver Int 35(4):1341–1353. doi:10.1111/liv.12741

    Article  CAS  PubMed  Google Scholar 

  97. Im KI, Kim N, Lim JY, Nam YS, Lee ES, Kim EJ, Kim HJ, Kim SH, Cho SG (2015) The free radical scavenger NecroX-7 attenuates acute graft-versus-host disease via reciprocal regulation of Th1/regulatory T Cells and inhibition of HMGB1 release. J Immunol 194(11):5223–5232. doi:10.4049/jimmunol.1402609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Park J, Park E, Ahn BH, Kim HJ, Park JH, Koo SY, Kwak HS, Park HS, Kim DW, Song M, Yim HJ, Seo DO, Kim SH (2012) NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats. Toxicol Appl Pharmacol 263(1):1–6. doi:10.1016/j.taap.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  99. Park JH, Seo KS, Tadi S, Ahn BH, Lee JU, Heo JY, Han J, Song MS, Kim SH, Yim YH, Choi HS, Shong M, Kweon G (2013) An indole derivative protects against acetaminophen-induced liver injury by directly binding to N-acetyl-p-benzoquinone imine in mice. Antioxid Redox Signal 18(14):1713–1722. doi:10.1089/ars.2012.4677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thu VT, Kim HK, le Long T, Lee SR, Hanh TM, Ko TH, Heo HJ, Kim N, Kim SH, Ko KS, Rhee BD, Han J (2012) NecroX-5 prevents hypoxia/reoxygenation injury by inhibiting the mitochondrial calcium uniporter. Cardiovasc Res 94(2):342–350. doi:10.1093/cvr/cvs122

    Article  CAS  PubMed  Google Scholar 

  101. Davar D, Beumer JH, Hamieh L, Tawbi H (2012) Role of PARP inhibitors in cancer biology and therapy. Curr Med Chem 19(23):3907–3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kummar S, Chen A, Parchment RE, Kinders RJ, Ji J, Tomaszewski JE, Doroshow JH (2012) Advances in using PARP inhibitors to treat cancer. BMC Med 10:25. doi:10.1186/1741-7015-10-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tangutoori S, Baldwin P, Sridhar S (2015) PARP inhibitors: a new era of targeted therapy. Maturitas 81(1):5–9. doi:10.1016/j.maturitas.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  104. Weil MK, Chen AP (2011) PARP inhibitor treatment in ovarian and breast cancer. Curr Probl Cancer 35(1):7–50. doi:10.1016/j.currproblcancer.2010.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134. doi:10.1056/NEJMoa0900212

    Article  CAS  PubMed  Google Scholar 

  106. Basello DA, Scovassi AI (2015) Poly(ADP-ribosylation) and neurodegenerative disorders. Mitochondrion 24:56–63. doi:10.1016/j.mito.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  107. Berger NA (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101(1):4–15

    Article  CAS  PubMed  Google Scholar 

  108. Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96(24):13978–13982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Andrabi SA, Umanah GK, Chang C, Stevens DA, Karuppagounder SS, Gagne JP, Poirier GG, Dawson VL, Dawson TM (2014) Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci USA 111(28):10209–10214. doi:10.1073/pnas.1405158111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA (2010) NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30(8):2967–2978. doi:10.1523/JNEUROSCI.5552-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA 103(48):18308–18313. doi:10.1073/pnas.0606526103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aredia F, Scovassi AI (2014) Poly(ADP-ribose): a signaling molecule in different paradigms of cell death. Biochem Pharmacol 92(1):157–163. doi:10.1016/j.bcp.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  113. D’Amours D, Sallmann FR, Dixit VM, Poirier GG (2001) Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J Cell Sci 114(Pt 20):3771–3778

    PubMed  Google Scholar 

  114. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F, Takahashi N, Sergent O, Lagadic-Gossmann D, Vandenabeele P, Samson M, Dimanche-Boitrel MT (2012) TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 19(12):2003–2014. doi:10.1038/cdd.2012.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, Herdegen T, Linkermann A, Rittger A, Chan FK, Kabelitz D, Schutze S, Adam D (2014) TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci 71(2):331–348. doi:10.1007/s00018-013-1381-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366(1–2):177–196

    Article  CAS  PubMed  Google Scholar 

  117. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662. doi:10.1038/nature03434

    Article  CAS  PubMed  Google Scholar 

  118. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102(34):12005–12010. doi:10.1073/pnas.0505294102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Javadov S, Karmazyn M, Escobales N (2009) Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther 330(3):670–678. doi:10.1124/jpet.109.153213

    Article  CAS  PubMed  Google Scholar 

  120. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1–2):228–243. doi:10.1016/j.cell.2011.11.030

    Article  CAS  PubMed  Google Scholar 

  121. Karch J, Kanisicak O, Brody MJ, Sargent MA, Michael DM, Molkentin JD (2015) Necroptosis Interfaces with MOMP and the MPTP in mediating cell death. PLoS One 10(6):e0130520. doi:10.1371/journal.pone.0130520

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tait SW, Oberst A, Quarato G, Milasta S, Haller M, Wang R, Karvela M, Ichim G, Yatim N, Albert ML, Kidd G, Wakefield R, Frase S, Krautwald S, Linkermann A, Green DR (2013) Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 5(4):878–885. doi:10.1016/j.celrep.2013.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.D. is supported by National Institute of General Medical Sciences grants R01GM080356 and R01GM084205. Research by A.L. is funded by the German Research Foundation, Cluster of Excellence EXC306.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexei Degterev or Andreas Linkermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degterev, A., Linkermann, A. Generation of small molecules to interfere with regulated necrosis. Cell. Mol. Life Sci. 73, 2251–2267 (2016). https://doi.org/10.1007/s00018-016-2198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2198-x

Keywords

Navigation