Skip to main content

Advertisement

Log in

Tumor-associated macrophages and anti-tumor therapies: complex links

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Myeloid cells infiltrating the tumor microenvironment, especially tumor-associated macrophages (TAMs), are essential providers of cancer-related inflammation, a condition known to accelerate tumor progression and limit the response to anti-tumor therapies. As a matter of fact, TAMs may have a dual role while interfering with cancer treatments, as they can either promote or impair their functionality. Here we review the connection between macrophages and anticancer therapies; moreover, we provide an overview of the different strategies to target or re-program TAMs for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TAMs:

Tumor-associated macrophages

MPS:

Mononuclear phagocyte system

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

PlGF:

Placental growth factor

Bv8:

Prokineticin

ICD:

Immunogenic cell death

DAMPs:

Damage-associated molecular patterns

MDSC:

Myeloid-derived suppressor cells

CSC:

Cancer stem cells

MFG-E8:

Milk fat globule epidermal growth factor-8

GIST:

Gastrointestinal stroma tumors

ABL1:

V-abl Abelson murine leukemia

TEM:

Tie2-expressing monocytes

IGF1:

Insulin growth factor 1

HER-2:

Epidermal growth factor receptor-2

ADCC/ADCP:

Antibody-dependent cellular cytotoxicity/phagocytosis

GM-CSF:

Granulocyte–macrophage colony stimulating factor

CTLA-4:

Cytotoxic T lymphocyte-associated protein 4

PD1:

Programmed death protein 1

HCC:

Hepatocellular carcinoma

CA-4-P:

Combrestatin-A4-phosphate

ANG2:

Angiopoietin 2

RECIST:

Response evaluation criteria in solid tumors

NPs:

Nanoparticle system

EPR:

Enhanced permeability and retention

MC-TG:

Polymeric micelles loaded with 6 thioguanine

OVA:

Ovalbumin

CDP-NPS:

Cyclodextrin-based polymer nanoparticles

MIF:

Migration inhibitory factor

NO:

Nitric oxide

PTHrP:

Parathyroid hormone-related protein

References

  1. Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immunol 18(1):49–53. doi:10.1189/jlb.0902450

    Article  CAS  PubMed  Google Scholar 

  2. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. doi:10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martinez-Pomares L, Reid DM, Brown GD et al (2003) Analysis of mannose receptor regulation by IL-4, IL-10, and proteolytic processing using novel monoclonal antibodies. J Leukoc Biol 73(5):604–613. doi:10.1189/jlb.0902450

    Article  CAS  PubMed  Google Scholar 

  4. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23(4):344–346. doi:10.1016/j.immuni.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  5. Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. doi:10.1016/j.it.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  6. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357

    CAS  PubMed  Google Scholar 

  7. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964. doi:10.1038/nri1733

    Article  CAS  PubMed  Google Scholar 

  8. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555. doi:10.1016/S1471-4906(02)02302-5

    Article  CAS  PubMed  Google Scholar 

  9. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146. doi:10.1038/nri1001

    Article  CAS  PubMed  Google Scholar 

  10. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. doi:10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boorsma CE, Draijer C, Melgert BN (2013) Macrophage heterogeneity in respiratory diseases. Mediators Inflamm 2013:769214. doi:10.1155/2013/769214

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chow A, Brown BD, Merad M (2011) Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol 11(11):788–798. doi:10.1038/nri3087

    Article  CAS  PubMed  Google Scholar 

  13. Edin S, Wikberg ML, Dahlin AM et al (2012) The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 7(10):e47045. doi:10.1371/journal.pone.0047045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hodge S, Matthews G, Mukaro V et al (2011) Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am J Respir Cell Mol Biol 44(5):673–681. doi:10.1165/rcmb.2009-0459OC

    Article  CAS  PubMed  Google Scholar 

  15. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761. doi:10.1038/nri3088

    Article  CAS  PubMed  Google Scholar 

  16. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737. doi:10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reinartz S, Schumann T, Finkernagel F et al (2014) Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer 134(1):32–42. doi:10.1002/ijc.28335

    Article  PubMed  CAS  Google Scholar 

  18. Xue J, Schmidt SV, Sander J et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40(2):274–288. doi:10.1016/j.immuni.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meissner F, Scheltema RA, Mollenkopf HJ, Mann M (2013) Direct proteomic quantification of the secretome of activated immune cells. Science 340(6131):475–478. doi:10.1126/science.1232578

    Article  CAS  PubMed  Google Scholar 

  20. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339(6117):286–291. doi:10.1126/science.1232227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeNardo DG, Brennan DJ, Rexhepaj E et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67. doi:10.1158/2159-8274.CD-10-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  23. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi:10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  24. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13(7):265–270. doi:10.1016/0167-5699(92)90008-U

    Article  CAS  PubMed  Google Scholar 

  25. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. doi:10.1172/JCI59643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61. doi:10.1016/j.immuni.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jenkins SJ, Ruckerl D, Cook PC et al (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332(6035):1284–1288. doi:10.1126/science.1204351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Franklin RA, Liao W, Sarkar A et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344(6186):921–925. doi:10.1126/science.1252510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shand FH, Ueha S, Otsuji M et al (2014) Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proc Natl Acad Sci USA 111(21):7771–7776. doi:10.1073/pnas.1402914111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bottazzi B, Erba E, Nobili N et al (1990) A paracrine circuit in the regulation of the proliferation of macrophages infiltrating murine sarcomas. J Immunol 144(6):2409–2412

    CAS  PubMed  Google Scholar 

  31. Tymoszuk P, Evens H, Marzola V et al (2014) In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors. Eur J Immunol 44(8):2247–2262. doi:10.1002/eji.201344304

    Article  CAS  PubMed  Google Scholar 

  32. Colegio OR, Chu NQ, Szabo AL et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563. doi:10.1038/nature13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Datar I, Qiu X, Ma HZ et al (2015) RKIP regulates CCL5 expression to inhibit breast cancer invasion and metastasis by controlling macrophage infiltration. Oncotarget 6(36):39050–39061. doi:10.18632/oncotarget.5176

    PubMed  PubMed Central  Google Scholar 

  34. De Palma M, Lewis CE (2013) Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23(3):277–286. doi:10.1016/j.ccr.2013.02.013

    Article  PubMed  CAS  Google Scholar 

  35. Frankenberger C, Rabe D, Bainer R et al (2015) Metastasis suppressors regulate the tumor microenvironment by blocking recruitment of prometastatic tumor-associated macrophages. Cancer Res 75(19):4063–4073. doi:10.1158/0008-5472.CAN-14-3394

    Article  CAS  PubMed  Google Scholar 

  36. Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33(3):119–126. doi:10.1016/j.it.2011.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Velasco-Velazquez M, Jiao X, De La Fuente M et al (2012) CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res 72(15):3839–3850. doi:10.1158/0008-5472.CAN-11-3917

    Article  CAS  PubMed  Google Scholar 

  38. Weitzenfeld P, Ben-Baruch A (2014) The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 352(1):36–53. doi:10.1016/j.canlet.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  39. Lu H, Clauser KR, Tam WL et al (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16(11):1105–1117. doi:10.1038/ncb3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su S, Liu Q, Chen J et al (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25(5):605–620. doi:10.1016/j.ccr.2014.03.021

    Article  PubMed  CAS  Google Scholar 

  41. Bonavita E, Gentile S, Rubino M et al (2015) PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell 160(4):700–714. doi:10.1016/j.cell.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  42. Beck AH, Espinosa I, Edris B et al (2009) The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin Cancer Res 15(3):778–787. doi:10.1158/1078-0432.CCR-08-1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi:10.1038/nm1764

    Article  CAS  PubMed  Google Scholar 

  44. Lenz G, Wright G, Dave SS et al (2008) Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359(22):2313–2323.  doi:10.1056/NEJMoa0802885

    Article  CAS  PubMed  Google Scholar 

  45. Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25(3):409–416. doi:10.1007/s10555-006-9005-3

    Article  CAS  PubMed  Google Scholar 

  46. Barcellos-Hoff MH, Lyden D, Wang TC (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13(7):511–518. doi:10.1038/nrc3536

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Li PK, Li C, Lin J (2010) Inhibition of STAT3 signaling blocks the anti-apoptotic activity of IL-6 in human liver cancer cells. J Biol Chem 285(35):27429–27439. doi:10.1074/jbc.M110.142752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mantovani A, Savino B, Locati M et al (2010) The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev 21(1):27–39. doi:10.1016/j.cytogfr.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  49. Kim S, Takahashi H, Lin WW et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457(7225):102–106. doi:10.1038/nature07623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pignatelli J, Goswami S, Jones JG et al (2014) Invasive breast carcinoma cells from patients exhibit MenaINV- and macrophage-dependent transendothelial migration. Sci Signal 7(353):ra112. doi:10.1126/scisignal.2005329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sangaletti S, Tripodo C, Sandri S et al (2014) Osteopontin shapes immunosuppression in the metastatic niche. Cancer Res 74(17):4706–4719. doi:10.1158/0008-5472.CAN-13-3334

    Article  CAS  PubMed  Google Scholar 

  52. Guo C, Buranych A, Sarkar D, Fisher PB, Wang XY (2013) The role of tumor-associated macrophages in tumor vascularization. Vasc Cell 5(1):20. doi:10.1186/2045-824X-5-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246. doi:10.1158/0008-5472.CAN-06-1278

    Article  CAS  PubMed  Google Scholar 

  54. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi:10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Affara NI, Ruffell B, Medler TR et al (2014) B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25(6):809–821. doi:10.1016/j.ccr.2014.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dijkgraaf EM, Heusinkveld M, Tummers B et al (2013) Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res 73(8):2480–2492. doi:10.1158/0008-5472.CAN-12-3542

    Article  CAS  PubMed  Google Scholar 

  57. Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212(4):435–445. doi:10.1084/jem.20150295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S (2006) Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res 66(8):4349–4356. doi:10.1158/0008-5472.CAN-05-3523

    Article  CAS  PubMed  Google Scholar 

  59. Shree T, Olson OC, Elie BT et al (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25(23):2465–2479. doi:10.1101/gad.180331.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272. doi:10.1038/nm.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jinushi M, Chiba S, Yoshiyama H et al (2011) Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA 108(30):12425–12430. doi:10.1073/pnas.1106645108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mitchem JB, Brennan DJ, Knolhoff BL et al (2013) Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 73(3):1128–1141. doi:10.1158/0008-5472.CAN-12-2731

    Article  CAS  PubMed  Google Scholar 

  63. Bruchard M, Mignot G, Derangere V et al (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57–64. doi:10.1038/nm.2999

    Article  CAS  PubMed  Google Scholar 

  64. Nakasone ES, Askautrud HA, Kees T et al (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21(4):488–503. doi:10.1016/j.ccr.2012.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mantovani A, Polentarutti N, Luini W, Peri G, Spreafico F (1979) Role of host defense mechanisms in the antitumor activity of adriamycin and daunomycin in mice. J Natl Cancer Inst 63(1):61–66

    CAS  PubMed  Google Scholar 

  66. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. doi:10.1146/annurev-immunol-032712-100008

    Article  CAS  PubMed  Google Scholar 

  67. Bezu L, Gomes-de-Silva LC, Dewitte H et al (2015) Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 6:187. doi:10.3389/fimmu.2015.00187

    PubMed  PubMed Central  Google Scholar 

  68. Kodumudi KN, Woan K, Gilvary DL et al (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16(18):4583–4594. doi:10.1158/1078-0432.CCR-10-0733

    Article  CAS  PubMed  Google Scholar 

  69. Medina-Echeverz J, Fioravanti J, Zabala M et al (2011) Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. J Immunol 186(2):807–815. doi:10.4049/jimmunol.1001483

    Article  CAS  PubMed  Google Scholar 

  70. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603. doi:10.1038/nrc2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coffelt SB, Lewis CE, Naldini L et al (2010) Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176(4):1564–1576. doi:10.2353/ajpath.2010.090786

    Article  PubMed  PubMed Central  Google Scholar 

  72. Barleon B, Sozzani S, Zhou D et al (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87(8):3336–3343

    CAS  PubMed  Google Scholar 

  73. Ferrara N (2010) Role of myeloid cells in vascular endothelial growth factor-independent tumor angiogenesis. Curr Opin Hematol 17(3):219–224. doi:10.1097/MOH.0b013e3283386660

    CAS  PubMed  Google Scholar 

  74. Gabrusiewicz K, Liu D, Cortes-Santiago N et al (2014) Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes. Oncotarget 5(8):2208–2220. doi:10.18632/oncotarget.1893

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lu-Emerson C, Snuderl M, Kirkpatrick ND et al (2013) Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro Oncol 15(8):1079–1087. doi:10.1093/neuonc/not082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mazzieri R, Pucci F, Moi D et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19(4):512–526. doi:10.1016/j.ccr.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  77. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514. doi:10.1038/nrc2868

    Article  CAS  PubMed  Google Scholar 

  78. Zhang W, Zhu XD, Sun HC et al (2010) Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 16(13):3420–3430. doi:10.1158/1078-0432.CCR-09-2904

    Article  CAS  PubMed  Google Scholar 

  79. Welford AF, Biziato D, Coffelt SB et al (2011) TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121(5):1969–1973. doi:10.1172/JCI44562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Daly C, Eichten A, Castanaro C et al (2013) Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res 73(1):108–118. doi:10.1158/0008-5472.CAN-12-2064

    Article  CAS  PubMed  Google Scholar 

  81. Srivastava K, Hu J, Korn C et al (2014) Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell 26(6):880–895. doi:10.1016/j.ccell.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  82. Priceman SJ, Sung JL, Shaposhnik Z et al (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115(7):1461–1471. doi:10.1182/blood-2009-08-237412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zeisberger SM, Odermatt B, Marty C et al (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3):272–281. doi:10.1038/sj.bjc.6603240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment—tumorigenesis and therapy. Nat Rev Cancer 5(11):867–875. doi:10.1038/nrc1735

    Article  CAS  PubMed  Google Scholar 

  85. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185. doi:10.1002/path.4133

    Article  CAS  PubMed  Google Scholar 

  86. Milas L, Iwakawa M, Hunter N (1987) Enhancement of lung colony formation by admixing irradiated with viable tumor cells: dependence on host status. Clin Exp Metastasis 5(3):213–217

    Article  CAS  PubMed  Google Scholar 

  87. Moding EJ, Kastan MB, Kirsch DG (2013) Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 12(7):526–542. doi:10.1038/nrd4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moeller BJ, Dewhirst MW (2004) Raising the bar: how HIF-1 helps determine tumor radiosensitivity. Cell Cycle 3(9):1107–1110

    Article  CAS  PubMed  Google Scholar 

  89. Russell JS, Brown JM (2013) The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery. Frontiers in physiology 4:157. doi:10.3389/fphys.2013.00157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Shiao SL, Coussens LM (2010) The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia 15(4):411–421. doi:10.1007/s10911-010-9194-9

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xu J, Escamilla J, Mok S et al (2013) CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73(9):2782–2794. doi:10.1158/0008-5472.CAN-12-3981 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen C, Shang X, Xu T et al (2007) c-Abl is required for the signaling transduction induced by L-selectin ligation. Eur J Immunol 37(11):3246–3258. doi:10.1002/eji.200737221

    Article  CAS  PubMed  Google Scholar 

  93. Ahn GO, Tseng D, Liao CH et al (2010) Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci USA 107(18):8363–8368. doi:10.1073/pnas.0911378107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kioi M, Vogel H, Schultz G et al (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120(3):694–705. doi:10.1172/JCI40283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weigert A, Brune B (2008) Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 19(2):95–102. doi:10.1016/j.niox.2008.04.021

    Article  CAS  Google Scholar 

  96. Rahat MA, Hemmerlein B (2013) Macrophage-tumor cell interactions regulate the function of nitric oxide. Front Physiol 4:144. doi:10.3389/fphys.2013.00144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285. doi:10.1038/nrc1046

    Article  CAS  PubMed  Google Scholar 

  98. Ridnour LA, Windhausen AN, Isenberg JS et al (2007) Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc Natl Acad Sci USA 104(43):16898–16903. doi:10.1073/pnas.0702761104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ziche M, Morbidelli L (2009) Molecular regulation of tumour angiogenesis by nitric oxide. Eur Cytokine Netw 20(4):164–170. doi:10.1684/ecn.2009.0169

    CAS  PubMed  Google Scholar 

  100. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372. doi:10.1158/2326-6066.CIR-13-0115

    Article  PubMed  PubMed Central  Google Scholar 

  101. Golden EB, Frances D, Pellicciotta I et al (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3:e28518. doi:10.4161/onci.28518

    Article  PubMed  PubMed Central  Google Scholar 

  102. Durante M, Reppingen N, Held KD (2013) Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol Med 19(9):565–582. doi:10.1016/j.molmed.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  103. Klug F, Prakash H, Huber PE et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602. doi:10.1016/j.ccr.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  104. Furness AJ, Vargas FA, Peggs KS, Quezada SA (2014) Impact of tumour microenvironment and Fc receptors on the activity of immunomodulatory antibodies. Trends Immunol 35(7):290–298. doi:10.1016/j.it.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  105. Sliwkowski MX, Mellman I (2013) Antibody therapeutics in cancer. Science 341(6151):1192–1198. doi:10.1126/science.1241145

    Article  CAS  PubMed  Google Scholar 

  106. Park S, Jiang Z, Mortenson ED et al (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2):160–170. doi:10.1016/j.ccr.2010.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Uchida J, Hamaguchi Y, Oliver JA et al (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199(12):1659–1669. doi:10.1084/jem.20040119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chao MP, Alizadeh AA, Tang C et al (2010) Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142(5):699–713. doi:10.1016/j.cell.2010.07.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tamura K, Shimizu C, Hojo T et al (2011) FcgammaR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann Oncol 22(6):1302–1307. doi:10.1093/annonc/mdq585

    Article  CAS  PubMed  Google Scholar 

  110. Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 21(21):3940–3947. doi:10.1200/JCO.2003.05.013

    Article  CAS  Google Scholar 

  111. Zhang W, Gordon M, Schultheis AM et al (2007) FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol Off J Am Soc Clin Oncol 25(24):3712–3718. doi:10.1200/JCO.2006.08.8021

    Article  CAS  Google Scholar 

  112. Cartron G, Zhao-Yang L, Baudard M et al (2008) Granulocyte-macrophage colony-stimulating factor potentiates rituximab in patients with relapsed follicular lymphoma: results of a phase II study. J Clin Oncol 26:2725–2731. doi:10.1200/JCO.2007.13.7729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheung NK, Cheung IY, Kramer K et al (2014) Key role for myeloid cells: phase II results of anti-G(D2) antibody 3F8 plus granulocyte-macrophage colony-stimulating factor for chemoresistant osteomedullary neuroblastoma. Int J Cancer 135(9):2199–2205. doi:10.1002/ijc.28851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Galluzzi L, Vacchelli E, Bravo-San Pedro JM et al (2014) Classification of current anticancer immunotherapies. Oncotarget 5(24):12472–12508. doi:10.18632/oncotarget.2998

    Article  PubMed  PubMed Central  Google Scholar 

  115. Weiskopf K, Weissman IL (2015) Macrophages are critical effectors of antibody therapies for cancer. MAbs 7(2):303–310. doi:10.1080/19420862.2015.1011450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Selby MJ, Engelhardt JJ, Quigley M et al (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1(1):32–42. doi:10.1158/2326-6066.CIR-13-0013

    Article  CAS  PubMed  Google Scholar 

  117. Simpson TR, Li F, Montalvo-Ortiz W et al (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210(9):1695–1710. doi:10.1084/jem.20130579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mizutani K, Sud S, McGregor NA et al (2009) The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia 11(11):1235–1242. doi:10.1593/neo.09988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gazzaniga S, Bravo AI, Guglielmotti A et al (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 127(8):2031–2041. doi:10.1038/sj.jid.5700827

    Article  CAS  PubMed  Google Scholar 

  120. Loberg RD, Ying C, Craig M et al (2007) Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 67(19):9417–9424. doi:10.1158/0008-5472.CAN-07-1286

    Article  CAS  PubMed  Google Scholar 

  121. Lu X, Kang Y (2009) Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284(42):29087–29096. doi:10.1074/jbc.M109.035899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Moisan F, Francisco EB, Brozovic A et al (2014) Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers. Mol Oncol 8(7):1231–1239. doi:10.1016/j.molonc.2014.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zollo M, Di Dato V, Spano D et al (2012) Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin Exp Metastasis 29(6):585–601. doi:10.1007/s10585-012-9473-5

    Article  CAS  PubMed  Google Scholar 

  124. Sandhu SK, Papadopoulos K, Fong PC et al (2013) A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 71(4):1041–1050. doi:10.1007/s00280-013-2099-8

    Article  CAS  PubMed  Google Scholar 

  125. Pienta KJ, Machiels JP, Schrijvers D et al (2013) Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs 31(3):760–768. doi:10.1007/s10637-012-9869-8

    Article  CAS  PubMed  Google Scholar 

  126. Brana I, Calles A, LoRusso PM et al (2015) Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol 10(1):111–123. doi:10.1007/s11523-014-0320-2

    Article  PubMed  Google Scholar 

  127. Hume DA, MacDonald KP (2012) Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119(8):1810–1820. doi:10.1182/blood-2011-09-379214

    Article  CAS  PubMed  Google Scholar 

  128. Aharinejad S, Salama M, Paulus P et al (2013) Elevated CSF1 serum concentration predicts poor overall survival in women with early breast cancer. Endocr Relat Cancer 20(6):777–783. doi:10.1530/ERC-13-0198

    Article  CAS  PubMed  Google Scholar 

  129. Jia JB, Wang WQ, Sun HC et al (2010) High expression of macrophage colony-stimulating factor-1 receptor in peritumoral liver tissue is associated with poor outcome in hepatocellular carcinoma after curative resection. Oncologist 15(7):732–743. doi:10.1634/theoncologist.2009-0170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Koh YW, Park C, Yoon DH, Suh C, Huh J (2014) CSF-1R expression in tumor-associated macrophages is associated with worse prognosis in classical Hodgkin lymphoma. Am J Clin Pathol 141(4):573–583. doi:10.1309/AJCPR92TDDFARISU

    Article  CAS  PubMed  Google Scholar 

  131. Zhu XD, Zhang JB, Zhuang PY et al (2008) High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 26(16):2707–2716. doi:10.1200/JCO.2007.15.6521

    Article  PubMed  Google Scholar 

  132. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740. doi:10.1084/jem.193.6.727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pyonteck SM, Gadea BB, Wang HW et al (2012) Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. Oncogene 31(11):1459–1467. doi:10.1038/onc.2011.337

    Article  CAS  PubMed  Google Scholar 

  134. Ries CH, Cannarile MA, Hoves S et al (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6):846–859. doi:10.1016/j.ccr.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  135. Mok S, Koya RC, Tsui C et al (2014) Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res 74(1):153–161. doi:10.1158/0008-5472.CAN-13-1816

    Article  CAS  PubMed  Google Scholar 

  136. Weizman N, Krelin Y, Shabtay-Orbach A et al (2014) Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33(29):3812–3819. doi:10.1038/onc.2013.357

    Article  CAS  PubMed  Google Scholar 

  137. Luckman SP, Hughes DE, Coxon FP et al (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13(4):581–589. doi:10.1359/jbmr.1998.13.4.581

    Article  CAS  PubMed  Google Scholar 

  138. Russell RG, Rogers MJ (1999) Bisphosphonates: from the laboratory to the clinic and back again. Bone 25(1):97–106

    Article  CAS  PubMed  Google Scholar 

  139. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593. doi:10.1038/nrc867

    Article  CAS  PubMed  Google Scholar 

  140. Cecchini MG, Fleisch H (1990) Bisphosphonates in vitro specifically inhibit, among the hematopoietic series, the development of the mouse mononuclear phagocyte lineage. J Bone Miner Res 5(10):1019–1027. doi:10.1002/jbmr.5650051005

    Article  CAS  PubMed  Google Scholar 

  141. Dunford JE, Thompson K, Coxon FP et al (2001) Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296(2):235–242

    CAS  PubMed  Google Scholar 

  142. Monkkonen H, Auriola S, Lehenkari P et al (2006) A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br J Pharmacol 147(4):437–445. doi:10.1038/sj.bjp.0706628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Moreau MF, Guillet C, Massin P et al (2007) Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem Pharmacol 73(5):718–723. doi:10.1016/j.bcp.2006.09.031

    Article  CAS  PubMed  Google Scholar 

  144. Rogers MJ, Chilton KM, Coxon FP et al (1996) Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Miner Res 11(10):1482–1491. doi:10.1002/jbmr.5650111015

    Article  CAS  PubMed  Google Scholar 

  145. Rogers MJ, Gordon S, Benford HL et al (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88(12 Suppl):2961–2978. doi:10.1002/1097-0142(20000615)88:12+<2961:AID-CNCR12>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  146. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174(1–2):83–93

    Article  PubMed  Google Scholar 

  147. Miselis NR, Wu ZJ, Van Rooijen N, Kane AB (2008) Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 7(4):788–799. doi:10.1158/1535-7163.MCT-07-0579

    Article  CAS  PubMed  Google Scholar 

  148. Fritz JM, Tennis MA, Orlicky DJ et al (2014) Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol 5:587. doi:10.3389/fimmu.2014.00587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. D’Incalci M, Galmarini CM (2010) A review of trabectedin (ET-743): a unique mechanism of action. Mol Cancer Ther 9(8):2157–2163. doi:10.1158/1535-7163.MCT-10-0263

    Article  PubMed  CAS  Google Scholar 

  150. D’Incalci M, Badri N, Galmarini CM, Allavena P (2014) Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. Br J Cancer 111(4):646–650. doi:10.1038/bjc.2014.149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Allavena P, Signorelli M, Chieppa M et al (2005) Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res 65(7):2964–2971. doi:10.1158/0008-5472.CAN-04-4037

    Article  CAS  PubMed  Google Scholar 

  152. Germano G, Frapolli R, Simone M et al (2010) Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res 70(6):2235–2244. doi:10.1158/0008-5472.CAN-09-2335

    Article  CAS  PubMed  Google Scholar 

  153. Germano G, Frapolli R, Belgiovine C et al (2013) Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23(2):249–262. doi:10.1016/j.ccr.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  154. Luo Y, Knudson MJ (2010) Mycobacterium bovis bacillus Calmette-Guerin-induced macrophage cytotoxicity against bladder cancer cells. Clin Dev Immunol 2010:357591. doi:10.1155/2010/357591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Prada CE, Jousma E, Rizvi TA et al (2013) Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathol 125(1):159–168. doi:10.1007/s00401-012-1056-7

    Article  CAS  PubMed  Google Scholar 

  156. Wang B, Li Q, Qin L et al (2011) Transition of tumor-associated macrophages from MHC class II(hi) to MHC class II(low) mediates tumor progression in mice. BMC Immunol 12:43. doi:10.1186/1471-2172-12-43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Corthay A, Skovseth DK, Lundin KU et al (2005) Primary antitumor immune response mediated by CD4+ T cells. Immunity 22(3):371–383. doi:10.1016/j.immuni.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  158. Hagemann T, Lawrence T, McNeish I et al (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205(6):1261–1268. doi:10.1084/jem.20080108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jaiswal S, Chao MP, Majeti R, Weissman IL (2010) Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31(6):212–219. doi:10.1016/j.it.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Beatty GL, Torigian DA, Chiorean EG et al (2013) A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res 19(22):6286–6295. doi:10.1158/1078-0432.CCR-13-1320

    Article  CAS  PubMed  Google Scholar 

  161. Casazza A, Laoui D, Wenes M et al (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24(6):695–709. doi:10.1016/j.ccr.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  162. Laoui D, Van Overmeire E, Di Conza G et al (2014) Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res 74(1):24–30. doi:10.1158/0008-5472.CAN-13-1196

    Article  CAS  PubMed  Google Scholar 

  163. Trotta F, Leufkens HG, Schellens JH, Laing R, Tafuri G (2011) Evaluation of oncology drugs at the European Medicines Agency and US Food and Drug Administration: when differences have an impact on clinical practice. J Clin Oncol Off J Am Soc Clin Oncol 29(16):2266–2272. doi:10.1200/JCO.2010.34.1248

    Article  Google Scholar 

  164. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664. doi:10.1038/nrclinonc.2010.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jeanbart L, Kourtis IC, van der Vlies AJ, Swartz MA, Hubbell JA (2015) 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice. Cancer Immunol Immunother. doi:10.1007/s00262-015-1702-8

    PubMed  PubMed Central  Google Scholar 

  166. Choi MR, Stanton-Maxey KJ, Stanley JK et al (2007) A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765. doi:10.1021/nl072209h

    Article  CAS  PubMed  Google Scholar 

  167. Alizadeh D, Zhang L, Hwang J, Schluep T, Badie B (2010) Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine 6(2):382–390. doi:10.1016/j.nano.2009.10.001

    CAS  PubMed  Google Scholar 

  168. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719. doi:10.1038/nchembio839

    Article  CAS  PubMed  Google Scholar 

  169. Deng Y, Wang CC, Choy KW et al (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538(2):217–227. doi:10.1016/j.gene.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  170. Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59(2–3):75–86. doi:10.1016/j.addr.2007.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang M, Gao Y, Caja K, Zhao B, Kim JA (2015) Non-viral nanoparticle delivers small interfering RNA to macrophages in vitro and in vivo. PLoS One 10(3):e0118472. doi:10.1371/journal.pone.0118472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Zhao X, Matlung H, Kuijpers TW, van den Berg TK (2013) On the mechanism and benefit of siRNA-mediated targeting of CD47 in cancer. Mol Ther 21(10):1811. doi:10.1038/mt.2013.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Belgiovine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belgiovine, C., D’Incalci, M., Allavena, P. et al. Tumor-associated macrophages and anti-tumor therapies: complex links. Cell. Mol. Life Sci. 73, 2411–2424 (2016). https://doi.org/10.1007/s00018-016-2166-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2166-5

Keywords

Navigation