Skip to main content
Log in

Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

All organs consisting of single cells are consistently maintaining homeostasis in response to stimuli such as free oxygen, DNA damage, inflammation, and microorganisms. The cell cycle of all mammalian cells is regulated by protein expression in the right phase to respond to proliferation and apoptosis signals. Post-translational modifications (PTMs) of proteins by several protein-editing enzymes are associated with cell cycle regulation by their enzymatic functions. Ubiquitination, one of the PTMs, is also strongly related to cell cycle regulation by protein degradation or signal transduction. The importance of deubiquitinating enzymes (DUBs), which have a reversible function for ubiquitination, has recently suggested that the function of DUBs is also important for determining the fate of proteins during cell cycle processing. This article reviews and summarizes the diverse roles of DUBs, including DNA damage, cell cycle processing, and regulation of histone proteins, and also suggests the possibility for therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATM:

Ataxia telangiectasia mutated

ATR:

ATM and Rad3-related

DDR:

DNA damage response

DUB:

Deubiquitinating enzyme

UPP:

Ubiquitin proteasomal pathway

USP:

Ubiquitin-specific protease

UCH:

Ubiquitin carboxy terminal hydrolases

OTU:

Ovarian tumor domain

MJD:

Machado–Joseph disease

JAMM:

Jab1/MPN domain-associated metalloisopeptidase

References

  1. Marechal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a012716

    PubMed  PubMed Central  Google Scholar 

  2. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130. doi:10.1038/nature07986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lim KH, Ramakrishna S, Baek KH (2013) Molecular mechanisms and functions of cytokine-inducible deubiquitinating enzymes. Cytokine Growth Factor Rev 24(5):427–431. doi:10.1016/j.cytogfr.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  4. Ciechanover A (1843) Stanhill A (2014) The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochim Biophys Acta 1:86–96. doi:10.1016/j.bbamcr.2013.07.007

    Google Scholar 

  5. Mabb AM, Ehlers MD (2010) Ubiquitination in postsynaptic function and plasticity. Annu Rev Cell Dev Biol 26:179–210. doi:10.1146/annurev-cellbio-100109-104129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926. doi:10.1038/nbt849

    Article  CAS  PubMed  Google Scholar 

  7. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243(4898):1576–1583

    Article  CAS  PubMed  Google Scholar 

  8. Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15(3):1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim KH, Baek KH (2013) Deubiquitinating enzymes as therapeutic targets in cancer. Curr Pharm Des 19(22):4039–4052

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura N, Harada K, Kato M, Hirose S (2014) Ubiquitin-specific protease 19 regulates the stability of the E3 ubiquitin ligase MARCH6. Exp Cell Res 328(1):207–216. doi:10.1016/j.yexcr.2014.07.025

    Article  CAS  PubMed  Google Scholar 

  11. Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R, D’Andrea AD (2006) Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8(4):339–347. doi:10.1038/ncb1378

    Article  CAS  PubMed  Google Scholar 

  12. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563. doi:10.1038/nrm2731

    Article  CAS  PubMed  Google Scholar 

  13. Bhattacharya S, Ghosh MK (2014) Cell death and deubiquitinases: perspectives in cancer. Biomed Res Int 2014:435197. doi:10.1155/2014/435197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sahtoe DD, Sixma TK (2015) Layers of DUB regulation. Trends Biochem Sci 40(8):456–467. doi:10.1016/j.tibs.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  15. Postel-Vinay S, Vanhecke E, Olaussen KA, Lord CJ, Ashworth A, Soria JC (2012) The potential of exploiting DNA-repair defects for optimizing lung cancer treatment. Nat Rev Clin Oncol 9(3):144–155. doi:10.1038/nrclinonc.2012.3

    Article  CAS  PubMed  Google Scholar 

  16. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210

    Article  CAS  Google Scholar 

  17. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412. doi:10.1038/nrm2395

    Article  CAS  PubMed  Google Scholar 

  18. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323. doi:10.1038/nature03097

    Article  CAS  PubMed  Google Scholar 

  19. Kennedy RD, D’Andrea AD (2006) DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24(23):3799–3808. doi:10.1200/JCO.2005.05.4171

    Article  CAS  PubMed  Google Scholar 

  20. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447(7147):941–950. doi:10.1038/nature05978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631. doi:10.1038/nrg2380

    CAS  PubMed  Google Scholar 

  22. Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci USA 98(15):8241–8246. doi:10.1073/pnas.131009198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heeres JT, Hergenrother PJ (2007) Poly(ADP-ribose) makes a date with death. Curr Opin Chem Biol 11(6):644–653. doi:10.1016/j.cbpa.2007.08.038

    Article  CAS  PubMed  Google Scholar 

  24. El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW (2003) A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31(19):5526–5533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528. doi:10.1038/nrm1963

    Article  CAS  PubMed  Google Scholar 

  26. Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagne JP, Lee Y, Ko HS, Lee BD, Poirier GG, Dawson VL, Dawson TM (2011) Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci USA 108(34):14103–14108. doi:10.1073/pnas.1108799108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu C, Wu J, Paudyal SC, You Z, Yu X (2013) CHFR is important for the first wave of ubiquitination at DNA damage sites. Nucleic Acids Res 41(3):1698–1710. doi:10.1093/nar/gks1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138(2):389–403. doi:10.1016/j.cell.2009.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orlandi I, Bettiga M, Alberghina L, Vai M (2004) Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene expression and insurgence of oxidative stress response. J Biol Chem 279(8):6414–6425. doi:10.1074/jbc.M306464200

    Article  CAS  PubMed  Google Scholar 

  30. Kim MS, Yoo KJ, Kang I, Chung HM, Baek KH (2004) A novel cysteine protease HeLa DUB-1 responsible for cleaving the ubiquitin in human ovarian cancer cells. Int J Oncol 25(2):373–379

    CAS  PubMed  Google Scholar 

  31. Kim MS, Ramakrishna S, Lim KH, Kim JH, Baek KH (2011) Protein stability of mitochondrial superoxide dismutase SOD2 is regulated by USP36. J Cell Biochem 112(2):498–508. doi:10.1002/jcb.22940

    Article  CAS  PubMed  Google Scholar 

  32. Taillebourg E, Gregoire I, Viargues P, Jacomin AC, Thevenon D, Faure M, Fauvarque MO (2012) The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins. Autophagy 8(5):767–779. doi:10.4161/auto.19381

    Article  CAS  PubMed  Google Scholar 

  33. Emre NC, Ingvarsdottir K, Wyce A, Wood A, Krogan NJ, Henry KW, Li K, Marmorstein R, Greenblatt JF, Shilatifard A, Berger SL (2005) Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell 17(4):585–594. doi:10.1016/j.molcel.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  34. Emre NC, Berger SL (2004) Histone H2B ubiquitylation and deubiquitylation in genomic regulation. Cold Spring Harb Symp Quant Biol 69:289–299. doi:10.1101/sqb.2004.69.289

    Article  CAS  PubMed  Google Scholar 

  35. Gardner RG, Nelson ZW, Gottschling DE (2005) Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin. Mol Cell Biol 25(14):6123–6139. doi:10.1128/MCB.25.14.6123-6139.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Calzari L, Orlandi I, Alberghina L, Vai M (2006) The histone deubiquitinating enzyme Ubp10 is involved in rDNA locus control in Saccharomyces cerevisiae by affecting Sir2p association. Genetics 174(4):2249–2254. doi:10.1534/genetics.106.063099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Orlandi I, Bettiga M, Alberghina L, Nystrom T (1803) Vai M (2010) Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing. Biochim Biophys Acta 5:630–638. doi:10.1016/j.bbamcr.2010.02.009

    Google Scholar 

  38. Chora S, McDonagh B, Sheehan D, Starita-Geribaldi M, Romeo M, Bebianno MJ (2008) Ubiquitination and carbonylation as markers of oxidative-stress in Ruditapes decussatus. Mar Environ Res 66(1):95–97. doi:10.1016/j.marenvres.2008.02.034

    Article  CAS  PubMed  Google Scholar 

  39. Fousteri M, Mullenders LH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18(1):73–84. doi:10.1038/cr.2008.6

    Article  CAS  PubMed  Google Scholar 

  40. Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18(1):64–72. doi:10.1038/cr.2008.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443(7111):590–593. doi:10.1038/nature05175

    CAS  PubMed  Google Scholar 

  42. Hu J, McCall CM, Ohta T, Xiong Y (2004) Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6(10):1003–1009. doi:10.1038/ncb1172

    Article  CAS  PubMed  Google Scholar 

  43. Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapic-Otrin V, Levine AS (2006) The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci USA 103(8):2588–2593. doi:10.1073/pnas.0511160103

    Article  CAS  PubMed  Google Scholar 

  44. Luijsterburg MS, Goedhart J, Moser J, Kool H, Geverts B, Houtsmuller AB, Mullenders LH, Vermeulen W, van Driel R (2007) Dynamic in vivo interaction of DDB2 E3 ubiquitin ligase with UV-damaged DNA is independent of damage-recognition protein XPC. J Cell Sci 120(Pt 15):2706–2716. doi:10.1242/jcs.008367

    Article  CAS  PubMed  Google Scholar 

  45. Mailand N, Gibbs-Seymour I, Bekker-Jensen S (2013) Regulation of PCNA-protein interactions for genome stability. Nat Rev Mol Cell Biol 14(5):269–282. doi:10.1038/nrm3562

    Article  CAS  PubMed  Google Scholar 

  46. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419(6903):135–141. doi:10.1038/nature00991

    Article  CAS  PubMed  Google Scholar 

  47. Park JM, Yang SW, Yu KR, Ka SH, Lee SW, Seol JH, Jeon YJ, Chung CH (2014) Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis. Mol Cell 54(4):626–638. doi:10.1016/j.molcel.2014.03.031

    Article  CAS  PubMed  Google Scholar 

  48. Matunis MJ (2002) On the road to repair: PCNA encounters SUMO and ubiquitin modifications. Mol Cell 10(3):441–442

    Article  CAS  PubMed  Google Scholar 

  49. Kirchmaier AL (2011) Ub-family modifications at the replication fork: regulating PCNA-interacting components. FEBS Lett 585(18):2920–2928. doi:10.1016/j.febslet.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  50. Cazzalini O, Perucca P, Mocchi R, Sommatis S, Prosperi E, Stivala LA (2014) DDB2 association with PCNA is required for its degradation after UV-induced DNA damage. Cell Cycle 13(2):240–248. doi:10.4161/cc.26987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang L, Lubin A, Chen H, Sun Z, Gong F (2012) The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 11(23):4378–4384. doi:10.4161/cc.22688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. He J, Zhu Q, Wani G, Sharma N, Han C, Qian J, Pentz K, Wang Q, Wani AA (2014) Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquinating XPC and preventing XPC from UV-induced and VCP/p97-regulated proteolysis. J Biol Chem. doi:10.1074/jbc.M114.589812

    Google Scholar 

  53. Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18(1):99–113. doi:10.1038/cr.2008.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, Barbour H, Corbeil L, Hebert J, Drobetsky E, Masson JY, Di Noia JM, el Affar B (2014) Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci USA 111(1):285–290. doi:10.1073/pnas.1309085110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G (2013) BAP1 and cancer. Nat Rev Cancer 13(3):153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garcia-Santisteban I, Peters GJ, Giovannetti E, Rodriguez JA (2013) USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy. Mol Cancer 12:91. doi:10.1186/1476-4598-12-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D’Andrea AD, Bernards R (2005) The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 17(3):331–339. doi:10.1016/j.molcel.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  58. Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP, D’Andrea AD (2007) A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol Cell 28(5):786–797. doi:10.1016/j.molcel.2007.09.031

    Article  CAS  PubMed  Google Scholar 

  59. Villamil MA, Chen J, Liang Q, Zhuang Z (2012) A noncanonical cysteine protease USP1 is activated through active site modulation by USP1-associated factor 1. Biochemistry 51(13):2829–2839. doi:10.1021/bi3000512

    Article  CAS  PubMed  Google Scholar 

  60. Garcia-Santisteban I, Zorroza K, Rodriguez JA (2012) Two nuclear localization signals in USP1 mediate nuclear import of the USP1/UAF1 complex. PLoS One 7(6):e38570. doi:10.1371/journal.pone.0038570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Villamil MA, Liang Q, Chen J, Choi YS, Hou S, Lee KH, Zhuang Z (2012) Serine phosphorylation is critical for the activation of ubiquitin-specific protease 1 and its interaction with WD40-repeat protein UAF1. Biochemistry 51(45):9112–9123. doi:10.1021/bi300845s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim JM, Parmar K, Huang M, Weinstock DM, Ruit CA, Kutok JL, D’Andrea AD (2009) Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev Cell 16(2):314–320. doi:10.1016/j.devcel.2009.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murai J, Yang K, Dejsuphong D, Hirota K, Takeda S, D’Andrea AD (2011) The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol Cell Biol 31(12):2462–2469. doi:10.1128/MCB.05058-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park E, Kim JM, Primack B, Weinstock DM, Moreau LA, Parmar K, D’Andrea AD (2013) Inactivation of Uaf1 causes defective homologous recombination and early embryonic lethality in mice. Mol Cell Biol 33(22):4360–4370. doi:10.1128/MCB.00870-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4(4):511–518

    Article  CAS  PubMed  Google Scholar 

  66. Kim H, D’Andrea AD (2012) Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 26(13):1393–1408. doi:10.1101/gad.195248.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622. doi:10.1016/j.cell.2009.04.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee JT, Gu W (2013) SIRT1: regulator of p53 deacetylation. Genes Cancer 4(3–4):112–117. doi:10.1177/1947601913484496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hock AK, Vousden KH (2014) The role of ubiquitin modification in the regulation of p53. Biochim Biophys Acta 2014(1):137–149. doi:10.1016/j.bbamcr.2013.05.022

    Article  CAS  Google Scholar 

  70. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK (2007) The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26(4):976–986. doi:10.1038/sj.emboj.7601567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416(6881):648–653. doi:10.1038/nature737

    Article  CAS  PubMed  Google Scholar 

  72. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z (2010) USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140(3):384–396. doi:10.1016/j.cell.2009.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ke JY, Dai CJ, Wu WL, Gao JH, Xia AJ, Liu GP, Lv KS, Wu CL (2014) USP11 regulates p53 stability by deubiquitinating p53. J Zhejiang Univ Sci B 15(12):1032–1038. doi:10.1631/jzus.B1400180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, Cai Y, Norberg HV, Zhang T, Furuya T, Jin M, Zhu Z, Wang H, Yu J, Li Y, Hao Y, Choi A, Ke H, Ma D, Yuan J (2011) Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147(1):223–234. doi:10.1016/j.cell.2011.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hock AK, Vigneron AM, Carter S, Ludwig RL, Vousden KH (2011) Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J 30(24):4921–4930. doi:10.1038/emboj.2011.419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun XX, Challagundla KB, Dai MS (2012) Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO J 31(3):576–592. doi:10.1038/emboj.2011.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Luo J, Lu Z, Lu X, Chen L, Cao J, Zhang S, Ling Y, Zhou X (2013) OTUD5 regulates p53 stability by deubiquitinating p53. PLoS One 8(10):e77682. doi:10.1371/journal.pone.0077682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burrows JF, McGrattan MJ, Johnston JA (2005) The DUB/USP17 deubiquitinating enzymes, a multigene family within a tandemly repeated sequence. Genomics 85(4):524–529. doi:10.1016/j.ygeno.2004.11.013

    Article  CAS  PubMed  Google Scholar 

  79. Burrows JF, Kelvin AA, McFarlane C, Burden RE, McGrattan MJ, De la Vega M, Govender U, Quinn DJ, Dib K, Gadina M, Scott CJ, Johnston JA (2009) USP17 regulates Ras activation and cell proliferation by blocking RCE1 activity. J Biol Chem 284(14):9587–9595. doi:10.1074/jbc.M807216200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. de la Vega M, Burrows JF, McFarlane C, Govender U, Scott CJ, Johnston JA (2010) The deubiquitinating enzyme USP17 blocks N-Ras membrane trafficking and activation but leaves K-Ras unaffected. J Biol Chem 285(16):12028–12036. doi:10.1074/jbc.M109.081448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ramakrishna S, Suresh B, Baek KH (2014) Biological functions of hyaluronan and cytokine-inducible deubiquitinating enzymes. Biochim Biophys Acta. doi:10.1016/j.bbcan.2014.11.006

    Google Scholar 

  82. Zhu Y, Carroll M, Papa FR, Hochstrasser M, D’Andrea AD (1996) DUB-1, a deubiquitinating enzyme with growth-suppressing activity. Proc Natl Acad Sci USA 93(8):3275–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee MY, Ajjappala BS, Kim MS, Oh YK, Baek KH (2008) DUB-1, a fate determinant of dynein heavy chain in B-lymphocytes, is regulated by the ubiquitin-proteasome pathway. J Cell Biochem 105(6):1420–1429. doi:10.1002/jcb.21961

    Article  CAS  PubMed  Google Scholar 

  84. Lu Y, Adegoke OA, Nepveu A, Nakayama KI, Bedard N, Cheng D, Peng J, Wing SS (2009) USP19 deubiquitinating enzyme supports cell proliferation by stabilizing KPC1, a ubiquitin ligase for p27Kip1. Mol Cell Biol 29(2):547–558. doi:10.1128/MCB.00329-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lu Y, Bedard N, Chevalier S, Wing SS (2011) Identification of distinctive patterns of USP19-mediated growth regulation in normal and malignant cells. PLoS One 6(1):e15936. doi:10.1371/journal.pone.0015936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ventii KH, Devi NS, Friedrich KL, Chernova TA, Tighiouart M, Van Meir EG, Wilkinson KD (2008) BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res 68(17):6953–6962. doi:10.1158/0008-5472.CAN-08-0365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Misaghi S, Ottosen S, Izrael-Tomasevic A, Arnott D, Lamkanfi M, Lee J, Liu J, O’Rourke K, Dixit VM, Wilson AC (2009) Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol Cell Biol 29(8):2181–2192. doi:10.1128/MCB.01517-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tyagi S, Chabes AL, Wysocka J, Herr W (2007) E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol Cell 27(1):107–119. doi:10.1016/j.molcel.2007.05.030

    Article  CAS  PubMed  Google Scholar 

  89. Machida YJ, Machida Y, Vashisht AA, Wohlschlegel JA, Dutta A (2009) The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem 284(49):34179–34188. doi:10.1074/jbc.M109.046755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang X, Summers MK, Pham V, Lill JR, Liu J, Lee G, Kirkpatrick DS, Jackson PK, Fang G, Dixit VM (2011) Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol Cell 42(4):511–523. doi:10.1016/j.molcel.2011.03.027

    Article  CAS  PubMed  Google Scholar 

  91. Pesin JA, Orr-Weaver TL (2008) Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 24:475–499. doi:10.1146/annurev.cellbio.041408.115949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burrows AC, Prokop J, Summers MK (2012) Skp1-Cul1-F-box ubiquitin ligase (SCF(betaTrCP))-mediated destruction of the ubiquitin-specific protease USP37 during G2-phase promotes mitotic entry. J Biol Chem 287(46):39021–39029. doi:10.1074/jbc.M112.390328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Das CM, Taylor P, Gireud M, Singh A, Lee D, Fuller G, Ji L, Fangusaro J, Rajaram V, Goldman S, Eberhart C, Gopalakrishnan V (2013) The deubiquitylase USP37 links REST to the control of p27 stability and cell proliferation. Oncogene 32(13):1691–1701. doi:10.1038/onc.2012.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Duro E, Marston AL (2015) From equator to pole: splitting chromosomes in mitosis and meiosis. Genes Dev 29(2):109–122. doi:10.1101/gad.255554.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Topham CH, Taylor SS (2013) Mitosis and apoptosis: how is the balance set? Curr Opin Cell Biol 25(6):780–785. doi:10.1016/j.ceb.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  96. Janssen A, Medema RH (2011) Mitosis as an anti-cancer target. Oncogene 30(25):2799–2809. doi:10.1038/onc.2011.30

    Article  CAS  PubMed  Google Scholar 

  97. Murray AW, Solomon MJ, Kirschner MW (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339(6222):280–286. doi:10.1038/339280a0

    Article  CAS  PubMed  Google Scholar 

  98. Zur A, Brandeis M (2001) Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J 20(4):792–801. doi:10.1093/emboj/20.4.792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schaefer JB, Morgan DO (2011) Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J Biol Chem 286(52):45186–45196. doi:10.1074/jbc.M111.310094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van Leuken RJ, Luna-Vargas MP, Sixma TK, Wolthuis RM, Medema RH (2008) Usp39 is essential for mitotic spindle checkpoint integrity and controls mRNA-levels of aurora B. Cell Cycle 7(17):2710–2719

    Article  PubMed  Google Scholar 

  101. Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, McDonald ER 3rd, Li MZ, Hannon GJ, Sorger PK, Kirschner MW, Harper JW, Elledge SJ (2007) Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446(7138):876–881. doi:10.1038/nature05694

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, van Deursen J, Galardy PJ (2012) USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest 122(12):4362–4374. doi:10.1172/JCI63084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Faustrup H, Bekker-Jensen S, Bartek J, Lukas J, Mailand N (2009) USP7 counteracts SCFbetaTrCP- but not APCCdh1-mediated proteolysis of Claspin. J Cell Biol 184(1):13–19. doi:10.1083/jcb.200807137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cummins JM, Vogelstein B (2004) HAUSP is required for p53 destabilization. Cell Cycle 3(6):689–692

    Article  CAS  PubMed  Google Scholar 

  105. Giovinazzi S, Sirleto P, Aksenova V, Morozov VM, Zori R, Reinhold WC, Ishov AM (2014) Usp7 protects genomic stability by regulating Bub3. Oncotarget 5(11):3728–3742

    Article  PubMed  PubMed Central  Google Scholar 

  106. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611–615. doi:10.1126/science.1075898

    Article  CAS  PubMed  Google Scholar 

  107. Qiu XB, Ouyang SY, Li CJ, Miao S, Wang L, Goldberg AL (2006) hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J 25(24):5742–5753. doi:10.1038/sj.emboj.7601450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL (2001) A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J 20(18):5187–5196. doi:10.1093/emboj/20.18.5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513. doi:10.1146/annurev.biochem.78.081507.101607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu N, Liu C, Bai C, Han YP, Cho WC, Li Q (2013) Over-expression of deubiquitinating enzyme USP14 in lung adenocarcinoma promotes proliferation through the accumulation of beta-catenin. Int J Mol Sci 14(6):10749–10760. doi:10.3390/ijms140610749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Kabuta T, Mitsui T, Takahashi M, Fujiwara Y, Kabuta C, Konya C, Tsuchiya Y, Hatanaka Y, Uchida K, Hohjoh H, Wada K (2013) Ubiquitin C-terminal hydrolase L1 (UCH-L1) acts as a novel potentiator of cyclin-dependent kinases to enhance cell proliferation independently of its hydrolase activity. J Biol Chem 288(18):12615–12626. doi:10.1074/jbc.M112.435701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15(11):703–708. doi:10.1038/nrm3890

    Article  CAS  PubMed  Google Scholar 

  113. Ferreri AJ, Illerhaus G, Zucca E, Cavalli F, International Extranodal Lymphoma Study G (2010) Flows and flaws in primary central nervous system lymphoma. Nat Rev Clin Oncol. doi:10.1038/nrclinonc.2010.9-c1 (author reply doi:10:1038/nrclinonc.2010.9-c2. doi:10.1038/nrclinonc.2010.9-c1)

    PubMed  Google Scholar 

  114. Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci USA 88(22):10148–10152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hadnagy A, Beaulieu R, Balicki D (2008) Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics. Mol Cancer Ther 7(4):740–748. doi:10.1158/1535-7163.MCT-07-2284

    Article  CAS  PubMed  Google Scholar 

  116. Singh RK, Kabbaj MH, Paik J, Gunjan A (2009) Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol 11(8):925–933. doi:10.1038/ncb1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goldknopf IL, Taylor CW, Baum RM, Yeoman LC, Olson MO, Prestayko AW, Busch H (1975) Isolation and characterization of protein A24, a “histone-like” non-histone chromosomal protein. J Biol Chem 250(18):7182–7187

    CAS  PubMed  Google Scholar 

  118. Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M, Shilatifard A (2002) Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277(32):28368–28371. doi:10.1074/jbc.C200348200

    Article  CAS  PubMed  Google Scholar 

  119. Sun ZW, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418(6893):104–108. doi:10.1038/nature00883

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Y (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17(22):2733–2740. doi:10.1101/gad.1156403

    Article  CAS  PubMed  Google Scholar 

  121. Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S, Suzuki E, Le Guezennec X, Stunnenberg HG, Krasnov A, Georgieva SG, Schule R, Takeyama K, Kato S, Tora L, Devys D (2008) A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 29(1):92–101. doi:10.1016/j.molcel.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  122. Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8(4):284–295. doi:10.1038/nrm2145

    Article  CAS  PubMed  Google Scholar 

  123. Osley MA (2006) Regulation of histone H2A and H2B ubiquitylation. Brief Funct Genomic Proteomic 5(3):179–189. doi:10.1093/bfgp/ell022

    Article  CAS  PubMed  Google Scholar 

  124. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5):773–786. doi:10.1016/j.cell.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  125. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431(7010):873–878. doi:10.1038/nature02985

    Article  CAS  PubMed  Google Scholar 

  126. Joo HY, Zhai L, Yang C, Nie S, Erdjument-Bromage H, Tempst P, Chang C, Wang H (2007) Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449(7165):1068–1072. doi:10.1038/nature06256

    Article  CAS  PubMed  Google Scholar 

  127. Nickel BE, Allis CD, Davie JR (1989) Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 28(3):958–963

    Article  CAS  PubMed  Google Scholar 

  128. Gatti M, Pinato S, Maspero E, Soffientini P, Polo S, Penengo L (2012) A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. Cell Cycle 11(13):2538–2544. doi:10.4161/cc.20919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhu P, Zhou W, Wang J, Puc J, Ohgi KA, Erdjument-Bromage H, Tempst P, Glass CK, Rosenfeld MG (2007) A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 27(4):609–621. doi:10.1016/j.molcel.2007.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou W, Zhu P, Wang J, Pascual G, Ohgi KA, Lozach J, Glass CK, Rosenfeld MG (2008) Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 29(1):69–80. doi:10.1016/j.molcel.2007.11.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Mimnaugh EG, Kayastha G, McGovern NB, Hwang SG, Marcu MG, Trepel J, Cai SY, Marchesi VT, Neckers L (2001) Caspase-dependent deubiquitination of monoubiquitinated nucleosomal histone H2A induced by diverse apoptogenic stimuli. Cell Death Differ 8(12):1182–1196. doi:10.1038/sj.cdd.4400924

    Article  CAS  PubMed  Google Scholar 

  132. Raboy B, Parag HA, Kulka RG (1986) Conjugation of [125I]ubiquitin to cellular proteins in permeabilized mammalian cells: comparison of mitotic and interphase cells. EMBO J 5(5):863–869

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Belle JI, Nijnik A (2014) H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int J Biochem Cell Biol 50:161–174. doi:10.1016/j.biocel.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  134. Mosbech A, Lukas C, Bekker-Jensen S, Mailand N (2013) The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J Biol Chem 288(23):16579–16587. doi:10.1074/jbc.M113.459917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne AW, Berger SL, McMahon SB (2008) The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell 29(1):102–111. doi:10.1016/j.molcel.2007.12.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Nakagawa T, Kajitani T, Togo S, Masuko N, Ohdan H, Hishikawa Y, Koji T, Matsuyama T, Ikura T, Muramatsu M, Ito T (2008) Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev 22(1):37–49. doi:10.1101/gad.1609708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nicassio F, Corrado N, Vissers JH, Areces LB, Bergink S, Marteijn JA, Geverts B, Houtsmuller AB, Vermeulen W, Di Fiore PP, Citterio E (2007) Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr Biol 17(22):1972–1977. doi:10.1016/j.cub.2007.10.034

    Article  CAS  PubMed  Google Scholar 

  138. Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17(21):2648–2663. doi:10.1101/gad.1144003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lancini C, van den Berk PC, Vissers JH, Gargiulo G, Song JY, Hulsman D, Serresi M, Tanger E, Blom M, Vens C, van Lohuizen M, Jacobs H, Citterio E (2014) Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells. J Exp Med 211(9):1759–1777. doi:10.1084/jem.20131436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J, Lukas J, Lukas C (2009) RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136(3):435–446. doi:10.1016/j.cell.2008.12.041

    Article  CAS  PubMed  Google Scholar 

  141. Hu B, Li S, Zhang X, Zheng X (2014) HSCARG, a novel regulator of H2A ubiquitination by downregulating PRC1 ubiquitin E3 ligase activity, is essential for cell proliferation. Nucleic Acids Res 42(9):5582–5593. doi:10.1093/nar/gku230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zheng X, Dai X, Zhao Y, Chen Q, Lu F, Yao D, Yu Q, Liu X, Zhang C, Gu X, Luo M (2007) Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein. Proc Natl Acad Sci USA 104(21):8809–8814. doi:10.1073/pnas.0700480104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang Z, Yang H, Wang H (2014) The histone H2A deubiquitinase USP16 interacts with HERC2 and fine-tunes cellular response to DNA damage. J Biol Chem 289(47):32883–32894. doi:10.1074/jbc.M114.599605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Castellano-Pozo M, Santos-Pereira JM, Rondon AG, Barroso S, Andujar E, Perez-Alegre M, Garcia-Muse T, Aguilera A (2013) R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol Cell 52(4):583–590. doi:10.1016/j.molcel.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  145. Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S, Golomb L, Pribluda A, Zhang F, Haj-Yahya M, Feldmesser E, Brik A, Yu X, Hanna J, Aberdam D, Domany E, Oren M (2012) RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell 46(5):662–673. doi:10.1016/j.molcel.2012.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Joo HY, Jones A, Yang C, Zhai L, Smith ADt, Zhang Z, Chandrasekharan MB, Sun ZW, Renfrow MB, Wang Y, Chang C, Wang H (2011) Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46. J Biol Chem 286(9):7190–7201. doi:10.1074/jbc.M110.158311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cohn MA, Kee Y, Haas W, Gygi SP, D’Andrea AD (2009) UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J Biol Chem 284(8):5343–5351. doi:10.1074/jbc.M808430200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, Marteijn JA, Sixma TK (2012) RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell 150(6):1182–1195. doi:10.1016/j.cell.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  149. Sharma N, Zhu Q, Wani G, He J, Wang QE, Wani AA (2014) USP3 counteracts RNF168 via deubiquitinating H2A and gammaH2AX at lysine 13 and 15. Cell Cycle 13(1):106–114. doi:10.4161/cc.26814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M (2005) The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 280(11):9879–9886. doi:10.1074/jbc.M414453200

    Article  CAS  PubMed  Google Scholar 

  151. Zhang Z, Jones A, Joo HY, Zhou D, Cao Y, Chen S, Erdjument-Bromage H, Renfrow M, He H, Tempst P, Townes TM, Giles KE, Ma L, Wang H (2013) USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing. Genes Dev 27(14):1581–1595. doi:10.1101/gad.211037.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29(6):653–663. doi:10.1016/j.molcel.2008.02.014

    Article  CAS  PubMed  Google Scholar 

  153. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115(6):1503–1521. doi:10.1172/JCI23412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39(2):157–158. doi:10.1038/ng1941

    Article  CAS  PubMed  Google Scholar 

  155. Hock AK, Vigneron AM, Vousden KH (2014) Ubiquitin-specific peptidase 42 (USP42) functions to deubiquitylate histones and regulate transcriptional activity. J Biol Chem 289(50):34862–34870. doi:10.1074/jbc.M114.589267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 364(11):1046–1060. doi:10.1056/NEJMra1011442

    Article  CAS  PubMed  Google Scholar 

  157. Palumbo A, Mateos MV, Bringhen S, San Miguel JF (2011) Practical management of adverse events in multiple myeloma: can therapy be attenuated in older patients? Blood Rev 25(4):181–191. doi:10.1016/j.blre.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  158. Kramer HB, Nicholson B, Kessler BM, Altun M (2012) Detection of ubiquitin-proteasome enzymatic activities in cells: application of activity-based probes to inhibitor development. Biochim Biophys Acta 1823(11):2029–2037. doi:10.1016/j.bbamcr.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  159. Wing SS (2003) Deubiquitinating enzymes—the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 35(5):590–605

    Article  CAS  PubMed  Google Scholar 

  160. Kottemann MC, Smogorzewska A (2013) Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493(7432):356–363. doi:10.1038/nature11863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, Maloney DJ, Jadhav A, Simeonov A, Zhuang Z (2011) Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol 18(11):1390–1400. doi:10.1016/j.chembiol.2011.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mistry H, Hsieh G, Buhrlage SJ, Huang M, Park E, Cuny GD, Galinsky I, Stone RM, Gray NS, D’Andrea AD, Parmar K (2013) Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther 12(12):2651–2662. doi:10.1158/1535-7163.MCT-13-0103-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC, Carano RA, Dixit VM (2011) USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell 146(6):918–930. doi:10.1016/j.cell.2011.07.040

    Article  CAS  PubMed  Google Scholar 

  164. Liang Q, Dexheimer TS, Zhang P, Rosenthal AS, Villamil MA, You C, Zhang Q, Chen J, Ott CA, Sun H, Luci DK, Yuan B, Simeonov A, Jadhav A, Xiao H, Wang Y, Maloney DJ, Zhuang Z (2014) A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol 10(4):298–304. doi:10.1038/nchembio.1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cheon KW, Baek KH (2006) HAUSP as a therapeutic target for hematopoietic tumors (review). Int J Oncol 28(5):1209–1215

    CAS  PubMed  Google Scholar 

  166. Nicholson B, Suresh Kumar KG (2011) The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys 60(1–2):61–68. doi:10.1007/s12013-011-9185-5

    Article  CAS  PubMed  Google Scholar 

  167. Reverdy C, Conrath S, Lopez R, Planquette C, Atmanene C, Collura V, Harpon J, Battaglia V, Vivat V, Sippl W, Colland F (2012) Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem Biol 19(4):467–477. doi:10.1016/j.chembiol.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  168. Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R, McDermott JL, Leach CA, Fulcinniti M, Kodrasov MP, Weinstock J, Kingsbury WD, Hideshima T, Shah PK, Minvielle S, Altun M, Kessler BM, Orlowski R, Richardson P, Munshi N, Anderson KC (2012) A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22(3):345–358. doi:10.1016/j.ccr.2012.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Fan YH, Cheng J, Vasudevan SA, Dou J, Zhang H, Patel RH, Ma IT, Rojas Y, Zhao Y, Yu Y, Zhang H, Shohet JM, Nuchtern JG, Kim ES, Yang J (2013) USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis 4:e867. doi:10.1038/cddis.2013.400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yamaguchi M, Miyazaki M, Kodrasov MP, Rotinsulu H, Losung F, Mangindaan RE, de Voogd NJ, Yokosawa H, Nicholson B, Tsukamoto S (2013) Spongiacidin C, a pyrrole alkaloid from the marine sponge Stylissa massa, functions as a USP7 inhibitor. Bioorg Med Chem Lett 23(13):3884–3886. doi:10.1016/j.bmcl.2013.04.066

    Article  CAS  PubMed  Google Scholar 

  171. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, Wilson SM, King RW, Finley D (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312):179–184. doi:10.1038/nature09299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nag DK, Finley D (2012) A small-molecule inhibitor of deubiquitinating enzyme USP14 inhibits dengue virus replication. Virus Res 165(1):103–106. doi:10.1016/j.virusres.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  173. Nakamura N, Hirose S (2008) Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell 19(5):1903–1911. doi:10.1091/mbc.E07-11-1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS, Sheng M (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510(7505):370–375. doi:10.1038/nature13418

    CAS  PubMed  Google Scholar 

  175. Yue W, Chen Z, Liu H, Yan C, Chen M, Feng D, Yan C, Wu H, Du L, Wang Y, Liu J, Huang X, Xia L, Liu L, Wang X, Jin H, Wang J, Song Z, Hao X, Chen Q (2014) A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res 24(4):482–496. doi:10.1038/cr.2014.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bartholomeusz GA, Talpaz M, Kapuria V, Kong LY, Wang S, Estrov Z, Priebe W, Wu J, Donato NJ (2007) Activation of a novel Bcr/Abl destruction pathway by WP1130 induces apoptosis of chronic myelogenous leukemia cells. Blood 109(8):3470–3478. doi:10.1182/blood-2006-02-005579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bartholomeusz G, Talpaz M, Bornmann W, Kong LY, Donato NJ (2007) Degrasyn activates proteasomal-dependent degradation of c-Myc. Cancer Res 67(8):3912–3918. doi:10.1158/0008-5472.CAN-06-4464

    Article  CAS  PubMed  Google Scholar 

  178. Pham LV, Tamayo AT, Li C, Bornmann W, Priebe W, Ford RJ (2010) Degrasyn potentiates the antitumor effects of bortezomib in mantle cell lymphoma cells in vitro and in vivo: therapeutic implications. Mol Cancer Ther 9(7):2026–2036. doi:10.1158/1535-7163.MCT-10-0238

    Article  CAS  PubMed  Google Scholar 

  179. Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ (2010) Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res 70(22):9265–9276. doi:10.1158/0008-5472.CAN-10-1530

    Article  CAS  PubMed  Google Scholar 

  180. Sun H, Kapuria V, Peterson LF, Fang D, Bornmann WG, Bartholomeusz G, Talpaz M, Donato NJ (2011) Bcr-Abl ubiquitination and Usp9x inhibition block kinase signaling and promote CML cell apoptosis. Blood 117(11):3151–3162. doi:10.1182/blood-2010-03-276477

    Article  CAS  PubMed  Google Scholar 

  181. Peddaboina C, Jupiter D, Fletcher S, Yap JL, Rai A, Tobin RP, Jiang W, Rascoe P, Rogers MK, Smythe WR, Cao X (2012) The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition. BMC Cancer 12:541. doi:10.1186/1471-2407-12-541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang S, Kollipara RK, Srivastava N, Li R, Ravindranathan P, Hernandez E, Freeman E, Humphries CG, Kapur P, Lotan Y, Fazli L, Gleave ME, Plymate SR, Raj GV, Hsieh JT, Kittler R (2014) Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer. Proc Natl Acad Sci USA 111(11):4251–4256. doi:10.1073/pnas.1322198111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cox JL, Wilder PJ, Wuebben EL, Ouellette MM, Hollingsworth MA, Rizzino A (2014) Context-dependent function of the deubiquitinating enzyme USP9X in pancreatic ductal adenocarcinoma. Cancer Biol Ther 15(8):1042–1052. doi:10.4161/cbt.29182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Thrane S, Pedersen AM, Thomsen MB, Kirkegaard T, Rasmussen BB, Duun-Henriksen AK, Laenkholm AV, Bak M, Lykkesfeldt AE, Yde CW (2014) A kinase inhibitor screen identifies Mcl-1 and Aurora kinase A as novel treatment targets in antiestrogen-resistant breast cancer cells. Oncogene. doi:10.1038/onc.2014.351

    PubMed  Google Scholar 

  185. D’Arcy P, Brnjic S, Olofsson MH, Fryknas M, Lindsten K, De Cesare M, Perego P, Sadeghi B, Hassan M, Larsson R, Linder S (2011) Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 17(12):1636–1640. doi:10.1038/nm.2536

    Article  PubMed  CAS  Google Scholar 

  186. Tian Z, D’Arcy P, Wang X, Ray A, Tai YT, Hu Y, Carrasco RD, Richardson P, Linder S, Chauhan D, Anderson KC (2014) A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 123(5):706–716. doi:10.1182/blood-2013-05-500033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Le XF, Bast RC Jr (2011) Src family kinases and paclitaxel sensitivity. Cancer Biol Ther 12(4):260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M (2010) The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 24(13):1434–1447. doi:10.1101/gad.1925010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Johnson NP (2014) Metformin use in women with polycystic ovary syndrome. Ann Transl Med 2(6):56. doi:10.3978/j.issn.2305-5839.2014.04.15

    PubMed  PubMed Central  Google Scholar 

  190. Kasznicki J, Sliwinska A, Drzewoski J (2014) Metformin in cancer prevention and therapy. Ann Transl Med 2(6):57. doi:10.3978/j.issn.2305-5839.2014.06.01

    PubMed  PubMed Central  Google Scholar 

  191. Hirsch HA, Iliopoulos D, Struhl K (2013) Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA 110(3):972–977. doi:10.1073/pnas.1221055110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67(22):10804–10812. doi:10.1158/0008-5472.CAN-07-2310

    Article  CAS  PubMed  Google Scholar 

  193. Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E (2009) Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 69(16):6539–6545. doi:10.1158/0008-5472.CAN-09-0418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Xu Y, Lu S (2013) Metformin inhibits esophagus cancer proliferation through upregulation of USP7. Cell Physiol Biochem 32(5):1178–1186. doi:10.1159/000354517

    Article  CAS  PubMed  Google Scholar 

  195. Colombo M, Vallese S, Peretto I, Jacq X, Rain JC, Colland F, Guedat P (2010) Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes. Chem Med Chem 5(4):552–558. doi:10.1002/cmdc.200900409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013-0141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Hyun Baek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, KH., Song, MH. & Baek, KH. Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint. Cell. Mol. Life Sci. 73, 1439–1455 (2016). https://doi.org/10.1007/s00018-015-2129-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2129-2

Keywords

Navigation