Skip to main content

Advertisement

Log in

The Multifaceted Roles of USP7: New Therapeutic Opportunities

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The deubiquitylating enzyme USP7 (HAUSP) sits at a critical node regulating the activities of numerous proteins broadly characterized as tumor suppressors, DNA repair proteins, immune responders, viral proteins, and epigenetic modulators. Aberrant USP7 activity may promote oncogenesis and viral disease making it a compelling target for therapeutic intervention. Disclosed drug discovery programs have identified inhibitors of USP7 such as P005091 with cellular proof of concept and anti-proliferative activity in cancer models. Taken together, USP7 inhibitors hold promise as a new strategy for the treatment of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia and Rad3-related protein

DAXX:

Death domain associated protein

DUB:

Deubiquitylating enzyme

EBNA1:

Epstein-Barr nuclear antigen 1

EBV:

Epstein-Barr virus

EGF:

Epidermal growth factor

FOXO:

Forkhead box O

GMPS:

Guanosine monophosphate synthase

HDAC:

Histone deacetylase

HDM2:

Human double minute 2

HDMX:

Human double minute 4

HSV:

Herpes simplex virus

ICP0:

Infected cell protein 0

PI3K:

Phosphatidylinositol-3-kinase

PML:

Promyelocytic leukemia protein

Pc:

Polycomb

PRC1:

Polycomb repressive complex 1

PTEN:

Phosphatase and tensin homologue

TLR:

Toll-like receptor

TRAF:

Tumor necrosis factor-receptor associated factor

USP7:

Ubiquitin specific peptidase 7

References

  1. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  PubMed  CAS  Google Scholar 

  2. Nicholson, B., Marblestone, J. G., Butt, T. R., & Mattern, M. R. (2007). Deubiquitinating enzymes as novel anticancer targets. Future Oncology, 3, 191–199.

    Article  PubMed  CAS  Google Scholar 

  3. Daviet, L., & Colland, F. (2008). Targeting ubiquitin specific proteases for drug discovery. Biochimie, 90, 270–283.

    Article  PubMed  CAS  Google Scholar 

  4. Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry, 78, 363–397.

    Article  PubMed  CAS  Google Scholar 

  5. Everett, R. D., Meredith, M., Orr, A., Cross, A., Kathoria, M., & Parkinson, J. (1997). A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO Journal, 16, 1519–1530.

    Article  PubMed  CAS  Google Scholar 

  6. Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell, 138, 389–403.

    Article  PubMed  CAS  Google Scholar 

  7. Kessler, B. M., Fortunati, E., Melis, M., Pals, C. E., Clevers, H., & Maurice, M. M. (2007). Proteome changes induced by knock-down of the deubiquitylating enzyme HAUSP/USP7. Journal of Proteome Research, 6, 4163–4172.

    Article  PubMed  CAS  Google Scholar 

  8. Jones, S. N., Roe, A. E., Donehower, L. A., & Bradley, A. (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature, 378, 206–208.

    Article  PubMed  CAS  Google Scholar 

  9. Montes de Oca Luna, R., Wagner, D. S., & Lozano, G. (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature, 378, 203–206.

    Article  PubMed  CAS  Google Scholar 

  10. Li, M., Chen, D., Shiloh, A., Luo, J., Nikolaev, A. Y., Qin, J., et al. (2002). Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature, 416, 648–653.

    Article  PubMed  CAS  Google Scholar 

  11. Li, M., Brooks, C. L., Kon, N., & Gu, W. (2004). A dynamic role of HAUSP in the p53-Mdm2 pathway. Molecular Cell, 13, 879–886.

    Article  PubMed  CAS  Google Scholar 

  12. Cummins, J. M., Rago, C., Kohli, M., Kinzler, K. W., Lengauer, C., & Vogelstein, B. (2004). Tumour suppression: Disruption of HAUSP gene stabilizes p53. Nature, 428, 1 pg following 486.

    Google Scholar 

  13. Hu, M., Gu, L., Li, M., Jeffrey, P. D., Gu, W., & Shi, Y. (2006). Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biology, 4, e27.

    Article  PubMed  Google Scholar 

  14. Meulmeester, E., Maurice, M. M., Boutell, C., Teunisse, A. F., Ovaa, H., Abraham, T. E., et al. (2005). Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Molecular Cell, 18, 565–576.

    Article  PubMed  CAS  Google Scholar 

  15. Kon, N., Kobayashi, Y., Li, M., Brooks, C. L., Ludwig, T., & Gu, W. (2010). Inactivation of HAUSP in vivo modulates p53 function. Oncogene, 29, 1270–1279.

    Article  PubMed  CAS  Google Scholar 

  16. Tachibana, M., Shibakita, M., Ohno, S., Kinugasa, S., Yoshimura, H., Ueda, S., et al. (2002). Expression and prognostic significance of PTEN product protein in patients with esophageal squamous cell carcinoma. Cancer, 94, 1955–1960.

    Article  PubMed  CAS  Google Scholar 

  17. Perren, A., Komminoth, P., Saremaslani, P., Matter, C., Feurer, S., Lees, J. A., et al. (2000). Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. American Journal of Pathology, 157, 1097–1103.

    Article  PubMed  CAS  Google Scholar 

  18. Trotman, L. C., Wang, X., Alimonti, A., Chen, Z., Teruya-Feldstein, J., Yang, H., et al. (2007). Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell, 128, 141–156.

    Article  PubMed  CAS  Google Scholar 

  19. Song, M. S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya-Feldstein, J., et al. (2008). The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature, 455, 813–817.

    Article  PubMed  CAS  Google Scholar 

  20. Huang, H., & Tindall, D. J. (2007). Dynamic FoxO transcription factors. Journal of Cell Science, 120, 2479–2487.

    Article  PubMed  CAS  Google Scholar 

  21. van der Horst, A., de Vries-Smits, A. M., Brenkman, A. B., van Triest, M. H., van den Broek, N., Colland, F., et al. (2006). FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nature Cell Biology, 8, 1064–1073.

    Article  PubMed  Google Scholar 

  22. Brenkman, A. B., de Keizer, P. L., van den Broek, N. J., van der Groep, P., van Diest, P. J., van der Horst, A., et al. (2008). The peptidyl-isomerase Pin1 regulates p27kip1 expression through inhibition of Forkhead box O tumor suppressors. Cancer Research, 68, 7597–7605.

    Article  PubMed  CAS  Google Scholar 

  23. Brenkman, A. B., de Keizer, P. L., van den Broek, N. J., Jochemsen, A. G., & Burgering, B. M. (2008). Mdm2 induces mono-ubiquitination of FOXO4. PLoS One, 3, e2819.

    Article  PubMed  Google Scholar 

  24. Yang, J. Y., Zong, C. S., Xia, W., Yamaguchi, H., Ding, Q., Xie, X., et al. (2008). ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nature Cell Biology, 10, 138–148.

    Article  PubMed  CAS  Google Scholar 

  25. Gil, J., & Peters, G. (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: All for one or one for all. Nature Reviews Molecular Cell Biology, 7, 667–677.

    Article  PubMed  CAS  Google Scholar 

  26. Maertens, G. N., El Messaoudi-Aubert, S., Elderkin, S., Hiom, K., & Peters, G. (2010). Ubiquitin-specific proteases 7 and 11 modulate polycomb regulation of the INK4a tumour suppressor. EMBO Journal, 29, 2553–2565.

    Article  PubMed  CAS  Google Scholar 

  27. de Bie, P., Zaaroor-Regev, D., Ciechanover, A. (2010) Regulation of the polycomb protein RING1B ubiquitination by USP7. Biochemical and Biophysical Research Communications, 400(3), 389–395.

    Google Scholar 

  28. Henry, K. W., Wyce, A., Lo, W. S., Duggan, L. J., Emre, N. C., Kao, C. F., et al. (2003). Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes and Development, 17, 2648–2663.

    Article  PubMed  CAS  Google Scholar 

  29. Sun, Z. W., & Allis, C. D. (2002). Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature, 418, 104–108.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R. S., et al. (2004). Role of histone H2A ubiquitination in polycomb silencing. Nature, 431, 873–878.

    Article  PubMed  CAS  Google Scholar 

  31. Sarkari, F., Sanchez-Alcaraz, T., Wang, S., Holowaty, M. N., Sheng, Y., & Frappier, L. (2009). EBNA1-mediated recruitment of a histone H2B deubiquitylating complex to the Epstein-Barr virus latent origin of DNA replication. PLoS Pathogens, 5, e1000624.

    Article  PubMed  Google Scholar 

  32. van der Knaap, J. A., Kumar, B. R., Moshkin, Y. M., Langenberg, K., Krijgsveld, J., Heck, A. J., et al. (2005). GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Molecular Cell, 17, 695–707.

    Article  PubMed  Google Scholar 

  33. van der Knaap, J. A., Kozhevnikova, E., Langenberg, K., Moshkin, Y. M., & Verrijzer, C. P. (2010). Biosynthetic enzyme GMP synthetase cooperates with ubiquitin-specific protease 7 in transcriptional regulation of ecdysteroid target genes. Molecular and Cellular Biology, 30, 736–744.

    Article  PubMed  Google Scholar 

  34. Hirst, M., Haliday, E., Nakamura, J., & Lou, L. (1994). Human GMP synthetase. Protein purification, cloning, and functional expression of cDNA. Journal of Biological Chemistry, 269, 23830–23837.

    PubMed  CAS  Google Scholar 

  35. Boritzki, T. J., Jackson, R. C., Morris, H. P., & Weber, G. (1981). Guanosine-5′-phosphate synthetase and guanosine-5′-phosphate kinase in rat hepatomas and kidney tumors. Biochimica et Biophysica Acta, 658, 102–110.

    PubMed  CAS  Google Scholar 

  36. Weber, G., Burt, M. E., Jackson, R. C., Prajda, N., Lui, M. S., & Takeda, E. (1983). Purine and pyrimidine enzymic programs and nucleotide pattern in sarcoma. Cancer Research, 43, 1019–1023.

    PubMed  CAS  Google Scholar 

  37. Mossman, K. L., Saffran, H. A., & Smiley, J. R. (2000). Herpes simplex virus ICP0 mutants are hypersensitive to interferon. Journal of Virology, 74, 2052–2056.

    Article  PubMed  CAS  Google Scholar 

  38. Leib, D. A., Harrison, T. E., Laslo, K. M., Machalek, M. A., Moorman, N. J., & Virgin, H. W. (1999). Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. Journal of Experimental Medicine, 189, 663–672.

    Article  PubMed  CAS  Google Scholar 

  39. Hagglund, R., Van Sant, C., Lopez, P., & Roizman, B. (2002). Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes. Proceedings of the National Academy of Sciences USA, 99, 631–636.

    Article  CAS  Google Scholar 

  40. Hagglund, R., & Roizman, B. (2002). Characterization of the novel E3 ubiquitin ligase encoded in exon 3 of herpes simplex virus-1-infected cell protein 0. Proceedings of the National Academy of Sciences USA, 99, 7889–7894.

    Article  CAS  Google Scholar 

  41. Halford, W.P., Puschel, R., Rakowski, B. (2010). Herpes simplex virus 2 ICP0 mutant viruses are avirulent and immunogenic: Implications for a genital herpes vaccine. PLoS One, 5(8), e12251.

  42. Everett, R. D., Parsy, M. L., & Orr, A. (2009). Analysis of the functions of herpes simplex virus type 1 regulatory protein ICP0 that are critical for lytic infection and derepression of quiescent viral genomes. Journal of Virology, 83, 4963–4977.

    Article  PubMed  CAS  Google Scholar 

  43. Cliffe, A. R., & Knipe, D. M. (2008). Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infection. Journal of Virology, 82, 12030–12038.

    Article  PubMed  CAS  Google Scholar 

  44. Halford, W. P., Weisend, C., Grace, J., Soboleski, M., Carr, D. J., Balliet, J. W., et al. (2006). ICP0 antagonizes stat 1-dependent repression of herpes simplex virus: implications for the regulation of viral latency. Virology Journal, 3, 44.

    Article  PubMed  Google Scholar 

  45. Hagglund, R., & Roizman, B. (2004). Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. Journal of Virology, 78, 2169–2178.

    Article  PubMed  CAS  Google Scholar 

  46. Liu, M., Schmidt, E. E., & Halford, W. P. (2010). ICP0 dismantles microtubule networks in herpes simplex virus-infected cells. PLoS One, 5, e10975.

    Article  PubMed  Google Scholar 

  47. Boutell, C., & Everett, R. D. (2003). The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and ubiquitinates p53. Journal of Biological Chemistry, 278, 36596–36602.

    Article  PubMed  CAS  Google Scholar 

  48. Gu, H., & Roizman, B. (2009). The two functions of herpes simplex virus 1 ICP0, inhibition of silencing by the CoREST/REST/HDAC complex and degradation of PML, are executed in tandem. Journal of Virology, 83, 181–187.

    Article  PubMed  CAS  Google Scholar 

  49. Lomonte, P., Thomas, J., Texier, P., Caron, C., Khochbin, S., & Epstein, A. L. (2004). Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. Journal of Virology, 78, 6744–6757.

    Article  PubMed  CAS  Google Scholar 

  50. Daubeuf, S., Singh, D., Tan, Y., Liu, H., Federoff, H. J., Bowers, W. J., et al. (2009). HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood, 113, 3264–3275.

    Article  PubMed  CAS  Google Scholar 

  51. Rickinson, A. B., & Kieff, E. (2001). Epstein-Barr virus. In D. M. Knipe & P. M. Howley (Eds.), Field virology, 4th ed. (pp. 2575–2627). Philadelphia: Lippincott Williams and Wilkins.

    Google Scholar 

  52. Krysan, P. J., Haase, S. B., & Calos, M. P. (1989). Isolation of human sequences that replicate autonomously in human cells. Molecular and Cellular Biology, 9, 1026–1033.

    PubMed  CAS  Google Scholar 

  53. Reisman, D., & Sugden, B. (1986). Transactivation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Molecular and Cellular Biology, 6, 3838–3846.

    PubMed  CAS  Google Scholar 

  54. Holowaty, M. N., Zeghouf, M., Wu, H., Tellam, J., Athanasopoulos, V., Greenblatt, J., et al. (2003). Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. Journal of Biological Chemistry, 278, 29987–29994.

    Article  PubMed  CAS  Google Scholar 

  55. Holowaty, M. N., Sheng, Y., Nguyen, T., Arrowsmith, C., & Frappier, L. (2003). Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. Journal of Biological Chemistry, 278, 47753–47761.

    Article  PubMed  CAS  Google Scholar 

  56. Saridakis, V., Sheng, Y., Sarkari, F., Holowaty, M. N., Shire, K., Nguyen, T., et al. (2005). Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Molecular Cell, 18, 25–36.

    Article  PubMed  CAS  Google Scholar 

  57. Faustrup, H., Bekker-Jensen, S., Bartek, J., Lukas, J., & Mailand, N. (2009). USP7 counteracts SCFbetaTrCP- but not APCCdh1-mediated proteolysis of Claspin. Journal of Cell Biology, 184, 13–19.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang, D., Zaugg, K., Mak, T. W., & Elledge, S. J. (2006). A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell, 126, 529–542.

    Article  PubMed  CAS  Google Scholar 

  59. Wiltshire, T. D., Lovejoy, C. A., Wang, T., Xia, F., O’Connor, M. J., & Cortez, D. (2010). Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair. Journal of Biological Chemistry, 285, 14565–14571.

    Article  PubMed  CAS  Google Scholar 

  60. Song, L., & Rape, M. (2008). Reverse the curse–the role of deubiquitination in cell cycle control. Current Opinion in Cell Biology, 20, 156–163.

    Article  PubMed  CAS  Google Scholar 

  61. Zhou, B. B., & Elledge, S. J. (2000). The DNA damage response: putting checkpoints in perspective. Nature, 408, 433–439.

    Article  PubMed  CAS  Google Scholar 

  62. Bartek, J., & Lukas, J. (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Current Opinion in Cell Biology, 19, 238–245.

    Article  PubMed  CAS  Google Scholar 

  63. Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J., et al. (2000). Rapid destruction of human Cdc25A in response to DNA damage. Science, 288, 1425–1429.

    Article  PubMed  CAS  Google Scholar 

  64. Busino, L., Donzelli, M., Chiesa, M., Guardavaccaro, D., Ganoth, D., Dorrello, N. V., et al. (2003). Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature, 426, 87–91.

    Article  PubMed  CAS  Google Scholar 

  65. Kumagai, A., & Dunphy, W. G. (2000). Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Molecular Cell, 6, 839–849.

    Article  PubMed  CAS  Google Scholar 

  66. Mailand, N., Bekker-Jensen, S., Bartek, J., & Lukas, J. (2006). Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Molecular Cell, 23, 307–318.

    Article  PubMed  CAS  Google Scholar 

  67. Mamely, I., van Vugt, M. A., Smits, V. A., Semple, J. I., Lemmens, B., Perrakis, A., et al. (2006). Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Current Biology, 16, 1950–1955.

    Article  PubMed  CAS  Google Scholar 

  68. Peschiaroli, A., Dorrello, N. V., Guardavaccaro, D., Venere, M., Halazonetis, T., Sherman, N. E., et al. (2006). SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Molecular Cell, 23, 319–329.

    Article  PubMed  CAS  Google Scholar 

  69. Bassermann, F., Frescas, D., Guardavaccaro, D., Busino, L., Peschiaroli, A., & Pagano, M. (2008). The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell, 134, 256–267.

    Article  PubMed  CAS  Google Scholar 

  70. Vogel, C., Hager, C., & Bastians, H. (2007). Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Cancer Research, 67, 339–345.

    Article  PubMed  CAS  Google Scholar 

  71. Koniaras, K., Cuddihy, A. R., Christopoulos, H., Hogg, A., & O’Connell, M. J. (2001). Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene, 20, 7453–7463.

    Article  PubMed  CAS  Google Scholar 

  72. Zachos, G., Rainey, M. D., & Gillespie, D. A. (2003). Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO Journal, 22, 713–723.

    Article  PubMed  CAS  Google Scholar 

  73. Lapenna, S., & Giordano, A. (2009). Cell cycle kinases as therapeutic targets for cancer. Nature Reviews Drug Discovery, 8, 547–566.

    Article  PubMed  CAS  Google Scholar 

  74. Oh, Y. M., Yoo, S. J., & Seol, J. H. (2007). Deubiquitination of Chfr, a checkpoint protein, by USP7/HAUSP regulates its stability and activity. Biochemical and Biophysical Research Communications, 357, 615–619.

    Article  PubMed  CAS  Google Scholar 

  75. Scolnick, D. M., & Halazonetis, T. D. (2000). Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature, 406, 430–435.

    Article  PubMed  CAS  Google Scholar 

  76. Oh, Y. M., Kwon, Y. E., Kim, J. M., Bae, S. J., Lee, B. K., Yoo, S. J., et al. (2009). Chfr is linked to tumour metastasis through the downregulation of HDAC1. Nature Cell Biology, 11, 295–302.

    Article  PubMed  CAS  Google Scholar 

  77. Hussain, S., Zhang, Y., & Galardy, P. J. (2009). DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle, 8, 1688–1697.

    Article  PubMed  CAS  Google Scholar 

  78. Colland, F., Formstecher, E., Jacq, X., Reverdy, C., Planquette, C., Conrath, S., et al. (2009). Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Molecular Cancer Therapeutics, 8, 2286–2295.

    Article  PubMed  CAS  Google Scholar 

  79. Guedat, P., Boissy, G., Borg-Capra, C., Colland, F., Daviet, L., Formstecher, E., Jacq, X., Rain, J.C., Delansorne, R., Vallese, S., Colombo, M. (2007). Novel cysteine protease inhibitors and their therapeutic applications. Paris: Hybrigenics SA. US20070032499.

  80. Nicholson, B., Leach, C. A., Goldenberg, S. J., Francis, D. M., Kodrasov, M. P., Tian, X., et al. (2008). Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities. Protein Science, 17, 1035–1043.

    Article  PubMed  CAS  Google Scholar 

  81. Leach, C. A., Tian, X., Mattern, M. R., & Nicholson, B. (2009). Detection and characterization of SUMO protease activity using a sensitive enzyme-based reporter assay. Methods in Molecular Biology, 497, 269–281.

    Article  PubMed  CAS  Google Scholar 

  82. Cao, P., Weinstock, J., Kingsbury, W.D., Leach, C.A., Kizhakkethil George, S.K., Nicholson, B. (2009). Antineoplastic compounds, compositions and methods. Malvern, PA: Progenra Inc. PCT/US2010/029358.

Download references

Acknowledgments

We wish to thank our collaborators and our colleagues at Progenra for their many insightful comments on the roles of USP7 in disease. This study was supported in part by NIH grants CA115205 and DK071391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Nicholson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, B., Suresh Kumar, K.G. The Multifaceted Roles of USP7: New Therapeutic Opportunities. Cell Biochem Biophys 60, 61–68 (2011). https://doi.org/10.1007/s12013-011-9185-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9185-5

Keywords

Navigation