Skip to main content

Intracytoplasmic Signaling from Cilia in Ciliates

  • Chapter
  • First Online:
Biocommunication of Ciliates

Abstract

The ciliates are model organisms for pioneering studies of ciliary signaling as it controls cell behavior through second messengers such as Ca2+ and cAMP. Signaling is initiated via special receptors uniquely or significantly localized to the ciliary membrane. The receptors initiate a cascade of molecular changes in the ciliary matrix and in certain cases molecules move from the ciliary matrix into the cytoplasm, and sometimes enter the cell nucleus to alter gene expression. Like the cell nucleus, the cilium is specialized compartment of the cytoplasm. The entrance to the ciliary membrane or matrix is defined by the ciliary necklace barriers—ciliary pores—whose composition and function seem related to the nuclear pores. A well-defined signaling cascade can be traced from the cilia-localized receptor tyrosine kinase (TtPTK1) (NEK1) in Tetrahymena. In this cascade, Rad 51 which localizes to both the cilia and the nucleus, presumably may shuttle from the cilium to the nucleus to affect DNA replication and repair. The signaling scaffold protein parafusin (PFUS) may also represent this class of molecules. PFUS is localized to Paramecium dense core secretory vesicles (DSCVs) but also to the cilium and the nucleus. Knockdown of PFUS shuts off overall DSCV production, suggesting an effect on gene expression. Localization of signaling molecules such as Rad 51, Rsk and PFUS to both cilium and nucleus is found in both ciliates and mammalian cells, but the dynamics of movement between compartments is generally unknown and needs further elucidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Awan A, Bell AJ, Satir P (2009) Kin5 knockdown in Tetrahymena thermophila using RNAi blocks cargo transport of Gef1. PLoS ONE 4:e4873

    Article  PubMed  PubMed Central  Google Scholar 

  • Awan A, Bernstein M, Hamasaki T, Satir P (2004) Cloning and characterization of Kin5, a novel Tetrahymena ciliary kinesin II. Cell Motil Cytoskeleton 58:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bardele CF (1981) Functional and phylogenetic aspects of the ciliary membrane: a comparative freeze-fracture study. Biosystems 14:403–421

    Article  CAS  PubMed  Google Scholar 

  • Bell AJ, Guerra C, Phung V, Nair S, Seetharam R, Satir P (2009) GEF1 is a ciliary Sec7 GEF of Tetrahymena thermophila. Cell Motil Cytoskeleton 66:483–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K (2008) Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell 19:1540–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonini NM, Nelson DL (1988) Differential regulation of Paramecium ciliary motility by cAMP and cGMP. J Cell Biol 106:1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Campbell C, Romero DP (1998) Identification and characterization of the RAD51 gene from the ciliate Tetrahymena thermophila. Nucleic Acids Res 26:3165–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen ST, Quie H, Kemp K, Rasmussen L (1996) Insulin produces a biphasic response in Tetrahymena thermophila by stimulating cell survival and activating proliferation in two separate concentration intervals. Cell Biol Int 20:437–444

    Article  CAS  PubMed  Google Scholar 

  • Christensen ST, Clement CA, Satir P, Pedersen LB (2012) Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 226:172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen ST, Guerra CF, Awan A, Wheatley DN, Satir P (2003) Insulin receptor-like proteins in Tetrahymena thermophila ciliary membranes. Curr Biol 13:R50–R52

    Article  CAS  PubMed  Google Scholar 

  • Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 271:119–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabczak H, Sobierajska K, Fabczak S (2008) A rhodopsin immunoanalog in the related photosensitive protozoans Blepharisma japonicum and Stentor coeruleus. Photochem Photobiol Sci 7:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 119:1383–1395

    Article  CAS  PubMed  Google Scholar 

  • Gilula NB, Satir P (1972) The ciliary necklace: a ciliary membrane specialization. J Cell Biol 53:494–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra C (2007) Ciliary signaling systems for motility and growth control in Tetrahymena. Ph.D. thesis, Albert Einstein College of Medicine. New York

    Google Scholar 

  • Hamasaki T, Barkalow K, Richmond J, Satir P (1991) cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc Natl Acad Sci USA 88:7918–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houde C, Dickinson RJ, Houtzager VM, Cullum R, Montpetit R, Metzler M, Simpson EM, Roy S, Hayden MR, Hoodless PA, Nicholson DW (2006) Hippi is essential for node cilia assembly and Sonic hedgehog signaling. Dev Biol 300:523–533

    Article  CAS  PubMed  Google Scholar 

  • Jekely G, Arendt D (2006) Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. BioEssays 28:191–198

    Article  CAS  PubMed  Google Scholar 

  • Kee HL, Verhey KJ (2013) Molecular connections between nuclear and ciliary import processes. Cilia 2:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleene SJ, Van Houten JL (2014) Electrical signaling in motile and primary cilia. Bioscience 64:1092–1102

    Article  PubMed  PubMed Central  Google Scholar 

  • Lampert TJ, Coleman KD, Hennessey TM (2011) A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction. PLoS ONE 6:e28022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leightner AC, Hommerding CJ, Peng Y, Salisbury JL, Gainullin VG, Czarnecki PG, Sussman CR, Harris PC (2013) The Meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity. Hum Mol Genet 22:2024–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wyroba E, Satir BH (2011) RNAi knockdown of parafusin inhibits the secretory pathway. Eur J Cell Biol 90:844–853

    Article  CAS  PubMed  Google Scholar 

  • Love B, Rotheim MB (1984) Cell surface interactions in conjugation: Tetrahymena ciliary membrane vesicles. Mol Cell Biol 4:681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luporini P, Dallai R (1980) Sexual interaction of Euplotes crassus: differentiation of cellular surfaces in cell-to-cell union. Dev Biol 77:167–177

    Article  CAS  PubMed  Google Scholar 

  • Martindale DW, Allis CD, Bruns PJ (1982) Conjugation in Tetrahymena thermophila: a temporal analysis of cytological stages. Exp Cell Res 140:227–236

    Article  CAS  PubMed  Google Scholar 

  • Matthiesen SH, Shenoy SM, Kim K, Singer RH, Satir BH (2001) A parafusin-related Toxoplasma protein in Ca2+-regulated secretory organelles. Eur J Cell Biol 80:775–783

    Article  CAS  PubMed  Google Scholar 

  • Naitoh Y, Eckert R (1969) Ionic mechanisms controlling behavioral responses of paramecium to mechanical stimulation. Science 164:963–965

    Article  CAS  PubMed  Google Scholar 

  • Ogura A, Takahashi K (1976) Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature 264:170–172

    Article  CAS  PubMed  Google Scholar 

  • Ott C, Elia N, Jeong SY, Insinna C, Sengupta P, Lippincott-Schwartz J (2012) Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts. Cilia 1:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picariello T, Valentine MS, Yano J, Van Houten J (2014) Reduction of meckelin leads to general loss of cilia, ciliary microtubule misalignment and distorted cell surface organization. Cilia 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Preston RR, Kink JA, Hinrichsen RD, Saimi Y, Kung C (1991) Calmodulin mutants and Ca2(+)-dependent channels in Paramecium. Annu Rev Physiol 53:309–319

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Lin Y, Norman RX, Ko HW, Eggenschwiler JT (2011) Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc Natl Acad Sci USA 108:1456–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarmby LM, Mahjoub MR (2005) Caught Nek-ing: cilia and centrioles. J Cell Sci 118:5161–5169

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen MI, Wheatley DN (2007) Purification and characterisation of cell survival factor 1 (TCSF1) from Tetrahymena thermophila. J Cell Commun Signal 1:185–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Satir B, Sale WS, Satir P (1976) Membrane renewal after dibucaine deciliation of Tetrahymena: freeze-fracture technique, cilia, membrane structure. Exp Cell Res 97:83–91

    Article  CAS  PubMed  Google Scholar 

  • Satir BH, Zhao H (1991) Parafusin and calcium-induced signal transduction in exocytosis. Protoplasma 206:228–233

    Article  Google Scholar 

  • Satir BH, Wyroba E, Liu L, Lethan M, Satir P, Christensen ST (2015) Evolutionary implications of localization of the signaling scaffold protein parafusin to both cilia and the nucleus. Cell Biol Int 39:136–145

    Article  CAS  PubMed  Google Scholar 

  • Satir P, Barkalow K, Hamasaki T (1993) The control of ciliary beat frequency. Trends Cell Biol 3:409–412

    Article  CAS  PubMed  Google Scholar 

  • Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, Christensen ST (2005) PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15:1861–1866

    Article  CAS  PubMed  Google Scholar 

  • Schultz JE, Klumpp S, Benz R, Schurhoff-Goeters WJ, Schmid A (1992) Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science 255:600–603

    Article  CAS  PubMed  Google Scholar 

  • Shi L (2013). Dual Role of Ift57 in Cilia and Nucleus in Paramecium. Ph.D. thesis, Universite Paris-Sud, Paris

    Google Scholar 

  • Smith JJ, Cole ES, Romero DP (2004) Transcriptional control of RAD51 expression in the ciliate Tetrahymena thermophila. Nucleic Acids Res 32:4313–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian SV, Satir BH (1992) Carbohydrate cycling in signal transduction: parafusin, a phosphoglycoprotein and possible Ca(2+)-dependent transducer molecule in exocytosis in Paramecium. Proc Natl Acad Sci USA 89:11297–11301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian SV, Wyroba E, Andersen AP, Satir BH (1994) Cloning and sequencing of parafusin, a calcium-dependent exocytosis-related phosphoglycoprotein. Proc Natl Acad Sci USA 91:9832–9836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trojanek J, Ho T, Del Valle L, Nowicki M, Wang JY, Lassak A, Peruzzi F, Khalili K, Skorski T, Reiss K (2003) Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination. Mol Cell Biol 23:7510–7524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsao CC and Gorovsky MA (2008a) Different effects of Tetrahymena IFT172 domains on anterograde and retrograde intraflagellar transport. Mol Biol Cell 19:1450–1461

    Google Scholar 

  • Tsao CC and Gorovsky MA (2008b) Tetrahymena IFT122A is not essential for cilia assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body. J Cell Sci 121:428–436

    Google Scholar 

  • Valentine MS, Rajendran A, Yano J, Weeraratne SD, Beisson J, Cohen J, Koll F, Van Houten J (2012) Paramecium BBS genes are key to presence of channels in Cilia. Cilia 1:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallesi A, Ballarini P, Di Pretoro B, Alimenti C, Miceli C, Luporini P (2005) Autocrine, mitogenic pheromone receptor loop of the ciliate Euplotes raikovi: pheromone-induced receptor internalization. Eukaryot Cell 4:1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Houten JL (1998) Chemosensory transduction in Paramecium. Eur J Protistol 34:301–307

    Article  Google Scholar 

  • Van Houten JL (2000) Chemoreception in microorganisms. In: Finger TE, Silver WL, Restrepo D (eds) Neurobiology of taste and smell. Wiley, New York, pp 11–40

    Google Scholar 

  • Watanabe T (1990) The role of ciliary surfaces in mating in Paramecium. In: Bloodgood RA (ed) Ciliary and flagellar membranes. Plenum Press, New York, pp 149–171

    Chapter  Google Scholar 

  • Wiejak J, Surmacz L, Wyroba E (2004) Dynamin-association with agonist-mediated sequestration of beta-adrenergic receptor in single-cell eukaryote Paramecium. J Exp Biol 207:1625–1632

    Article  CAS  PubMed  Google Scholar 

  • Wloga D, Camba A, Rogowski K, Manning G, Jerka-Dziadosz M, Gaertig J (2006) Members of the NIMA-related kinase family promote disassembly of cilia by multiple mechanisms. Mol Biol Cell 17:2799–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe J, Mpoke S, Tirone SF (1993) Cilia, ciliary concanavalin A-binding proteins, and mating recognition in Tetrahymena thermophila. Exp Cell Res 209:342–349

    Article  CAS  PubMed  Google Scholar 

  • Wyroba E, Widding Hoyer A, Storgaard P, Satir BH (1995) Mammalian homologue of the calcium-sensitive phosphoglycoprotein, parafusin. Eur J Cell Biol 68:419–426

    CAS  PubMed  Google Scholar 

  • Yano J, Rajendran A, Valentine MS, Saha M, Ballif BA, Van Houten JL (2013) Proteomic analysis of the cilia membrane of Paramecium tetraurelia. J Proteomics 78:113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Seo S, Bugge K, Stone EM, Sheffield VC (2012) BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum Mol Genet 21:1945–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Satir BH (1998) Parafusin is a membrane and vesicle associated protein that cycles at exocytosis. Eur J Cell Biol 75:46–53

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Satir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Satir, P., Satir, B.H. (2016). Intracytoplasmic Signaling from Cilia in Ciliates. In: Witzany, G., Nowacki, M. (eds) Biocommunication of Ciliates. Springer, Cham. https://doi.org/10.1007/978-3-319-32211-7_4

Download citation

Publish with us

Policies and ethics