Skip to main content

Advertisement

Log in

Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

BMP2, BMP4 and BMP16 form a subfamily of bone morphogenetic proteins acting as pleiotropic growth factors during development and as bone inducers during osteogenesis. BMP16 is the most recent member of this subfamily and basic data regarding protein structure and function, and spatio-temporal gene expression is still scarce. In this work, insights on BMP16 were provided through the comparative analysis of structural and functional data for zebrafish BMP2a, BMP2b, BMP4 and BMP16 genes and proteins, determined from three-dimensional models, patterns of gene expression during development and in adult tissues, regulation by retinoic acid and capacity to activate BMP-signaling pathway. Structures of Bmp2a, Bmp2b, Bmp4 and Bmp16 were found to be remarkably similar; with residues involved in receptor binding being highly conserved. All proteins could activate the BMP-signaling pathway, suggesting that they share a common function. On the contrary, stage- and tissue-specific expression of bmp2, bmp4 and bmp16 suggested the genes might be differentially regulated (e.g. different transcription factors, enhancers and/or regulatory modules) but also that they are involved in distinct physiological processes, although with the same function. Retinoic acid, a morphogen known to interact with BMP-signaling during bone formation, was shown to down-regulate the expression of bmp2, bmp4 and bmp16, although to different extents. Taxonomic and phylogenetic analyses indicated that bmp16 diverged before bmp2 and bmp4, is not restricted to teleost fish lineage as previously reported, and that it probably arose from a whole genomic duplication event that occurred early in vertebrate evolution and disappeared in various tetrapod lineages through independent events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BMP:

Bone morphogenetic protein

RA:

Retinoic acid

WGD:

Whole genome duplication

References

  1. Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R (2013) Gene duplication as a major force in evolution. J Genet 92(1):155–161. doi:10.1007/s12041-013-0212-8

    Article  PubMed  Google Scholar 

  2. Santini F, Harmon LJ, Carnevale G, Alfaro ME (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 9(1):194. doi:10.1186/1471-2148-9-194

    Article  PubMed Central  PubMed  Google Scholar 

  3. Panopoulou GD, Clark MD, Holland LZ, Lehrach H, Holland ND (1998) AmphiBMP2/4, an amphioxus bone morphogenetic protein closely related to Drosophila decapentaplegic and vertebrate BMP2 and BMP4: insights into evolution of dorsoventral axis specification. Dev Dyn 213(1):130–139. doi:10.1002/(SICI)1097-0177(199809)213:1<130::AID-AJA13>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  4. Sharman AC, Holland PW (1998) Estimation of Hox gene cluster number in lampreys. Int J Dev Biol 42(4):617–620

    CAS  PubMed  Google Scholar 

  5. Escriva H, Manzon L, Youson J, Laudet V (2002) Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution. Mol Biol Evol 19(9):1440–1450. doi:10.1093/oxfordjournals.molbev.a004207

    Article  CAS  PubMed  Google Scholar 

  6. Furlong RF, Younger R, Kasahara M, Reinhardt R, Thorndyke M, Holland PWH (2007) A degenerate ParaHox gene cluster in a degenerate vertebrate. Mol Biol Evol 24(12):2681–2686. doi:10.1093/molbev/msm194

    Article  CAS  PubMed  Google Scholar 

  7. Kuraku S, Meyer A, Kuratani S (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 26(1):47–59. doi:10.1093/molbev/msn222

    Article  CAS  PubMed  Google Scholar 

  8. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3(10):e314. doi:10.1371/journal.pbio.0030314

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2(5):333–341. doi:10.1038/35072009

    Article  CAS  PubMed  Google Scholar 

  10. Rabier C-E, Ta T, Ané C (2014) Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. Mol Biol Evol 31(3):750–762. doi:10.1093/molbev/mst263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kuraku S (2010) Palaeophylogenomics of the vertebrate ancestor-impact of hidden paralogy on hagfish and lamprey gene phylogeny. Integr Comp Biol 50(1):124–129. doi:10.1093/icb/icq044

    Article  CAS  PubMed  Google Scholar 

  12. Feiner N, Begemann G, Renz AJ, Meyer A, Kuraku S (2009) The origin of bmp16, a novel Bmp2/4 relative, retained in teleost fish genomes. BMC Evol Biol 9(1):277. doi:10.1186/1471-2148-9-277

    Article  PubMed Central  PubMed  Google Scholar 

  13. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth factors 22(4):233–241. doi:10.1080/08977190412331279890

    Article  CAS  PubMed  Google Scholar 

  14. Wu MY, Hill CS (2009) TGF-β superfamily signaling in embryonic development and homeostasis. Dev Cell 16(3):329–343. doi:10.1016/j.devcel.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  15. Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T (2012) Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 151(3):247–254. doi:10.1093/jb/mvs004

    Article  CAS  PubMed  Google Scholar 

  16. Sampath TK, Rashka KE, Doctor JS, Tucker RF, Hoffmann FM (1993) Drosophila transforming growth factor β superfamily proteins induce endochondral bone formation in mammals. Proc Natl Acad Sci USA 90(13):6004–6008. doi:10.1073/pnas.90.13.6004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Padgett RW, Wozney JM, Gelbart WM (1993) Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo. Proc Natl Acad Sci USA 90(7):2905–2909. doi:10.1073/pnas.90.7.2905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122(10):2977–2986

    CAS  PubMed  Google Scholar 

  19. Marques CL, Fernández I, Rosa J, Viegas MN, Cancela ML, Laizé V (2014) Spatiotemporal expression and retinoic acid regulation of bone morphogenetic proteins 2, 4 and 16 in Senegalese sole. J Appl Ichthyol 30(4):713–720. doi:10.1111/jai.12539

    Article  CAS  Google Scholar 

  20. Goldman DC, Donley N, Christian JL (2008) Genetic interaction between Bmp2 and Bmp4 reveals shared functions during multiple aspects of mouse organogenesis. Mech Dev 126(3–4):117–127. doi:10.1016/j.mod.2008.11.008

    PubMed Central  PubMed  Google Scholar 

  21. Upton PD, Long L, Trembath RC, Morrell NW (2008) Functional characterization of bone morphogenetic protein binding sites and Smad1/5 activation in human vascular cells. Mol Pharmacol 73(2):539–552. doi:10.1124/mol.107.041673

    Article  CAS  PubMed  Google Scholar 

  22. Hung W-T, Wu F-J, Wang C-J, Luo C-W (2012) DAN (NBL1) specifically antagonizes BMP2 and BMP4 and modulates the actions of GDF9, BMP2, and BMP4 in the rat ovary. Biol Reprod 86(5):158. doi:10.1095/biolreprod.111.096172

    Article  PubMed  Google Scholar 

  23. Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38(Web Server issue):W7–W13. doi:10.1093/nar/gkq291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 12(6):543–548. doi:10.1093/bioinformatics/12.6.543

    Article  CAS  Google Scholar 

  25. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552. doi:10.1093/oxfordjournals.molbev.a026334

    Article  CAS  PubMed  Google Scholar 

  26. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  27. Foster PG (2004) Modeling compositional heterogeneity. Syst Biol 53(3):485–495. doi:10.1080/10635150490445779

    Article  PubMed  Google Scholar 

  28. Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6(1):29. doi:10.1186/1471-2148-6-29

    Article  PubMed Central  PubMed  Google Scholar 

  29. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320. doi:10.1093/molbev/msn067

    Article  CAS  PubMed  Google Scholar 

  30. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y et al (2006) Comparative protein structure modeling using Modeller. In: Wiley (ed) Curr. Protoc. Bioinforma., 2014th edn, pp 5.6.1–5.6.30

  31. Keller S, Nickel J, Zhang J-L, Sebald W, Mueller TD (2004) Molecular recognition of BMP-2 and BMP receptor IA. Nat Struct Mol Biol 11(5):481–488. doi:10.1038/nsmb756

    Article  CAS  PubMed  Google Scholar 

  32. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. doi:10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  33. Shen M, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(1):2507–2524. doi:10.1110/ps.062416606.Instead

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Vijayakumar P, Laizé V, Cardeira J, Trindade M, Cancela ML (2013) Development of an in vitro cell system from zebrafish suitable to study bone cell differentiation and extracellular matrix mineralization. Zebrafish 10(4):500–509. doi:10.1089/zeb.2012.0833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tiago DM, Marques CL, Roberto VP, Cancela ML, Laizé V (2014) Mir-20a regulates in vitro mineralization and BMP signaling pathway by targeting BMP-2 transcript in fish. Arch Biochem Biophys 543:23–30. doi:10.1016/j.abb.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  36. Korchynskyi O, ten Dijke P (2002) Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277(7):4883–4891. doi:10.1074/jbc.M111023200

    Article  CAS  PubMed  Google Scholar 

  37. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. doi:10.1093/nar/29.9.e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  39. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515. doi:10.1023/B:BILE.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  40. Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27(9):937–945. doi:10.1002/bies.20293

    Article  CAS  PubMed  Google Scholar 

  41. Allendorph GP, Vale WW, Choe S (2006) Structure of the ternary signaling complex of a TGF-β superfamily member. Proc Natl Acad Sci USA 103(20):7643–7648. doi:10.1073/pnas.0602558103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications—the adventure of a hypothesis. Trends Genet 21(10):559–567. doi:10.1016/j.tig.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  43. McCauley DW, Bronner-Fraser M (2004) Conservation and divergence of BMP2/4 genes in the lamprey: expression and phylogenetic analysis suggest a single ancestral vertebrate gene. Evol Dev 6(6):411–422. doi:10.1111/j.1525-142X.2004.04054.x

    Article  CAS  PubMed  Google Scholar 

  44. Yang H (2013) Conserved or lost: molecular evolution of the key gene GULO in vertebrate vitamin C biosynthesis. Biochem Genet 51(5–6):413–425. doi:10.1007/s10528-013-9574-0

    Article  CAS  PubMed  Google Scholar 

  45. Pasquier J, Lafont A-G, Rousseau K, Quérat B, Chemineau P, Dufour S (2014) Looking for the bird Kiss: evolutionary scenario in sauropsids. BMC Evol Biol 14(1):30. doi:10.1186/1471-2148-14-30

    Article  PubMed Central  PubMed  Google Scholar 

  46. Castro LFC, Lopes-Marques M, Gonçalves O, Wilson JM (2012) The evolution of pepsinogen C genes in vertebrates: duplication, loss and functional diversification. PLoS ONE 7(3):e32852. doi:10.1371/journal.pone.0032852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Davit-Béal T, Tucker AS, Sire J-Y (2009) Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J Anat 214(4):477–501. doi:10.1111/j.1469-7580.2009.01060.x

    Article  PubMed Central  PubMed  Google Scholar 

  48. Cuypers TD, Hogeweg P (2014) A synergism between adaptive effects and evolvability drives whole genome duplication to fixation. PLoS Comput Biol 10(4):e1003547. doi:10.1371/journal.pcbi.1003547

    Article  PubMed Central  PubMed  Google Scholar 

  49. Van Hoek MJA, Hogeweg P (2009) Metabolic adaptation after whole genome duplication. Mol Biol Evol 26(11):2441–2453. doi:10.1093/molbev/msp160

    Article  PubMed  Google Scholar 

  50. Gates MA, Kim L, Egan ES, Cardozo T, Sirotkin HI, Dougan ST et al (1999) A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res 9:334–347. doi:10.1101/gr.9.4.334

    CAS  PubMed  Google Scholar 

  51. Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13(3):382–390. doi:10.1101/gr.640303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001) Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc B Biol Sci 356(1414):1661–1679. doi:10.1098/rstb.2001.0975

    Article  CAS  Google Scholar 

  53. Sato Y, Nishida M (2010) Teleost fish with specific genome duplication as unique models of vertebrate evolution. Environ Biol Fishes 88(2):169–188. doi:10.1007/s10641-010-9628-7

    Article  Google Scholar 

  54. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503. doi:10.1038/nature12111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Jaillon O, Aury J-M, Brunet F, Petit J-L, Stange-Thomann N, Mauceli E et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431(7011):946–957. doi:10.1038/nature03025

    Article  PubMed  Google Scholar 

  56. Kingsley DM (1994) The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146. doi:10.1101/gad.8.2.133

    Article  CAS  PubMed  Google Scholar 

  57. Barrett LW, Fletcher S, Wilton SD (2013) Untranslated gene regions and other non-coding elements. Springer Briefs Biochem Mol Biol 1:1–57. doi:10.1007/978-3-0348-0679-4

    Article  Google Scholar 

  58. Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9(17):2105–2116. doi:10.1101/gad.9.17.2105

    Article  CAS  PubMed  Google Scholar 

  59. Fritz DT, Jiang S, Xu J, Rogers MB (2006) A polymorphism in a conserved posttranscriptional regulatory motif alters bone morphogenetic protein 2 (BMP2) RNA: protein interactions. Mol Endocrinol 20(7):1574–1586. doi:10.1210/me.2005-0469

    Article  CAS  PubMed  Google Scholar 

  60. Helvering LM, Sharp RL, Ou X, Geiser AG (2000) Regulation of the promoters for the human bone morphogenetic protein 2 and 4 genes. Gene 256(1–2):123–138. doi:10.1016/S0378-1119(00)00364-4

    Article  CAS  PubMed  Google Scholar 

  61. Feng JQ, Harris MA, Ghosh-Choudhury N, Feng M, Mundy GR, Harris SE (1994) Structure and sequence of mouse bone morphogenetic protein-2 gene (BMP-2): comparison of the structures and promoter regions of BMP-2 and BMP-4 genes. Biochim Biophys Acta 1218(2):221–224. doi:10.1016/0167-4781(94)90017-5

    Article  CAS  PubMed  Google Scholar 

  62. Groppe J, Greenwald J, Wiater E, Rodriguez-leon J, Economides AN, Kwiatkowski W et al (2002) Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420(6916):636–642. doi:10.1038/nature01245

    Article  CAS  PubMed  Google Scholar 

  63. Tian C, Liu J (2013) Repulsive guidance molecules (RGMs) and neogenin in bone morphogenetic protein (BMP) signaling. Mol Reprod Dev 80(9):700–717. doi:10.1002/mrd.22199

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Nohe A, Hassel S, Ehrlich M, Neubauer F, Sebald W, Henis YI et al (2002) The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem 277(7):5330–5338. doi:10.1074/jbc.M102750200

    Article  CAS  PubMed  Google Scholar 

  65. Little SC, Mullins MC (2009) Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 11(5):637–643. doi:10.1038/ncb1870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Wan M, Cao X (2005) BMP signaling in skeletal development. Biochem Biophys Res Commun 328(3):651–657. doi:10.1016/j.bbrc.2004.11.067

    Article  CAS  PubMed  Google Scholar 

  67. Wise SB, Stock DW (2006) Conservation and divergence of Bmp2a, Bmp2b, and Bmp4 expression patterns within and between dentitions of teleost fishes. Evol Dev 8(6):511–523. doi:10.1111/j.1525-142X.2006.00124.x

    Article  CAS  PubMed  Google Scholar 

  68. Chin AJ, Chen J-N, Weinberg ES (1997) Bone morphogenetic protein-4 expression characterizes inductive boundaries in organs of developing zebrafish. Dev Genes Evol 207(2):107–114. doi:10.1007/s004270050097

    Article  CAS  Google Scholar 

  69. Jones CM, Lyons KM, Hogan BL (1991) Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111(2):531–542

    CAS  PubMed  Google Scholar 

  70. Fainsod A, Steinbeisser H, De Robertis EM (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13(21):5015–5025

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Bellusci S, Henderson R, Winnier G, Oikawa T, Hogan BL (1996) Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development 122(6):1693–1702

    CAS  PubMed  Google Scholar 

  72. Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376(6538):331–333. doi:10.1038/376331a0

    Article  CAS  PubMed  Google Scholar 

  73. Hwang S-PL, Chen CA, Peng M-Y, Chen C-P (2003) Evolutionary conservation of the bone morphogenetic protein 2/4 gene between diploblastic and triploblastic metazoans. Zool Stud 42(1):227–234

    CAS  Google Scholar 

  74. Zou H, Niswander L (1996) Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272(5262):738–741. doi:10.1126/science.272.5262.738

    Article  CAS  PubMed  Google Scholar 

  75. Harris MP, Fallon JF, Prum RO (2002) Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J Exp Zool 294(2):160–176. doi:10.1002/jez.10157

    Article  CAS  PubMed  Google Scholar 

  76. Kültz D (2012) The combinatorial nature of osmosensing in fishes. Physiology 27(4):259–275. doi:10.1152/physiol.00014.2012

    Article  PubMed  Google Scholar 

  77. Alexander C, Zuniga E, Blitz IL, Wada N, Le Pabic P, Javidan Y et al (2011) Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development 138(23):5135–5146. doi:10.1242/dev.067801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Wordinger RJ, Clark AF (2007) Bone morphogenetic proteins and their receptors in the eye. Exp Biol Med 232(8):979–992. doi:10.3181/0510-MR-345

    Article  CAS  Google Scholar 

  79. Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10(13):1580–1594. doi:10.1101/gad.10.13.1580

    Article  CAS  PubMed  Google Scholar 

  80. Chalazonitis A, Kessler JA (2012) Pleiotropic effects of the bone morphogenetic proteins on development of the enteric nervous system. Dev Neurobiol 72(6):843–856. doi:10.1002/dneu.22002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Sato T, Mikawa S, Sato K (2010) BMP2 expression in the adult rat brain. J Comp Neurol 518(22):4513–4530. doi:10.1002/cne.22469

    Article  CAS  PubMed  Google Scholar 

  82. Sailer MHM, Hazel TG, Panchision DM, Hoeppner DJ, Schwab ME, McKay RDG (2005) BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells. J Cell Sci 118(24):5849–5860. doi:10.1242/jcs.02708

    Article  CAS  PubMed  Google Scholar 

  83. Perry JM, Harandi OF, Paulson RF (2007) BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood 109(10):4494–4502. doi:10.1182/blood-2006-04-016154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Shimasaki S, Moore KR, Otsuka F, Erickson GF (2004) The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 25(1):72–101. doi:10.1210/er.2003-0007

    Article  CAS  PubMed  Google Scholar 

  85. Li CW, Ge W (2011) Spatiotemporal expression of bone morphogenetic protein family ligands and receptors in the zebrafish ovary: a potential paracrine-signaling mechanism for oocyte-follicle cell communication. Biol Reprod 85(5):977–986. doi:10.1095/biolreprod.111.092239

    Article  CAS  PubMed  Google Scholar 

  86. Luckenbach JA, Dickey JT, Swanson P (2011) Follicle-stimulating hormone regulation of ovarian transcripts for steroidogenesis-related proteins and cell survival, growth and differentiation factors in vitro during early secondary oocyte growth in coho salmon. Gen Comp Endocrinol 171(1):52–63. doi:10.1016/j.ygcen.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  87. Thompson DL, Gerlach-Bank LM, Barald KF, Koenig RJ (2003) Retinoic acid repression of bone morphogenetic protein 4 in inner ear development. Mol Cell Biol 23(7):2277–2286. doi:10.1128/MCB.23.7.2277-2286.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Hatakeyama S, Ohara-Nemoto Y, Kyakumoto S, Satoh M (1996) Retinoic acid enhances expression of bone morphogenetic protein-2 in human adenocarcinoma cell line (HSG-S8). Biochem Mol Biol Int 38(6):1235–1243

    CAS  PubMed  Google Scholar 

  89. Guo L, Zhao Y, Zhang S, Liu K, Gao X (2008) Retinoic acid down-regulates bone morphogenetic protein 7 expression in rat with cleft palate. Chin Med Sci J 23(1):28–31. doi:10.1016/S1001-9294(09)60006-7

    Article  CAS  PubMed  Google Scholar 

  90. Virdi AS, Cook LJ, Oreffo RO, Triffitt JT (1998) Modulation of bone morphogenetic protein-2 and bone morphogenetic protein-4 gene expression in osteoblastic cell lines. Cell Mol Biol 44(8):1237–1246

    CAS  PubMed  Google Scholar 

  91. Simandi Z, Nagy L (2011) Retinoid signaling is a context-dependent regulator of embryonic stem cells. In: Kallos MS (ed) Embryonic stem cells. InTech, pp 55–78

  92. Waxman JS, Yelon D (2011) Zebrafish retinoic acid receptors function as context-dependent transcriptional activators. Dev Biol 352(1):128–140. doi:10.1016/j.ydbio.2011.01.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Grimsrud CD, Rosier RN, Puzas JE, Reynolds PR, Reynolds SD, Hicks DG et al (1998) Bone morphogenetic protein-7 in growth-plate chondrocytes: regulation by retinoic acid is dependent on the stage of chondrocyte maturation. J Orthop Res 16(2):247–255. doi:10.1002/jor.1100160212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Peter ten Dijke (Leiden University Medical Center, Leiden, The Netherlands) who kindly provided the BMP-responsive luciferase reporter vector (BRE-Luc). This work was co-funded by the European Regional Development Fund (ERDF) through COMPETE Program and by National Fund through the Portuguese Science and Technology Foundation (FCT) under PEst-C/MAR/LA0015/2011 project. It was also partially financed by the European Community (EC) through ASSEMBLE (FP7/227799) research project. CM and JR were supported by doctoral grants (SFRH/BD/39964/2007 and SFRH/BD/47433/2008, respectively) from the FCT. IF was supported by a post-doctoral grant (SFRH/BPD/82049/2011) from the FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Laizé.

Additional information

Names/acronyms of genes/proteins of species with different nomenclature conventions are used throughout this study. To reduce heterogeneity no convention will be used and acronyms will be uppercased. However, convention will be maintained for zebrafish which is the main species studied here.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, C.L., Fernández, I., Viegas, M.N. et al. Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell. Mol. Life Sci. 73, 841–857 (2016). https://doi.org/10.1007/s00018-015-2024-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2024-x

Keywords

Navigation