Skip to main content

Advertisement

Log in

Whole transcriptome analysis with sequencing: methods, challenges and potential solutions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Whole transcriptome analysis plays an essential role in deciphering genome structure and function, identifying genetic networks underlying cellular, physiological, biochemical and biological systems and establishing molecular biomarkers that respond to diseases, pathogens and environmental challenges. Here, we review transcriptome analysis methods and technologies that have been used to conduct whole transcriptome shotgun sequencing or whole transcriptome tag/target sequencing analyses. We focus on how adaptors/linkers are added to both 5′ and 3′ ends of mRNA molecules for cloning or PCR amplification before sequencing. Challenges and potential solutions are also discussed. In brief, next generation sequencing platforms have accelerated releases of the large amounts of gene expression data. It is now time for the genome research community to assemble whole transcriptomes of all species and collect signature targets for each gene/transcript, and thus use known genes/transcripts to determine known transcriptomes directly in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Granjeaud S, Bertucci F, Jordan BR (1999) Expression profiling: DNA arrays in many guises. Bioessays 21(9):781–790

    CAS  PubMed  Google Scholar 

  2. Altman RB, Raychaudhuri S (2001) Whole-genome expression analysis: challenges beyond clustering. Curr Opin Struct Biol 11(3):340–347

    CAS  PubMed  Google Scholar 

  3. Hsiao LL, Stears RL, Hong RL, Gullans SR (2000) Prospective use of DNA microarrays for evaluating renal function and disease. Curr Opin Nephrol Hypertens 9(3):253–258

    CAS  PubMed  Google Scholar 

  4. Celis JE, Kruhøffer M, Gromova I, Frederiksen C, Ostergaard M, Thykjaer T, Gromov P, Yu J, Pálsdóttir H, Magnusson N, Orntoft TF (2000) Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett 480(1):2–16

    CAS  PubMed  Google Scholar 

  5. Manger ID, Relman DA (2000) How the host ‘sees’ pathogens: global gene expression responses to infection. Curr Opin Immunol 12(2):215–218

    CAS  PubMed  Google Scholar 

  6. Peffers MJ, Fang Y, Cheung K, Wei TK, Clegg PD, Birch HL (2015) Transcriptome analysis of ageing in uninjured human Achilles tendon. Arthritis Res Ther 17(1):33

    PubMed Central  PubMed  Google Scholar 

  7. Lowe R, Gemma C, Rakyan VK, Holland ML (2015) Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. BMC Genom 16(1):295

    Google Scholar 

  8. Ji Z, Tian B (2009) Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 4(12):e8419

    PubMed Central  PubMed  Google Scholar 

  9. Elkon R, Drost J, van Haaften G, Jenal M, Schrier M, Oude Vrielink JA, Agami R (2012) E2F mediates enhanced alternative polyadenylation in proliferation. Genome Biol 13:R59

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Jiang Z, Rokhsar DS, Harland RM (2009) Old can be new again: HAPPY whole genome sequencing, mapping and assembly. Int J Biol Sci 5(4):298–303

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Hodkinson BP, Grice EA (2015) Next-generation sequencing: a review of technologies and tools for wound microbiome research. Adv Wound Care (New Rochelle) 4(1):50–58

    Google Scholar 

  13. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology (Basel) 1(3):460–483

    Google Scholar 

  14. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656

    CAS  PubMed  Google Scholar 

  15. Quackenbush J, Liang F, Holt I, Pertea G, Upton J (2000) The TIGR gene indices: reconstruction and representation of expressed gene sequences. Nucleic Acids Res 28(1):141–145

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J (2001) The TIGR gene indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res 29(1):159–164

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Hwang DM, Dempsey AA, Lee CY, Liew CC (2000) Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags. Genomics 66(1):1–14

    CAS  PubMed  Google Scholar 

  18. Nelson PS, Han D, Rochon Y, Corthals GL, Lin B, Monson A, Nguyen V, Franza BR, Plymate SR, Aebersold R, Hood L (2000) Comprehensive analyses of prostate gene expression: convergence of expressed sequence tag databases, transcript profiling and proteomics. Electrophoresis 21(9):1823–1831

    CAS  PubMed  Google Scholar 

  19. Jiang Z, Zhang M, Wasem VD, Michal JJ, Zhang H, Wright RW Jr (2003) Census of genes expressed in porcine embryos and reproductive tissues by mining an expressed sequence tag database based on human genes. Biol Reprod 69(4):1177–1182

    CAS  PubMed  Google Scholar 

  20. Jiang Z, Wu XL, Garcia MD, Griffin KB, Michal JJ, Ott TL, Gaskins CT, Wright RW Jr (2004) Comparative gene-based in silico analysis of transcriptomes in different bovine tissues and (or) organs. Genome 47(6):1164–1172

    CAS  PubMed  Google Scholar 

  21. Wu XL, Griffin KB, Garcia MD, Michal JJ, Xiao Q, Wright RW Jr, Jiang Z (2004) Census of orthologous genes and self-organizing maps of biologically relevant transcriptional patterns in chickens (Gallus gallus). Gene 340(2):213–225

    CAS  PubMed  Google Scholar 

  22. Rodríguez-Ezpeleta N, Teijeiro S, Forget L, Burger G, Lang BF (2009) Construction of cDNA libraries: focus on protists and fungi. Methods Mol Biol 533:33–47

    PubMed  Google Scholar 

  23. Okayama H, Berg P (1982) High-efficiency cloning of full-length cDNA. Mol Cell Biol 2(2):161–170

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Okubo K, Hori N, Matoba R, Niiyama T, Fukushima A, Kojima Y, Matsubara K (1992) Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat Genet 2(3):173–179

    CAS  PubMed  Google Scholar 

  25. Wan KH, Yu C, George RA, Carlson JW, Hoskins RA, Svirskas R, Stapleton M, Celniker SE (2006) High-throughput plasmid cDNA library screening. Nat Protoc 1(2):624–632

    CAS  PubMed  Google Scholar 

  26. Matsubara K, Okubo K (1993) cDNA analyses in the human genome project. Gene 135(1–2):265–274

    CAS  PubMed  Google Scholar 

  27. Gautheret D, Poirot O, Lopez F, Audic S, Claverie JM (1998) Alternate polyadenylation in human mRNAs: a large-scale analysis by EST clustering. Genome Res 8(5):524–530

    CAS  PubMed  Google Scholar 

  28. Beaudoing E, Gautheret D (2001) Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res 11(9):1520–1526

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33(1):201–212

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S, Marra M (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45(1):81–94

    CAS  PubMed  Google Scholar 

  31. Costa V, Angelini C, De Feis I, Ciccodicola A (2010) Uncovering the complexity of transcriptomes with RNA-seq. J Biomed Biotechnol 2010:853916

    PubMed Central  PubMed  Google Scholar 

  32. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48(3):249–257

    CAS  PubMed  Google Scholar 

  34. Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, Zhang D, Eads BD, Carlson J, Brown JB, Eisman RC, Andrews J, Kaufman T, Cherbas P, Celniker SE, Graveley BR, Lai EC (2012) Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep 1(3):277–289

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Schlackow M, Marguerat S, Proudfoot NJ, Bähler J, Erban R, Gullerova M (2013) Genome-wide analysis of poly(A) site selection in Schizosaccharomyces pombe. RNA 19(12):1617–1631

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Finotello F, Di Camillo B (2015) Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics 14:130–142

    PubMed  Google Scholar 

  37. Pelechano V, Wilkening S, Järvelin AI, Tekkedil MM, Steinmetz LM (2012) Genome-wide polyadenylation site mapping. Methods Enzymol 513:271–296

    CAS  PubMed  Google Scholar 

  38. Baker KE, Parker R (2004) Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr Opin Cell Biol 16:293–299

    CAS  PubMed  Google Scholar 

  39. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    PubMed Central  PubMed  Google Scholar 

  40. Gao L, Fang Z, Zhang K, Zhi D, Cui X (2011) Length bias correction for RNA-seq data in gene set analyses. Bioinformatics 27(5):662–669

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12(3):R22

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Rallapalli G, Kemen EM, Robert-Seilaniantz A, Segonzac C, Etherington GJ, Sohn KH, MacLean D, Jones JD (2014) EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics. BMC Genom 15:341

    Google Scholar 

  43. Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Steijger T, Abril JF, Engström PG, Kokocinski F, Hubbard TJ, Guigó R, Harrow J, Bertone P; RGASP Consortium (2013) Assessment of transcript reconstruction methods for RNA-seq. Nat Methods 10(12):1177–1184

    Google Scholar 

  45. Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31(11):1009–1014

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Tilgner H, Grubert F, Sharon D, Snyder MP (2014) Defining a personal, allele-specific, and single-molecule long-read transcriptome. Proc Natl Acad Sci USA 111(27):9869–9874

    CAS  PubMed  Google Scholar 

  47. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487

    CAS  PubMed  Google Scholar 

  48. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20(5):508–512

    CAS  PubMed  Google Scholar 

  49. Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100(26):15718–15723

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Spinella DG, Bernardino AK, Redding AC, Koutz P, Wei Y, Pratt EK, Myers KK, Chappell G, Gerken S, McConnell SJ (1999) Tandem arrayed ligation of expressed sequence tags (TALEST): a new method for generating global gene expression profiles. Nucleic Acids Res 27(18):e22

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):630–634

    CAS  PubMed  Google Scholar 

  52. Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B, Kramer M, Woychik R (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 1(1):95–104

    CAS  PubMed  Google Scholar 

  53. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    CAS  PubMed  Google Scholar 

  54. Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI, Poland GA, Wieben ED, Kocher JP (2009) 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genom 10:531

    Google Scholar 

  55. Matsumura H, Urasaki N, Yoshida K, Krüger DH, Kahl G, Terauchi R (2012) SuperSAGE: powerful serial analysis of gene expression. Methods Mol Biol 883:1–17

    CAS  PubMed  Google Scholar 

  56. Prashar Y, Weissman SM (1996) Analysis of differential gene expression by display of 3′ end restriction fragments of cDNAs. Proc Natl Acad Sci USA 93(2):659–663

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Richards M, Tan SP, Chan WK, Bongso A (2006) Reverse serial analysis of gene expression (SAGE) characterization of orphan SAGE tags from human embryonic stem cells identifies the presence of novel transcripts and antisense transcription of key pluripotency genes. Stem Cells 24(5):1162–1173

    CAS  PubMed  Google Scholar 

  58. Wu X, Liu M, Downie B, Liang C, Ji G, Li QQ, Hunt AG (2011) Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. Proc Natl Acad Sci USA 108(30):12533–12538

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Jiang Z, Zhou X, Michal JJ, Wu XL, Zhang L, Zhang M, Ding B, Liu B, Manoranjan VS, Neill JD, Harhay GP, Kehrli ME Jr, Miller LC (2013) Reactomes of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus. PLoS One 8(3):e59229

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257(5072):967–971

    CAS  PubMed  Google Scholar 

  61. Bauer D, Warthoe P, Rohde M, Strauss M (1994) Detection and differential display of expressed genes by DDRT-PCR. PCR Methods Appl 4(2):S97–S108

    CAS  PubMed  Google Scholar 

  62. Ma L, Pati PK, Liu M, Li QQ, Hunt AG (2014) High throughput characterizations of poly(A) site choice in plants. Methods 67(1):74–83

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Mata J (2013) Genome-wide mapping of polyadenylation sites in fission yeast reveals widespread alternative polyadenylation. RNA Biol 10(8):1407–1414

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, Park JY, Yehia G, Tian B (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10(2):133–139

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Wilkening S, Pelechano V, Järvelin AI, Tekkedil MM, Anders S, Benes V, Steinmetz LM (2013) An efficient method for genome-wide polyadenylation site mapping and RNA quantification. Nucleic Acids Res 41(5):e65

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-seq. RNA 17(4):761–772

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Yao C, Shi Y (2014) Global and quantitative profiling of polyadenylated RNAs using PAS-seq. Methods Mol Biol 1125:179–185

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, Rohl CA, Johnson JM, Babak T (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22(6):1173–1183

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Ho ES, Gunderson SI, Duffy S (2013) A multispecies polyadenylation site model. BMC Bioinform 14(Suppl 2):S9

    Google Scholar 

  70. Kavakiotis I, Tzanis G, Vlahavas I (2014) Polyadenylation site prediction using PolyA-iEP method. Methods Mol Biol 1125:131–140

    CAS  PubMed  Google Scholar 

  71. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461(7265):814–818

    CAS  PubMed  Google Scholar 

  72. Ozsolak F, Milos PM (2011) Transcriptome profiling using single-molecule direct RNA sequencing. Methods Mol Biol 733:51–61

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Ozsolak F (2014) Quantitative polyadenylation site mapping with single-molecule direct RNA sequencing. Methods Mol Biol 1125:145–155

    CAS  PubMed  Google Scholar 

  74. Wu Q, Kim YC, Lu J, Xuan Z, Chen J, Zheng Y, Zhou T, Zhang MQ, Wu CI, Wang SM (2008) Poly A- transcripts expressed in HeLa cells. PLoS One 3(7):e2803

    PubMed Central  PubMed  Google Scholar 

  75. Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12(2):R16

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Zhang X, Yin Q, Chen L, Yang L (2015) Gene expression profiling of non-polyadenylated RNA-seq across species. Genomics Data 2:237–241

    Google Scholar 

  77. Liu X, Gorovsky MA (1993) Mapping the 5′ and 3′ ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res 21(21):4954–4960

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    CAS  PubMed  Google Scholar 

  80. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    CAS  PubMed  Google Scholar 

  84. Schaefer M, Pollex T, Hanna K, Lyko F (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37(2):e12

    PubMed Central  PubMed  Google Scholar 

  85. Khoddami V, Cairns BR (2014) Transcriptome-wide target profiling of RNA cytosine methyltransferases using the mechanism-based enrichment procedure Aza-IP. Nat Protoc 9(2):337–361

    CAS  PubMed  Google Scholar 

  86. Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31(5):458–464

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J, Frye M (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4(2):255–261

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, Hayashizaki Y (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci USA 100(26):15776–15781

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Valen E, Pascarella G, Chalk A, Maeda N, Kojima M, Kawazu C, Murata M, Nishiyori H, Lazarevic D, Motti D, Marstrand TT, Tang MH, Zhao X, Krogh A, Winther O, Arakawa T, Kawai J, Wells C, Daub C, Harbers M, Hayashizaki Y, Gustincich S, Sandelin A, Carninci P (2009) Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Res 19(2):255–265

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Ni T, Corcoran DL, Rach EA, Song S, Spana EP, Gao Y, Ohler U, Zhu J (2010) A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nat Methods 7(7):521–527

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Plessy C, Bertin N, Takahashi H, Simone R, Salimullah M, Lassmann T, Vitezic M, Severin J, Olivarius S, Lazarevic D, Hornig N, Orlando V, Bell I, Gao H, Dumais J, Kapranov P, Wang H, Davis CA, Gingeras TR, Kawai J, Daub CO, Hayashizaki Y, Gustincich S, Carninci P (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7(7):528–534

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Tsuchihara K, Suzuki Y, Wakaguri H, Irie T, Tanimoto K, Hashimoto S, Matsushima K, Mizushima-Sugano J, Yamashita R, Nakai K, Bentley D, Esumi H (2009) Sugano S (2009) Massive transcriptional start site analysis of human genes in hypoxia cells. Nucleic Acids Res 37(7):2249–2263

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Yamashita R, Sathira NP, Kanai A, Tanimoto K, Arauchi T, Tanaka Y, Hashimoto S, Sugano S, Nakai K, Suzuki Y (2011) Genome-wide characterization of transcriptional start sites in humans by integrative transcriptome analysis. Genome Res 21(5):775–789

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J, Hess WR (2011) An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 108(5):2124–2129

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I, Aebersold R, Young DB (2013) Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis. Cell Rep 5(4):1121–1131

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Number R21HD076845 to ZJ. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors have declared that no competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Zhou, X., Li, R. et al. Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell. Mol. Life Sci. 72, 3425–3439 (2015). https://doi.org/10.1007/s00018-015-1934-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1934-y

Keywords

Navigation