Skip to main content

Advertisement

Log in

Downstream effects of endocannabinoid on blood cells: implications for health and disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Endocannabinoids (eCBs), among which N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are the most biologically active members, are polyunsaturated lipids able to bind cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Depending on the target engaged, these bioactive mediators can regulate different signalling pathways, at both central and peripheral levels. The biological action of eCBs is tightly controlled by a plethora of metabolic enzymes which, together with the molecular targets of these substances, form the so-called “endocannabinoid system”. The ability of eCBs to control manifold peripheral functions has received a great deal of attention, especially in the light of their widespread distribution in the body. In particular, eCBs are important regulators in blood, where they modulate haematopoiesis, platelet aggregation and apoptosis, as well as chemokine release and migration of immunocompetent cells. Here, we shall review the current knowledge on the pathophysiological roles of eCBs in blood. We shall also discuss the involvement of eCBs in those disorders affecting the haematological system, including cancer and inflammation. Knowledge gained to date underlines a fundamental role of the eCB system in blood, thus suggesting that it may represent a therapeutic promise for a broad range of diseases involving impaired hematopoietic cell functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-AG:

2-Arachidonoylglycerol

Met-AEA:

2-methylarachidonyl-(2′-fluoroethyl)amide

ABHD:

a/b-hydrolase

AML:

Acute myeloid leukaemia

ApoE:

Apolipoprotein E

CB:

Cannabinoid

CM:

Chronic migraine

eCB:

Endocannabinoid

EMT:

eCB membrane transporter

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-related kinase

FAAH:

Fatty acid amide hydrolase

fMLP:

Formyl-Met-Leu-Phe

G-CSF:

Granulocyte-colony-stimulating factor

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HETE-G:

Hydroxyeicosatetraenoyl glycerylester

(S)-HAEA:

Hydroxyeicosatetraenoylethanolamide

IBD:

Inflammatory bowel disease

IFNγ:

Interferon γ

IL:

Interleukin

LTB4:

Leukotriene B4

LPS:

Lipopolysaccharide

MCP-1:

Macrophage-chemotactic protein 1

MMP-9:

Matrix metalloprotease-9

MOH:

Medication-overuse headache

MAGL:

Monoacylglyceride lipase

MS:

Multiple sclerosis

NAPE-PLD:

N-acylphosphatydiletanolamine phospholipase D

anandamide, AEA:

N-arachidonoylethanolamine

NK:

Natural killer

NO:

Nitric oxide

PEA:

N-palmitoylethanolamine

OEA:

N-oleoylethanolamine

PPARs:

Peroxisome proliferator-activated receptors

PI3 K:

Phosphoinositide 3kinase

PGE2 :

Prostaglandin E2

Th:

T helper

TRPV1:

Transient receptor potential vanilloid 1

TNFα:

Tumour necrosis factor α

CB1 :

Type-1 cannabinoid receptor

CB2 :

Type-2 cannabinoid receptor

References

  1. Fonseca BM, Costa MA, Almada M, Correia-da-Silva G, Teixeira NA (2013) Endogenous cannabinoids revisited: a biochemistry perspective. Prostaglandins Other Lipid Mediat 102–103:13–30

    PubMed  Google Scholar 

  2. Bisogno T, Maccarrone M (2014) Endocannabinoid signaling and its regulation by nutrients. BioFactors 40:373–380

    CAS  PubMed  Google Scholar 

  3. Hansen HS (2010) Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain. Exp Neurol 224:48–55

    CAS  PubMed  Google Scholar 

  4. Ueda N, Tsuboi K, Uyama T (2013) Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 280:1874–1894

    CAS  PubMed  Google Scholar 

  5. Piomelli D (2014) More surprises lying ahead. The endocannabinoids keep us guessing. Neuropharmacology 76:228–234

    CAS  PubMed  Google Scholar 

  6. Giuffrida A, Parsons LH, Kerr TM, Rodríguez de Fonseca F, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2:358–363

    CAS  PubMed  Google Scholar 

  7. Malcher-Lopes R, Di S, Marcheselli VS, Weng FJ, Stuart CT, Bazan NG, Tasker JG (2006) Opposing crosstalk between leptin and glucocorticoids rapidly modulates synaptic excitation via endocannabinoid release. J Neurosci 26:6643–6650

    CAS  PubMed  Google Scholar 

  8. Silvestri C, Di Marzo V (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 17:475–490

    CAS  PubMed  Google Scholar 

  9. Fowler CJ (2013) Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J 280:1895–1904

    CAS  PubMed  Google Scholar 

  10. Maccarrone M, Dainese E, Oddi S (2010) Intracellular trafficking of anandamide: new concepts for signalling. Trends Biochem Sci 35:601–608

    CAS  PubMed  Google Scholar 

  11. Rouzer CA, Marnett LJ (2011) Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signalling pathways. Chem Rev 111:5899–5921

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Howlett AC, Blume LC, Dalton GD (2010) CB(1) cannabinoid receptors and their associated proteins. Curr Med Chem 17:1382–1393

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Catani MV, Gasperi V, Catanzaro G, Baldassarri S, Bertoni A, Sinigaglia F, Avigliano L, Maccarrone M (2010) Human platelets express authentic CB1 and CB2 receptors. Curr Neurovasc Res 7:311–318

    CAS  PubMed  Google Scholar 

  15. Viscomi MT, Oddi S, Latini L, Pasquariello N, Florenzano F, Bernardi G, Molinari M, Maccarrone M (2009) Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3 K/Akt pathway. J Neurosci 29:4564–4570

    CAS  PubMed  Google Scholar 

  16. Gasperi V, Dainese E, Oddi S, Sabatucci A, Maccarrone M (2013) GPR55 and its interaction with membrane lipids: comparison with other endocannabinoid-binding receptors. Curr Med Chem 20:64–78

    CAS  PubMed  Google Scholar 

  17. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 105:2699–2704

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Maccarrone M, Lorenzon T, Bari M, Melino G, Finazzi-Agro A (2000) Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J Biol Chem 275:31938–31945

    CAS  PubMed  Google Scholar 

  20. Di Marzo V, De Petrocellis L (2010) Endocannabinoids as regulators of transient receptor potential (TRP) channels: a further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem 17:1430–1449

    PubMed  Google Scholar 

  21. Pistis M, Melis M (2010) From surface to nuclear receptors: the endocannabinoid family extends its assets. Curr Med Chem 17:1450–1467

    CAS  PubMed  Google Scholar 

  22. Cao H, Oteiza A, Nilsson SK (2013) Understanding the role of the microenvironment during definitive hemopoietic development. Exp Hematol 41:761–768

    PubMed  Google Scholar 

  23. Anthony BA, Link DC (2014) Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol 35:32–37

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Massberg SP, Schaerli I, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA, Huff IV, Junt T, Wagers AJ, Mazo IB, von Andrian UH (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Granick JL, Simon SI, Borjesson DL (2012) Hematopoietic stem and progenitor cells as effectors in innate immunity. Bone Marrow Res 2012:165107–165115

    PubMed Central  PubMed  Google Scholar 

  26. Jiang S, Fu Y, Avraham HK (2011) Regulation of hematopoietic stem cell trafficking and mobilization by the endocannabinoid system. Transfusion 51:65S–71S

    CAS  PubMed  Google Scholar 

  27. Patinkin D, Milman G, Breuer A, Fride E, Mechoulam R (2008) Endocannabinoids as positive or negative factors in hematopoietic cell migration and differentiation. Eur J Pharmacol 595:1–6

    CAS  PubMed  Google Scholar 

  28. Galve-Roperh I, Chiurchiù V, Díaz-Alonso J, Bari M, Guzmán M, Maccarrone M (2013) Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res 52:633–650

    CAS  PubMed  Google Scholar 

  29. Valk P, Verbakel S, Vankan Y, Hol S, Mancham S, Ploemacher R, Mayen A, Löwenberg B, Delwel R (1997) Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells. Blood 90:1448–1457

    CAS  PubMed  Google Scholar 

  30. Jordà MA, Verbakel SE, Valk PJ, Vankan-Berkhoudt YV, Maccarrone M, Finazzi-Agrò A, Löwenberg B, Delwel R (2002) Hematopoietic cells expressing the peripheral cannabinoid receptor migrate in response to the endocannabinoid 2-arachidonoylglycerol. Blood 99:2786–2793

    PubMed  Google Scholar 

  31. Jordà MA, Löwenberg B, Delwel R (2003) The peripheral cannabinoid receptor Cb2, a novel oncoprotein, induces a reversible block in neutrophilic differentiation. Blood 101:1336–1343

    PubMed  Google Scholar 

  32. Hoggat J, Pelus LM (2010) Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking. Leukemia 24:1993–2002

    Google Scholar 

  33. Catani MV, Fezza F, Baldassarri S, Gasperi V, Bertoni A, Pasquariello N, Finazzi-Agrò A, Sinigaglia F, Avigliano L, Maccarrone M (2009) Expression of the endocannabinoid system in the bi-potential HEL cell line: commitment to the megakaryoblastic lineage by 2-arachidonoylglycerol. J Mol Med (Berl) 87:65–74

    CAS  Google Scholar 

  34. Gasperi V, Avigliano L, Evangelista D, Oddi S, Chiurchiù V, Lanuti M, Maccarrone M, Catani MV (2014) 2-Arachidonoylglycerol enhances platelet formation from human megakaryoblasts. Cell Cycle In press

  35. Bojesen IN, Hansen HS (2005) Membrane transport of anandamide through resealed human red cell membranes. J Lipid Res 46:1652–1659

    CAS  PubMed  Google Scholar 

  36. Bentzen PJ, Lang F (2007) Effect of anandamide on erythrocyte survival. Cell Physiol Biochem 20:1033–1042

    CAS  PubMed  Google Scholar 

  37. Bobbala D, Alesutan I, Föller M, Huber SM, Lang F (2010) Effect of anandamide in plasmodium berghei infected mice. Cell Physiol Biochem 26:355–362

    CAS  PubMed  Google Scholar 

  38. Witkamp R, Meijerink J (2014) The endocannabinoid system: an emerging key player in inflammation. Curr Opin Clin Nutr Metab Care 17:130–138

    CAS  PubMed  Google Scholar 

  39. Constantinescu CS (ed) (2010) Immunobiol. Special Issue Cannabinoids Immunol 215:587–672

  40. Coopman K, Smith LD, Wright KL, Ward SG (2007) Temporal variation in CB2R levels following T lymphocyte activation: evidence that cannabinoids modulate CXCL12-induced chemotaxis. Int Immunopharmacol 7:360–371

    CAS  PubMed  Google Scholar 

  41. Bouaboula M, Rinaldi M, Carayon P, Carillon C, Delpech B, Shire D, Le Fur G, Casellas P (1993) Cannabinoid-receptor expression in human leukocytes. Eur J Biochem 214:173–180

    CAS  PubMed  Google Scholar 

  42. Ziring D, Wei B, Velazquez P, Schrage M, Buckley NE, Braun J (2006) Formation of B and T cell subsets require the cannabinoid receptor CB2. Immunogenetics 58:714–725

    CAS  PubMed  Google Scholar 

  43. Tanikawa T, Kurohane K, Imai Y (2007) Induction of preferential chemotaxis of unstimulated B-lymphocytes by 2-arachidonoylglycerol in immunized mice. Microbiol Immunol 51:1013–1019

    CAS  PubMed  Google Scholar 

  44. Muppidi JR, Arnon TI, Bronevetsky Y, Veerapen N, Tanaka M, Besra GS, Cyster JG (2011) Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. J Exp Med 208:1941–1948

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Sancho R, Macho A, de La Vega L, Calzado MA, Fiebich BL, Appendino G, Muñoz E (2004) Immunosuppressive activity of endovanilloids: N-arachidonoyl-dopamine inhibits activation of the NF-kB, NFAT, and activator protein 1 signalling pathways. J Immunol 172:2341–2351

    CAS  PubMed  Google Scholar 

  46. Kaplan BL, Ouyang Y, Herring A, Yea SS, Razdan R, Kaminski NE (2005) Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2 V-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide. Toxicol Appl Pharmacol 205:107–115

    CAS  PubMed  Google Scholar 

  47. Rockwell CE, Raman P, Kaplan BL, Kaminski NE (2008) A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. Biochem Pharmacol 76:353–361

    CAS  PubMed  Google Scholar 

  48. Cencioni MT, Chiurchiù V, Catanzaro G, Borsellino G, Bernardi G, Battistini L, Maccarrone M (2010) Anandamide suppresses proliferation and cytokine release from primary human T-lymphocytes mainly via CB2 receptors. PLoS ONE 5:e8688

    PubMed Central  PubMed  Google Scholar 

  49. Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M (2009) Cannabinoids as novel anti-inflammatory drugs. Future Med Chem 1:1333–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Maestroni GJ (2004) The endogenous cannabinoid 2-arachidonoyl glycerol as in vivo chemoattractant for dendritic cells and adjuvant for Th1 response to a soluble protein. FASEB J 18:1914–1916

    CAS  PubMed  Google Scholar 

  51. Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Costa-Pinto FA, Palermo-Neto J (2010) Anandamide prior to sensitization increases cell-mediated immunity in mice. Int Immunopharmacol 10:431–439

    CAS  PubMed  Google Scholar 

  52. Maccarrone M, Valensise H, Bari M, Lazzarin N, Romanini C, Finazzi-Agrò A (2001) Progesterone up-regulates anandamide hydrolase in human lymphocytes: role of cytokines and implications for fertility. J Immunol 166:7183–7189

    CAS  PubMed  Google Scholar 

  53. Kuwae T, Shiota Y, Schmid PC, Krebsbach R, Schmid HH (1999) Biosynthesis and turnover of anandamide and other N-acylethanolamines in peritoneal macrophages. FEBS Lett 459:123–127

    CAS  PubMed  Google Scholar 

  54. Di Marzo V, Bisogno T, De Petrocellis L, Melck D, Orlando P, Wagner JA, Kunos G (1999) Biosynthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in circulating and tumoral macrophages. Eur J Biochem 264:258–267

    PubMed  Google Scholar 

  55. Chiurchiù V, Cencioni MT, Bisicchia E, De Bardi M, Gasperini C, Borsellino G, Centonze D, Battistini L, Maccarrone M (2013) Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis. Ann Neurol 73:626–636

    PubMed  Google Scholar 

  56. Liu J, Batkai S, Pacher P, Harvey-White J, Wagner JA, Cravatt BF, Gao B, Kunos G (2003) Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF-kappaB independently of platelet-activating factor. J Biol Chem 278:45034–45039

    CAS  PubMed  Google Scholar 

  57. Varga K, Wagner JA, Bridgen DT, Kunos G (1998) Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J 12:1035–1044

    CAS  PubMed  Google Scholar 

  58. Cabral GA, Toney DM, Fischer-Stenger K, Harrison MP, Marciano-Cabral F (1995) Anandamide inhibits macrophage-mediated killing of tumor necrosis factor-sensitive cells. Life Sci 56:2065–2072

    CAS  PubMed  Google Scholar 

  59. Coffey RG, Yamamoto Y, Snella E, Pross S (1996) Tetrahydrocannabinol inhibition of macrophage nitric oxide production. Biochem Pharmacol 52:743–751

    CAS  PubMed  Google Scholar 

  60. Berdyshev EV, Boichot E, Germain N, Allain N, Anger JP, Lagente V (1997) Influence of fatty acid ethanolamides and delta9-tetrahydrocannabinol on cytokine and arachidonate release by mononuclear cells. Eur J Pharmacol 330:231–240

    CAS  PubMed  Google Scholar 

  61. Gallily R, Breuer A, Mechoulam R (2000) 2-Arachidonylglycerol, an endogenous cannabinoid, inhibits tumor necrosis factor-alpha production in murine macrophages, and in mice. Eur J Pharmacol 406:R5–R7

    CAS  PubMed  Google Scholar 

  62. Chang YH, Lee ST, Lin WW (2001) Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. J Cell Biochem 81:715–723

    CAS  PubMed  Google Scholar 

  63. Kishimoto S, Kobayashi Y, Oka S, Gokoh M, Waku K, Sugiura T (2004) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces accelerated production of chemokines in HL-60 cells. J Biochem 135:517–524

    CAS  PubMed  Google Scholar 

  64. Gokoh M, Kishimoto S, Oka S, Mori M, Waku K, Ishima Y, Sugiura T (2005) 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces rapid actin polymerization in HL-60 cells differentiated into macrophage-like cells. Biochem J 386:583–589

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Gokoh M, Kishimoto S, Oka S, Sugiura T (2007) 2-Arachidonoylglycerol enhances the phagocytosis of opsonized zymosan by HL-60 cells differentiated into macrophage-like cells. Biol Pharm Bull 30:1199–1205

    CAS  PubMed  Google Scholar 

  66. Hayashi R, Miyazaki M, Osada S, Kawasaki H, Fujita I, Hamasaki Y, Kodama H (2013) A formyl peptide substituted with a conformationally constrained phenylalanine residue evokes a selective immune response in human neutrophils. Bioorg Med Chem 21:668–675

    CAS  PubMed  Google Scholar 

  67. Balenga NA, Aflaki E, Kargl J, Platzer W, Schröder R, Blättermann S, Kostenis E, Brown AJ, Heinemann A, Waldhoer M (2011) GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res 21:1452–1469

    CAS  PubMed Central  PubMed  Google Scholar 

  68. McHugh D, Tanner C, Mechoulam R, Pertwee RG, Ross RA (2008) Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol Pharmacol 73:441–450

    CAS  PubMed  Google Scholar 

  69. Montecucco F, Di Marzo V, da Silva RF, Vuilleumier N, Capettini L, Lenglet S, Pagano S, Piscitelli F, Quintao S, Bertolotto M, Pelli G, Galan K, Pilet L, Kuzmanovic K, Burger F, Pane B, Spinella G, Braunersreuther V, Gayet-Ageron A, Pende A, Viviani GL, Palombo D, Dallegri F, Roux-Lombard P, Santos RA, Stergiopulos N, Steffens S, Mach F (2012) The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur Heart J 33:846–856

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Chouinard F, Lefebvre JS, Navarro P, Bouchard L, Ferland C, Lalancette-Hébert M, Marsolais D, Laviolette M, Flamand N (2011) The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. J Immunol 186:3188–3196

    CAS  PubMed  Google Scholar 

  71. Gasperi V, Evangelista D, Chiurchiù V, Florenzano F, Savini I, Oddi S, Avigliano L, Catani MV, Maccarrone M (2014) 2-Arachidonoylglycerol modulates human endothelial cell/leukocyte interactions by controlling selectin expression through CB1 and CB2 receptors. Int J Biochem Cell Biol 51:79–88

    CAS  PubMed  Google Scholar 

  72. Di Filippo C, Rossi F, Rossi S, D’Amico M (2004) Cannabinoid CB2 receptor activation reduces mouse myocardial ischemia–reperfusion injury: involvement of cytokine/chemokines and PMN. J Leukoc Biol 75:453–459

    PubMed  Google Scholar 

  73. Rajesh M, Pan H, Mukhopadhyay P, Bátkai S, Osei-Hyiaman D, Haskó G, Liaudet L, Gao B, Pacher P (2007) Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis. J Leukoc Biol 82:1382–1389

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Murikinati S, Juttler E, Keinert T, Ridder DA, Muhammad S, Waibler Z, Ledent C, Zimmer A, Kalinke U, Schwaninger M (2010) Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J 24:788–798

    CAS  PubMed  Google Scholar 

  75. Rom S, Zuluaga-Ramirez V, Dykstra H, Reichenbach NL, Pacher P, Persidsky Y (2013) Selective activation of cannabinoid receptor 2 in leukocytes suppresses their engagement of the brain endothelium and protects the blood-brain barrier. Am J Pathol 183:1548–1558

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Rajesh M, Mukhopadhyay P, Bátkai S, Haskó G, Liaudet L, Huffman JW, Csiszar A, Ungvari Z, Mackie K, Chatterjee S, Pacher P (2007) CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol 293:H2210–H2218

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Ramirez SH, Reichenbach NL, Fan S, Rom S, Merkel SF, Wang X, Ho WZ, Persidsky Y (2013) Attenuation of HIV-1 replication in macrophages by cannabinoid receptor 2 agonists. J Leukoc Biol 93:801–810

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Edgemond WS, Hillard CJ, Falck JR, Kearn CS, Campbell WB (1998) Human platelets and polymorphonuclear leukocytes synthesize oxygenated derivatives of arachidonylethanolamide (anandamide): their affinities for cannabinoid receptors and pathways of inactivation. Mol Pharmacol 54:180–188

    CAS  PubMed  Google Scholar 

  79. Maccarrone M, Bari M, Menichelli A, Del Principe D, Finazzi AA (1999) Anandamide activates human platelets through a pathway independent of the arachidonate cascade. FEBS Lett 447:277–282

    CAS  PubMed  Google Scholar 

  80. Maccarrone M, Bari M, Menichelli A, Giuliani E, Del Principe D, Finazzi-Agrò A (2001) Human platelets bind and degrade 2-arachidonoylglycerol, which activates these cells through a cannabinoid receptor. Eur J Biochem 268:819–825

    CAS  PubMed  Google Scholar 

  81. Braud S, Bon C, Touqui L, Mounier C (2000) Activation of rabbit blood platelets by anandamide through its cleavage into arachidonic acid. FEBS Lett 471:12–16

    CAS  PubMed  Google Scholar 

  82. Gkini E, Anagnostopoulos D, Mavri-Vavayianni M, Siafaka-Kapadai A (2009) Metabolism of 2-acylglycerol in rabbit and human platelets. Involvement of monoacylglycerol lipase and fatty acid amide hydrolase. Platelets 20:376–385

    CAS  PubMed  Google Scholar 

  83. Maccarrone M, Del Principe D, Finazzi-Agrò A (2002) Endocannabinoids: new physiological (co-)agonists of human platelets. Thromb Haemost 88:165–166

    CAS  PubMed  Google Scholar 

  84. Malorni W, Bari M, Straface E, Battista N, Matarrese P, Finazzi-Agrò A, Del Principe D, Maccarrone M (2004) Morphological evidence that 2-arachidonoylglycerol is a true agonist of human platelets. Thromb Haemost 92:1159–1161

    CAS  PubMed  Google Scholar 

  85. Baldassarri S, Bertoni A, Bagarotti A, Sarasso C, Zanfa M, Catani MV, Avigliano L, Maccarrone M, Torti M, Sinigaglia F (2008) The endocannabinoid 2-arachidonoylglycerol activates human platelets through non-CB1/CB2 receptors. J Thromb Haemost 6:1772–1779

    CAS  PubMed  Google Scholar 

  86. Signorello MG, Giacobbe E, Leoncini G (2011) Activation by 2-arachidonoylglycerol of platelet p38MAPK/cPLA2 pathway. J Cell Biochem 112:2794–2802

    CAS  PubMed  Google Scholar 

  87. Signorello MG, Giacobbe E, Segantin A, Avigliano L, Sinigaglia F, Maccarrone M, Leoncini G (2011) Activation of human platelets by 2-arachidonoylglycerol: role of PKC in NO/cGMP pathway modulation. Curr Neurovasc Res 8:200–209

    CAS  PubMed  Google Scholar 

  88. Catani MV, Gasperi V, Evangelista D, Finazzi Agrò A, Avigliano L, Maccarrone M (2010) Anandamide extends platelets survival through CB(1)-dependent Akt signalling. Cell Mol Life Sci 67:601–610

    CAS  PubMed  Google Scholar 

  89. Signorello MG, Giacobbe E, Passalacqua M, Leoncini G (2011) The anandamide effect on NO/cGMP pathway in human platelets. J Cell Biochem 112:924–932

    CAS  PubMed  Google Scholar 

  90. Kunos G, Jarai Z, Batkai S, Goparaju SK, Ishac EJ, Liu J, Wang L, Wagner JA (2000) Endocannabinoids as cardiovascular modulators. Chem Phys Lipids 108:159–168

    CAS  PubMed  Google Scholar 

  91. Maccarrone M, Bari M, Lorenzon T, Bisogno T, Di Marzo V, Finazzi-Agrò A (2000) Anandamide uptake by human endothelial cells and its regulation by nitric oxide. J Biol Chem 275:13484–13492

    CAS  PubMed  Google Scholar 

  92. Keown OP, Winterburn TJ, Wainwright CL, Macrury SM, Neilson I, Barrett F, Leslie SJ, Megson IL (2010) 2-arachidonyl glycerol activates platelets via conversion to arachidonic acid and not by direct activation of cannabinoid receptors. Br J Clin Pharmacol 70:180–188

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Schäfer A, Pfrang J, Neumüller J, Fiedler S, Ertl G, Bauersachs J (2008) The cannabinoid receptor-1 antagonist rimonabant inhibits platelet activation and reduces pro-inflammatory chemokines and leukocytes in Zucker rats. Br J Pharmacol 154:1047–1054

    PubMed Central  PubMed  Google Scholar 

  94. Brantl SA, Khandoga AL, Siess W (2014) Mechanism of platelet activation induced by endocannabinoids in blood and plasma. Platelets 25:151–161

    CAS  PubMed  Google Scholar 

  95. Maccarrone M (2014) Activation of platelets by endocannabinoids: distinct agonists or arachidonate reservoirs? Platelets 25:463–464

    CAS  PubMed  Google Scholar 

  96. De Angelis V, Koekman AC, Weeterings C, Roest M, de Groot PG, Herczenik E, Maas C (2014) Endocannabinoids control platelet activation and limit aggregate formation under flow. PLoS One 9:e108282

    PubMed Central  PubMed  Google Scholar 

  97. Guindon J, Hohmann AG (2011) The endocannabinoid system and cancer: therapeutic implication. Br J Pharmacol 163:1447–1463

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Pisanti S, Picardi P, D’Alessandro A, Laezza C, Bifulco M (2013) The endocannabinoid signaling system in cancer. Trends Pharmacol Sci 34:273–282

    CAS  PubMed  Google Scholar 

  99. Maccarrone M (2013) Endocannabinoid signaling in cancer: a rather complex puzzle. Trends Pharmacol Sci 34:426–427

    CAS  PubMed  Google Scholar 

  100. Jordà M, Rayman N, Tas M, Verbakel SE, Battista N, van Lom K, Löwenberg B, Maccarrone M, Delwel R (2004) The peripheral cannabinoid receptor Cb2, frequently expressed on AML blasts, either induces a neutrophilic differentiation block or confers abnormal migration properties in a ligand-dependent manner. Blood 104:526–534

    Google Scholar 

  101. Gustafsson K, Wang X, Severa D, Eriksson M, Kimby E, Merup M, Christensson B, Flygare J, Sander B (2008) Expression of cannabinoid receptors type 1 and type 2 in non-Hodgkin lymphoma: growth inhibition by receptor activation. Int J Cancer 123:1025–1033

    CAS  PubMed  Google Scholar 

  102. Rayman N, Lam KH, Van Leeuwen J, Mulder AH, Budel LM, Löwenberg B, Sonneveld P, Delwel R (2007) The expression of the peripheral cannabinoid receptor on cells of the immune system and non-Hodgkin’s lymphomas. Leuk Lymphoma 48:1389–1399

    CAS  PubMed  Google Scholar 

  103. Benz AH, Renné C, Maronde E, Koch M, Grabiec U, Kallendrusch S, Rengstl B, Newrzela S, Hartmann S, Hansmann ML, Dehghani F (2013) Expression and functional relevance of cannabinoid receptor 1 in Hodgkin lymphoma. PLoS One 8:e81675

    PubMed Central  PubMed  Google Scholar 

  104. Gustafsson K, Christensson B, Sander B, Flygare J (2006) Cannabinoid receptor-mediated apoptosis induced by R(+)-methanandamide and Win 55,212–2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol Pharmacol 70:1612–1620

    CAS  PubMed  Google Scholar 

  105. Gustafsson K, Sander B, Bielawski J, Hannun YA, Flygare J (2009) Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism. Mol Cancer Res 7:1086–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Wasik AM, Almestrand S, Wang X, Hultenby K, Dackland ÅL, Andersson P, Kimby E, Christensson B, Sander B (2011) WIN55,212-2 induces cytoplasmic vacuolation in apoptosis-resistant MCL cells. Cell Death Dis 2:e225

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Gallotta D, Nigro P, Cotugno R, Gazzerro P, Bifulco M, Belisario MA (2010) Rimonabant-induced apoptosis in leukemia cell lines: activation of caspase-dependent and -independent pathways. Biochem Pharmacol 80:370–380

    CAS  PubMed  Google Scholar 

  108. Pacher P, Kunos G (2013) Modulating the endocannabinoid system in human health and disease–successes and failures. FEBS J 280:1918–1943

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Skaper SD, Facci L (2012) Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philos Trans R Soc Lond B Biol Sci 367:3312–3325

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Zogopoulos P, Vasileiou I, Patsouris E, Theocharis SE (2013) The role of endocannabinoids in pain modulation. Fundam Clin Pharmacol 27:64–80

    CAS  PubMed  Google Scholar 

  111. Farquhar-Smith WP, Rice AS (2003) A novel neuroimmune mechanism in cannabinoid-mediated attenuation of nerve growth factor-induced hyperalgesia. Anesthesiology 99:1391–1401

    PubMed  Google Scholar 

  112. De Filippis D, Luongo L, Cipriano M, Palazzo E, Cinelli MP, de Novellis V, Maione S, Iuvone T (2011) Palmitoylethanolamide reduces granuloma-induced hyperalgesia by modulation of mast cell activation in rats. Mol Pain 7:3–12

    PubMed Central  PubMed  Google Scholar 

  113. Endocannabinoid Research Group, De Filippis D, D’Amico A, Cipriano M, Petrosino S, Orlando P, Di Marzo V, Iuvone T (2010) Levels of endocannabinoids and palmitoylethanolamide and their pharmacological manipulation in chronic granulomatous inflammation in rats. Pharmacol Res 61:321–328

    PubMed  Google Scholar 

  114. Di Sabatino A, Battista N, Biancheri P, Rapino C, Rovedatti L, Astarita G, Vanoli A, Dainese E, Guerci M, Piomelli D, Pender SL, MacDonald TT, Maccarrone M, Corazza GR (2011) The endogenous cannabinoid system in the gut of patients with inflammatory bowel disease. Mucosal Immunol 4:574–583

    PubMed  Google Scholar 

  115. Storr MA, Keenan CM, Emmerdinger D, Zhang H, Yüce B, Sibaev A, Massa F, Buckley NE, Lutz B, Göke B, Brand S, Patel KD, Sharkey KA (2008) Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med 86:925–936

    CAS  PubMed  Google Scholar 

  116. Singh UP, Singh NP, Singh B, Price RL, Nagarkatti M, Nagarkatti PS (2012) Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10(−/−) mice by attenuating the activation of T cells and promoting their apoptosis. Toxicol Appl Pharmacol 258:256–267

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kimball ES, Schneider CR, Wallace NH, Hornby PJ (2006) Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol 291:G364–G371

    CAS  PubMed  Google Scholar 

  118. D’Argenio G, Petrosino S, Gianfrani C, Valenti M, Scaglione G, Grandone I, Nigam S, Sorrentini I, Mazzarella G, Di Marzo V (2007) Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats. J Mol Med (Berl) 85:523–530

    Google Scholar 

  119. Battista N, Di Sabatino A, Di Tommaso M, Biancheri P, Rapino C, Vidali F, Papadia C, Montana C, Pasini A, Lanzini A, Villanacci V, Corazza GR, Maccarrone M (2012) Abnormal anandamide metabolism in celiac disease. J Nutr Biochem 23:1245–1248

    CAS  PubMed  Google Scholar 

  120. Battista N, Di Sabatino A, Di Tommaso M, Biancheri P, Rapino C, Giuffrida P, Papadia C, Montana C, Pasini A, Vanoli A, Lanzarotto F, Villanacci V, Corazza GR, Maccarrone M (2013) Altered expression of type-1 and type-2 cannabinoid receptors in celiac disease. PLoS One 8:e62078

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Hoyer FF, Steinmetz M, Zimmer S, Becker A, Lütjohann D, Buchalla R, Zimmer A, Nickenig G (2011) Atheroprotection via cannabinoid receptor-2 is mediated by circulating and vascular cells in vivo. J Mol Cell Cardiol 51:1007–1014

    CAS  PubMed  Google Scholar 

  122. Willecke F, Zeschky K, Ortiz Rodriguez A, Colberg C, Auwärter V, Kneisel S, Hutter M, Lozhkin A, Hoppe N, Wolf D, von zur Mühlen C, Moser M, Hilgendorf Hilgendorf, Bode C, Zirlik A (2011) Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice. PLoS One 6:e19405

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Lenglet S, Thomas A, Soehnlein O, Montecucco F, Burger F, Pelli G, Galan K, Cravatt B, Staub C, Steffens S (2013) Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler Thromb Vasc Biol 33:215–223

    CAS  PubMed  Google Scholar 

  124. Mukhopadhyay P, Horváth B, Rajesh M, Matsumoto S, Saito K, Bátkai S, Patel V, Tanchian G, Gao RY, Cravatt BF, Haskó G, Pacher P (2011) Fatty acid amide hydrolase is a key regulator of endocannabinoid-induced myocardial tissue injury. Free Radic Biol Med 50:179–195

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Jiang LS, Pu J, Han ZH, Hu LH, He B (2009) Role of activated endocannabinoid system in regulation of cellular cholesterol metabolism in macrophages. Cardiovasc Res 81:805–813

    CAS  PubMed  Google Scholar 

  126. Quercioli A, Pataky Z, Vincenti G, Makoundou V, Di Marzo V, Montecucco F, Carballo S, Thomas A, Staub C, Steffens S, Seimbille Y, Golay A, Ratib O, Harsch E, Mach F, Schindler TH (2011) Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur Heart J 32:1369–1378

    CAS  PubMed  Google Scholar 

  127. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Swardfager W, Winer DA, Herrmann N, Winer S, Lanctôt KL (2013) Interleukin-17 in post-stroke neurodegeneration. Neurosci Biobehav Rev 37:436–447

    CAS  PubMed  Google Scholar 

  129. van der Spuy WJ, Pretorius E (2012) Interrelation between inflammation, thrombosis, and neuroprotection in cerebral ischemia. Rev Neurosci 23:269–278

    PubMed  Google Scholar 

  130. Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, García-Gutiérrez MS, Vivancos J, Nombela F, Torres M, Burguete MC, Manzanares J, Lizasoain I, Moro MA (2012) Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 43:211–219

    CAS  PubMed  Google Scholar 

  131. Zhang M, Martin BR, Adler MW, Razdan RK, Jallo JI, Tuma RF (2007) Cannabinoid CB(2) receptor activation decreases cerebral infarction in a mouse focal ischemia/reperfusion model. J Cereb Blood Flow Metab 27:1387–1396

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Zhang M, Adler MW, Abood ME, Ganea D, Jallo J, Tuma RF (2009) CB2 receptor activation attenuates microcirculatory dysfunction during cerebral ischemic/reperfusion injury. Microvasc Res 78:86–94

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Batkai S, Osei-Hyiaman D, Pan H, El-Assal O, Rajesh M, Mukhopadhyay P, Hong F, Harvey-White J, Jafri A, Haskó G, Huffman JW, Gao B, Kunos G, Pacher P (2007) Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. FASEB J 21:1788–1800

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Mukhopadhyay P, Rajesh M, Horváth B, Bátkai S, Park O, Tanchian G, Gao RY, Patel V, Wink DA, Liaudet L, Haskó G, Mechoulam R, Pacher P (2011) Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signalling and response, oxidative/nitrative stress, and cell death. Free Radic Biol Med 50:1368–1381

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Centonze D, Battistini L, Maccarrone M (2008) The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des 14:2342–2370

    Google Scholar 

  136. Battista N, Bari M, Tarditi A, Mariotti C, Bachoud-Lévi AC, Zuccato C, Finazzi-Agrò A, Genitrini S, Peschanski M, Di Donato S, Cattaneo E, Maccarrone M (2007) Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington’s disease mutation in peripheral lymphocytes. Neurobiol Dis 27:108–116

    CAS  PubMed  Google Scholar 

  137. Centonze D, Bari M, Rossi S, Prosperetti C, Furlan R, Fezza F, De Chiara V, Battistini L, Bernardi G, Bernardini S, Martino G, Maccarrone M (2007) The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 130:2543–2553

    PubMed  Google Scholar 

  138. Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49:67–79

    CAS  PubMed  Google Scholar 

  139. Benito C, Romero JP, Tolón RM, Clemente D, Docagne F, Hillard CJ, Guaza C, Romero J (2007) Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 27:2396–2402

    CAS  PubMed  Google Scholar 

  140. Sánchez López AJ, Román-Vega L, Ramil Tojeiro E, Giuffrida A, García-Merino A (2015) Regulation of cannabinoid receptor gene expression and endocannabinoid levels in lymphocyte subsets by IFN-β: a longitudinal study in multiple sclerosis patients. Clin Exp Immunol 179:119–127

    PubMed  Google Scholar 

  141. Hernangómez M, Mestre L, Correa FG, Loría F, Mecha M, Iñigo PM, Docagne F, Williams RO, Borrell J, Guaza C (2012) CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia 60:1437–1450

    PubMed  Google Scholar 

  142. Correa F, Hernangómez-Herrero M, Mestre L, Loría F, Docagne F, Guaza C (2011) The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. Brain Behav Immun 25:736–749

    CAS  PubMed  Google Scholar 

  143. Pisani A, Fezza F, Galati S, Battista N, Napolitano S, Finazzi-Agrò A, Bernardi G, Brusa L, Pierantozzi M, Stanzione P, Maccarrone M (2005) High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson’s disease patients. Ann Neurol 57:777–779

    PubMed  Google Scholar 

  144. D’Addario C, Di Francesco A, Arosio BC, Dell’Osso B, Bari M, Galimberti D, Scarpini E, Altamura AC, Mari D, Maccarrone M (2012) Epigenetic regulation of fatty acid amide hydrolase in Alzheimer disease. PLoS One 7:e39186

    PubMed Central  PubMed  Google Scholar 

  145. Centonze D, Bari M, Di Michele B, Rossi S, Gasperi V, Pasini A, Battista N, Bernardi G, Curatolo P, Maccarrone M (2009) Altered anandamide degradation in attention-deficit/hyperactivity disorder. Neurology 72:1526–1527

    CAS  PubMed  Google Scholar 

  146. Ho WSV, Hill MN, Miller GE, Gorzalka BB, Hillard CJ (2012) Serum contents of endocannabinoids are correlated with blood pressure in depressed women. Lipids Health Dis 11:32–41

    PubMed Central  PubMed  Google Scholar 

  147. Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, Klosterkötter J, Hellmich M, Koethe D (2012) Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2:e94

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Siniscalco D, Sapone A, Giordano C, Cirillo A, de Magistris L, Rossi F, Fasano A, Bradstreet JJ, Maione S, Antonucci N (2013) Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders. J Autism Dev Disord 11:2686–2695

    Google Scholar 

  149. Siniscalco D, Bradstreet JJ, Cirillo A, Antonucci N (2014) The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages. J Neuroinflammation 11:78–89

    PubMed Central  PubMed  Google Scholar 

  150. Cupini LM, Bari M, Battista N, Argiro G, Finazzi-Agro A, Calabresi P, Maccarrone M (2006) Biochemical changes in endocannabinoid system are expressed in platelets of female but not male migraineurs. Cephalalgia 26:277–281

    CAS  PubMed  Google Scholar 

  151. Cupini LM, Costa C, Sarchielli P, Bari M, Battista N, Eusebi P, Calabresi P, Maccarrone M (2008) Degradation of endocannabinoids in chronic migraine and medication overuse headache. Neurobiol Dis 30:186–189

    CAS  PubMed  Google Scholar 

  152. Perrotta A, Arce-Leal N, Tassorelli C, Gasperi V, Sances G, Blandini F, Serrao M, Bolla M, Pierelli F, Nappi G, Maccarrone M, Sandrini G (2012) Acute reduction of anandamide-hydrolase (FAAH) activity is coupled with a reduction of nociceptive pathways facilitation in medication-overuse headache subjects after withdrawal treatment. Headache 52:1350–1361

    PubMed  Google Scholar 

  153. Rossi C, Pini LA, Cupini ML, Calabresi P, Sarchielli P (2008) Endocannabinoids in platelets of chronic migraine patients and medication-overuse headache patients: relation with serotonin levels. Eur J Clin Pharmacol 64:1–8

    CAS  PubMed  Google Scholar 

  154. Greineisen WE, Turner H (2010) Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists. Int Immunopharmacol 10:547–555

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Cridge BJ, Rosengren RJ (2013) Critical appraisal of the potential use of cannabinoids in cancer management. Cancer Manag Res 5:301–313

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Steffens S, Pacher P (2012) Targeting cannabinoid receptor CB(2) in cardiovascular disorders: promises and controversies. Br J Pharmacol 167:313–323

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Fulp A, Bortoff K, Seltzman H, Zhang Y, Mathews J, Snyder R, Fennell T, Maitra R (2012) Design and synthesis of cannabinoid receptor 1 antagonists for peripheral selectivity. J Med Chem 55:2820–2834

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Sardinha J, Kelly ME, Zhou J, Lehmann C (2014) Experimental cannabinoid 2receptor-mediated immune modulation in sepsis. Mediators Inflamm 2014:978678

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P, Gruden G (2011) Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 60:2386–2396

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Samson MT, Small-Howard A, Shimoda LM, Koblan-Huberson M, Stokes AJ, Turner H (2003) Differential roles of CB1 and CB2 cannabinoid receptors in mast cells. J Immunol 170:4953–4962

    CAS  PubMed  Google Scholar 

  161. Sewell RA, Ranganathan M, D’Souza DC (2000) Cannabinoids and psychosis. Int Rev Psychiatry 21:152–162

    Google Scholar 

  162. Hall W, Degenhardt L (2008) Cannabis use and the risk of developing a psychotic disorder. World Psychiatry 7:68–71

    PubMed Central  PubMed  Google Scholar 

  163. Pratap B, Korniyenko A (2012) Toxic effects of marijuana on the cardiovascular system. Cardiovasc Toxicol 12:143–148

    PubMed  Google Scholar 

  164. Mir A, Obafemi A, Young A, Kane C (2011) Myocardial infarction associated with use of the synthetic cannabinoid K2. Pediatrics 128:e1622–e1627

    PubMed  Google Scholar 

  165. Abrams DI, Hilton JF, Leiser RJ, Shade SB, Elbeik TA, Aweeka FT, Benowitz NL, Bredt BM, Kosel B, Aberg JA, Deeks SG, Mitchell TF, Mulligan K, Bacchetti P, McCune JM, Schambelan M (2003) Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial. Ann Intern Med 139:258–266

    CAS  PubMed  Google Scholar 

  166. Pacifici R, Zuccaro P, Pichini S, Roset PN, Poudevida S, Farrè M, Segura J, De la Torre R (2003) Modulation of the immune system in cannabis users. JAMA 289:1929–1931

    PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank all colleagues who have contributed over the years to our studies on endocannabinoids in blood cell biology. Financial support from Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN 2009 to L.A., PRIN 2010–2011 to M.M.), and by Fondazione TERCAS (Grant 2009–2012 to M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Valeria Catani.

Additional information

M. Maccarrone and M. V. Catani are equal senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasperi, V., Evangelista, D., Savini, I. et al. Downstream effects of endocannabinoid on blood cells: implications for health and disease. Cell. Mol. Life Sci. 72, 3235–3252 (2015). https://doi.org/10.1007/s00018-015-1924-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1924-0

Keywords

Navigation