Skip to main content
Log in

Regulation and function of the NFE2 transcription factor in hematopoietic and non-hematopoietic cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The NFE2 transcription factor was identified over 25 years ago. The NFE2 protein forms heterodimers with small MAF proteins, and the resulting complex binds to regulatory elements in a large number of target genes. In contrast to other CNC transcription family members including NFE2L1 (NRF1), NFE2L2 (NRF2) and NFE2L3 (NRF3), which are widely expressed, earlier studies had suggested that the major sites of NFE2 expression are hematopoietic cells. Based on cell culture studies it was proposed that this protein acts as a critical regulator of globin gene expression. However, the knockout mouse model displayed only mild erythroid abnormalities, while the major phenotype was a defect in megakaryocyte biogenesis. Indeed, absence of NFE2 led to severely impaired platelet production. A series of recent data, also summarized here, shed new light on the various functional roles of NFE2 and the regulation of its activity. NFE2 is part of a complex regulatory network, including transcription factors such as GATA1 and RUNX1, controlling megakaryocytic and/or erythroid cell function. Surprisingly, it was recently found that NFE2 also has a role in non-hematopoietic tissues, such as the trophoblast, in which it is also expressed, as well as the bone, opening the door to new research areas for this transcription factor. Additional data showed that NFE2 function is controlled by a series of posttranslational modifications. Important strides have been made with respect to the clinical significance of NFE2, linking this transcription factor to hematological disorders such as polycythemias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mignotte V, Wall L, deBoer E, Grosveld F, Romeo PH (1989) Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucleic Acids Res 17(1):37–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Whitelaw E, Tsai SF, Hogben P, Orkin SH (1990) Regulated expression of globin chains and the erythroid transcription factor GATA-1 during erythropoiesis in the developing mouse. Mol Cell Biol 10(12):6596–6606

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH (1993) Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362(6422):722–728

    Article  CAS  PubMed  Google Scholar 

  4. Ney PA, Andrews NC, Jane SM, Safer B, Purucker ME, Weremowicz S, Morton CC, Goff SC, Orkin SH, Nienhuis AW (1993) Purification of the human NF-E2 complex: cDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner. Mol Cell Biol 13(9):5604–5612

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Andrews NC (1998) The NF-E2 transcription factor. Int J Biochem Cell Biol 30(4):429–432

    Article  CAS  PubMed  Google Scholar 

  6. Mohler J, Vani K, Leung S, Epstein A (1991) Segmentally restricted, cephalic expression of a leucine zipper gene during Drosophila embryogenesis. Mech Dev 34(1):3–9

    Article  CAS  PubMed  Google Scholar 

  7. Bowerman B, Eaton BA, Priess JR (1992) skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell 68(6):1061–1075

    Article  CAS  PubMed  Google Scholar 

  8. Motohashi H, O’Connor T, Katsuoka F, Engel J, Yamamoto M (2002) Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  9. Peters LL, Andrews NC, Eicher EM, Davidson MB, Orkin SH, Lux SE (1993) Mouse microcytic anaemia caused by a defect in the gene encoding the globin enhancer-binding protein NF-E2. Nature 362(6422):768–770

    Article  CAS  PubMed  Google Scholar 

  10. Pischedda C, Cocco S, Melis A, Marini MG, Kan YW, Cao A, Moi P (1995) Isolation of a differentially regulated splicing isoform of human NF-E2. Proc Natl Acad Sci USA 92(8):3511–3515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Orkin SH (1993) The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc Natl Acad Sci USA 90(24):11488–11492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, Yamamoto M (1994) Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins (see comments). Nature 367(6463):568–572

    Article  CAS  PubMed  Google Scholar 

  13. Nishizawa M, Kataoka K, Goto N, Fujiwara KT, Kawai S (1989) v-maf, a viral oncogene that encodes a “leucine zipper” motif. Proc Natl Acad Sci USA 86(20):7711–7715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kotkow KJ, Orkin SH (1995) Dependence of globin gene expression in mouse erythroleukemia cells on the NF-E2 heterodimer. Mol Cell Biol 15(8):4640–4647

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Blank V, Kim MJ, Andrews NC (1997) Human MafG is a functional partner for p45 NF-E2 in activating globin gene expression. Blood 89(11):3925–3935

    CAS  PubMed  Google Scholar 

  16. Lecine P, Blank V, Shivdasani R (1998) Characterization of the hematopoietic transcription factor NF-E2 in primary murine megakaryocytes. J Biol Chem 273(13):7572–7578

    Article  CAS  PubMed  Google Scholar 

  17. Marini MG, Asunis I, Chan K, Chan JY, Kan YW, Porcu L, Cao A, Moi P (2002) Cloning MafF by recognition site screening with the NF-E2 tandem repeat of HS2: analysis of its role in globin and GCSI genes regulation. Blood Cells Mol Dis 29(2):145–148

    Article  PubMed  Google Scholar 

  18. Brand M, Ranish JA, Kummer NT, Hamilton J, Igarashi K, Francastel C, Chi TC, Crabtree GR, Aebersold R, Groudine M (2004) Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat Struct Mol Biol 11(1):73–80

    Article  CAS  PubMed  Google Scholar 

  19. Blank V, Andrews NC (1997) The Maf transcription factors: regulators of differentiation. Trends Biochem Sci 22(11):437–441

    Article  CAS  PubMed  Google Scholar 

  20. Blank V (2008) Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J Mol Biol 376:913–925

    Article  CAS  PubMed  Google Scholar 

  21. Kannan MB, Solovieva V (1823) Blank V (2012) The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives. Biochim Biophys Acta 10:1841–1846. doi:10.1016/j.bbamcr.2012.06.012

    Google Scholar 

  22. Chan JY, Han XL, Kan YW (1993) Isolation of cDNA encoding the human NF-E2 protein. Proc Natl Acad Sci USA 90(23):11366–11370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Toki T, Itoh J, Kitazawa J, Arai K, Hatakeyama K, Akasaka J, Igarashi K, Nomura N, Yokoyama M, Yamamoto M, Ito E (1997) Human small Maf proteins form heterodimers with CNC family transcription factors and recognize the NF-E2 motif. Oncogene 14(16):1901–1910

    Article  CAS  PubMed  Google Scholar 

  24. Kataoka K, Igarashi K, Itoh K, Fujiwara KT, Noda M, Yamamoto M, Nishizawa M (1995) Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor (published erratum appears in Mol Cell Biol 1995 Jun; 15(6):3461). Mol Cell Biol 15(4):2180–2190

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Romeo PH, Prandini MH, Joulin V, Mignotte V, Prenant M, Vainchenker W, Marguerie G, Uzan G (1990) Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 344(6265):447–449

    Article  CAS  PubMed  Google Scholar 

  26. Toki T, Itoh J, Arai K, Kitazawa J, Yokoyama M, Igarashi K, Yamamoto M, Ito E (1996) Abundant expression of erythroid transcription factor P45 NF-E2 mRNA in human peripheral granurocytes. Biochem Biophys Res Commun 219(3):760–765

    Article  CAS  PubMed  Google Scholar 

  27. Kashif M, Hellwig A, Kolleker A, Shahzad K, Wang H, Lang S, Wolter J, Thati M, Vinnikov I, Bierhaus A, Nawroth PP, Isermann B (2011) p45NF-E2 represses Gcm1 in trophoblast cells to regulate syncytium formation, placental vascularization and embryonic growth. Development 138(11):2235–2247

    Article  CAS  PubMed  Google Scholar 

  28. Perdomo J, Fock EL, Kaur G, Yan F, Khachigian LM, Jans DA, Chong BH (2010) A monopartite sequence is essential for p45 NF-E2 nuclear translocation, transcriptional activity and platelet production. J Thromb Haemost 8(11):2542–2553

    Article  CAS  PubMed  Google Scholar 

  29. Francastel C, Magis W, Groudine M (2001) Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci USA 98(21):12120–12125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Jain AK, Bloom DA, Jaiswal AK (2005) Nuclear import and export signals in control of Nrf2. J Biol Chem 280(32):29158–29168. doi:10.1074/jbc.M502083200

    Article  CAS  PubMed  Google Scholar 

  31. Shyu YC, Lee TL, Ting CY, Wen SC, Hsieh LJ, Li YC, Hwang JL, Lin CC, Shen CK (2005) Sumoylation of p45/NF-E2: nuclear positioning and transcriptional activation of the mammanlian beta-like globin gene locus. Mol Cell Biol 25(23):10365–10378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lee TL, Shyu YC, Hsu TY, Shen CK (2008) Itch regulates p45/NF-E2 in vivo by Lys63-linked ubiquitination. Biochem Biophys Res Commun 375(3):326–330. doi:10.1016/j.bbrc.2008.07.164

    Article  CAS  PubMed  Google Scholar 

  33. Lee TL, Shyu YC, Hsu PH, Chang CW, Wen SC, Hsiao WY, Tsai MD, Shen CK (2010) JNK-mediated turnover and stabilization of the transcription factor p45/NF-E2 during differentiation of murine erythroleukemia cells. Proc Natl Acad Sci USA 107(1):52–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Garingo AD, Suhasini M, Andrews NC, Pilz RB (1995) cAMP-dependent protein kinase is necessary for increased NF-E2.DNA complex formation during erythroleukemia cell differentiation. J Biol Chem 270(16):9169–9177

    Article  CAS  PubMed  Google Scholar 

  35. Casteel D, Suhasini M, Gudi T, Naima R, Pilz RB (1998) Regulation of the erythroid transcription factor NF-E2 by cyclic adenosine monophosphate-dependent protein kinase. Blood 91(9):3193–3201

    CAS  PubMed  Google Scholar 

  36. Su YF, Shyu YC, Shen CK, Hwang J (2012) Phosphorylation-dependent SUMOylation of the transcription factor NF-E2. PLoS One 7(9):e44608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Hung HL, Kim AY, Hong W, Rakowski C, Blobel GA (2001) Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation. J Biol Chem 276(14):10715–10721

    Article  CAS  PubMed  Google Scholar 

  38. Gavva NR, Gavva R, Ermekova K, Sudol M, Shen CJ (1997) Interaction of WW domains with hematopoietic transcription factor p45/NF-E2 and RNA polymerase II. J Biol Chem 272(39):24105–24108

    Article  CAS  PubMed  Google Scholar 

  39. Mosser EA, Kasanov JD, Forsberg EC, Kay BK, Ney PA, Bresnick EH (1998) Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains. Biochemistry 37(39):13686–13695

    Article  CAS  PubMed  Google Scholar 

  40. Kiekhaefer CM, Boyer ME, Johnson KD, Bresnick EH (2004) A WW domain-binding motif within the activation domain of the hematopoietic transcription factor NF-E2 is essential for establishment of a tissue-specific histone modification pattern. J Biol Chem 279(9):7456–7461

    Article  CAS  PubMed  Google Scholar 

  41. Moore A, Boudia MM, Lehalle D, Massrieh W, Derjuga A, Blank V (2006) Regulation of globin gene transcription by heme in erythroleukemia cells: analysis of putative heme regulatory motifs in the p45 NF-E2 transcription factor. Antioxid Redox Signal 8(1–2):68–75

    Article  CAS  PubMed  Google Scholar 

  42. Tahara T, Sun J, Nakanishi K, Yamamoto M, Mori H, Saito T, Fujita H, Igarashi K, Taketani S (2004) Heme positively regulates the expression of b-globin at the locus control region via the transcriptional factor Bach1 in erythroid cells. J Biol Chem 279(7):5480–5487

    Article  CAS  PubMed  Google Scholar 

  43. Sun J, Brand M, Zenke Y, Tashiro S, Groudine M, Igarashi K (2004) Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci USA 101(6):1461–1466. doi:10.1073/pnas.0308083100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Tahara T, Sun J, Igarashi K, Taketani S (2004) Heme-dependent up-regulation of the alpha-globin gene expression by transcriptional repressor Bach1 in erythroid cells. Biochem Biophys Res Commun 324(1):77–85

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki H, Tashiro S, Hira S, Sun J, Yamazaki C, Zenke Y, Ikeda-Saito M, Yoshida M, Igarashi K (2004) Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. EMBO J 23(13):2544–2553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Toki T, Arai K, Terui K, Komatsu N, Yokoyama M, Katsuoka F, Yamamoto M, Ito E (2000) Functional characterization of the two alternative promoters of human p45 NF-E2 gene. Exp Hematol 28(10):1113–1119

    Article  CAS  PubMed  Google Scholar 

  47. Francastel C, Poindessous-Jazat V, Augery-Bourget Y, Robert-Lezenes J (1997) NF-E2p18/mafK is required in DMSO-induced differentiation of Friend erythroleukemia cells by enhancing NF-E2 activity. Leukemia 11(2):273–280

    Article  CAS  PubMed  Google Scholar 

  48. Nagai T, Igarashi K, Akasaka J, Furuyama K, Fujita H, Hayashi N, Yamamoto M, Sassa S (1998) Regulation of NF-E2 activity in erythroleukemia cell differentiation. J Biol Chem 273(9):5358–5365

    Article  CAS  PubMed  Google Scholar 

  49. Faenza I, Matteucci A, Bavelloni A, Marmiroli S, Martelli AM, Gilmour RS, Suh PG, Manzoli L, Cocco L (2002) Nuclear PLCbeta(1) acts as a negative regulator of p45/NF-E2 expression levels in Friend erythroleukemia cells. Biochim Biophys Acta 1589(3):305–310

    Article  CAS  PubMed  Google Scholar 

  50. Lee WH, Chung MH, Tsai YH, Chang JL, Huang HM (2014) Interferon-γ suppresses activin A/NF-E2 induction of erythroid gene expression through the NF-κB/c-Jun pathway. Am J Physiol Cell Physiol 306(4):C407–C414

    Article  CAS  PubMed  Google Scholar 

  51. Catani L, Amabile M, Luatti S, Valdre L, Vianelli N, Martinelli G, Tura S (2001) Interleukin-4 downregulates nuclear factor-erythroid 2 (NF-E2) expression in primary megakaryocytes and in megakaryoblastic cell lines. Stem Cells 19(4):339–347

    Article  CAS  PubMed  Google Scholar 

  52. Chuen CK, Li K, Yang M, Fok TF, Li CK, Chui CM, YP M (2004) Interleukin-1beta up-regulates the expression of thrombopoietin and transcription factors c-Jun, c-Fos, GATA-1, and NF-E2 in megakaryocytic cells. J Lab Clin Med 143(2):75–88

    Article  CAS  PubMed  Google Scholar 

  53. Yang M, Li K, Chui CM, Yuen PM, Chan PK, Chuen CK, Li CK, Fok TF (2000) Expression of interleukin (IL) 1 type I and type II receptors in megakaryocytic cells and enhancing effects of IL-1beta on megakaryocytopoiesis and NF-E2 expression. Br J Haematol 111(1):371–380

    Article  CAS  PubMed  Google Scholar 

  54. Chui CM, Li K, Yang M, Chuen CK, Fok TF, Li CK, Yuen PM (2003) Platelet-derived growth factor up-regulates the expression of transcription factors NF-E2, GATA-1 and c-Fos in megakaryocytic cell lines. Cytokine 21(2):51–64

    Article  CAS  PubMed  Google Scholar 

  55. Takayama M, Fujita R, Suzuki M, Okuyama R, Aiba S, Motohashi H, Yamamoto M (2010) Genetic analysis of hierarchical regulation for Gata1 and NF-E2 p45 gene expression in megakaryopoiesis. Mol Cell Biol 30(11):2668–2680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Liu JJ, Hou SC, Shen CK (2003) Erythroid gene suppression by NF-kappa B. J Biol Chem 278(21):19534–19540

    Article  CAS  PubMed  Google Scholar 

  57. Francastel C, Augery-Bourget Y, Prenant M, Walters M, Martin DI, Robert-Lezenes J (1997) c-Jun inhibits NF-E2 transcriptional activity in association with p18/maf in Friend erythroleukemia cells. Oncogene 14(7):873–877

    Article  CAS  PubMed  Google Scholar 

  58. Glembotsky A, Bluteau D, Espasandin Y, Goette N, Marta R, Marin Oyarzun C, Korin L, Lev P, Laguens R, Molinas F, Raslova H, Heller P (2014) Mechanisms underlying platelet function defect in a pedigree with FPD/AML: potential role for candidate RUNX1-targets. J Thromb Haemost 12(5):761–772

    Article  CAS  PubMed  Google Scholar 

  59. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81(5):695–704

    Article  CAS  PubMed  Google Scholar 

  60. Lecine P, Villeval JL, Vyas P, Swencki B, Xu Y, Shivdasani RA (1998) Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood 92(5):1608–1616

    CAS  PubMed  Google Scholar 

  61. Levin J, Peng JP, Baker GR, Villeval JL, Lecine P, Burstein SA, Shivdasani RA (1999) Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2. Blood 94(9):3037–3047

    CAS  PubMed  Google Scholar 

  62. Shivdasani RA, Fielder P, Keller GA, Orkin SH, de Sauvage FJ (1997) Regulation of the serum concentration of thrombopoietin in thrombocytopenic NF-E2 knockout mice. Blood 90(5):1821–1827

    CAS  PubMed  Google Scholar 

  63. Fock EL, Yan F, Pan S, Chong BH (2008) NF-E2-mediated enhancement of megakaryocytic differentiation and platelet production in vitro and in vivo. Exp Hematol 36(1):78–92

    Article  CAS  PubMed  Google Scholar 

  64. Motohashi H, Fujita R, Takayama M, Inoue A, Katsuoka F, Bresnick EH, Yamamoto M (2011) Molecular determinants for small Maf protein control of platelet production. Mol Cell Biol 31(1):151–162. doi:10.1128/MCB.00798-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ono Y, Wang Y, Suzuki H, Okamoto S, Ikeda Y, Murata M, Poncz M, Matsubara Y (2012) Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood 120(18):3812–3821. doi:10.1182/blood-2012-02-413617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Avanzi MP, Goldberg F, Davila J, Langhi D, Chiattone C, Mitchell WB (2014) Rho kinase inhibition drives megakaryocyte polyploidization and proplatelet formation through MYC and NFE2 downregulation. Br J Haematol 164(6):867–876. doi:10.1111/bjh.12709

    Article  CAS  PubMed  Google Scholar 

  67. Fujita R, Takayama-Tsujimoto M, Satoh H, Gutierrez L, Aburatani H, Fujii S, Sarai A, Bresnick EH, Yamamoto M, Motohashi H (2013) NF-E2 p45 is important for establishing normal function of platelets. Mol Cell Biol 33(14):2659–2670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Deveaux S, Cohen-Kaminsky S, Shivdasani RA, Andrews NC, Filipe A, Kuzniak I, Orkin SH, Romeo PH, Mignotte V (1997) p45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes. EMBO J 16(18):5654–5661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Tiwari S, Italiano JEJ, Barral DC, Mules EH, Novak EK, Swank RT, Seabra MC, Shivdasani RA (2003) A role for Rab27b in NF-E2-dependent pathways of platelet formation. Blood 102(12):3970–3979

    Article  CAS  PubMed  Google Scholar 

  70. Lecine P, Italiano JEJ, Kim SW, Villeval JL, Shivdasani RA (2000) Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood 96(4):1366–1373

    CAS  PubMed  Google Scholar 

  71. Schwer HD, Lecine P, Tiwari S, Italiano JE Jr, Hartwig JH, Shivdasani RA (2001) A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol 11(8):579–586

    Article  CAS  PubMed  Google Scholar 

  72. Shiraga M, Ritchie A, Aidoudi S, Baron V, Wilcox D, White G, Ybarrondo B, Murphy G, Leavitt A, Shattil S (1999) Primary megakaryocytes reveal a role for transcription factor NF-E2 in integrin alpha IIb beta 3 signaling. J Cell Biol 147(7):1419–1430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Kerrigan SW, Gaur M, Murphy RP, Shattil SJ, Leavitt AD (2004) Caspase-12: a developmental link between G-protein-coupled receptors and integrin alphaIIbbeta3 activation. Blood 104(5):1327–1334. doi:10.1182/blood-2003-10-3633

    Article  CAS  PubMed  Google Scholar 

  74. Nagata Y, Yoshikawa J, Hashimoto A, Yamamoto M, Payne AH, Todokoro K (2003) Proplatelet formation of megakaryocytes is triggered by autocrine-synthesized estradiol. Genes Dev 17(23):2864–2869. doi:10.1101/gad.1128003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Chen Z, Hu M, Shivdasani RA (2007) Expression analysis of primary mouse megakaryocyte differentiation and its application in identifying stage-specific molecular markers and a novel transcriptional target of NF-E2. Blood 109(4):1451–1459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Motohashi H, Kimura M, Fujita R, Inoue A, Pan X, Takayama M, Katsuoka F, Aburatani H, Bresnick EH, Yamamoto M (2010) NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation. Blood 115(3):677–686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Tijssen MR, Ghevaert C (2013) Transcription factors in late megakaryopoiesis and related platelet disorders. J Thromb Haemost 11(4):593–604. doi:10.1111/jth.12131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Sayer MS, Tilbrook PA, Spadaccini A, Ingley E, Sarna MK, Williams JH, Andrews NC, Klinken SP (2000) Ectopic expression of transcription factor NF-E2 alters the phenotype of erythroid and monoblastoid cells. J Biol Chem 275(33):25292–25298

    Article  CAS  PubMed  Google Scholar 

  79. Mignotte V, Eleouet JF, Raich N, Romeo PH (1989) Cis- and trans-acting elements involved in the regulation of the erythroid promoter of the human porphobilinogen deaminase gene. Proc Natl Acad Sci USA 86(17):6548–6552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Taketani S, Inazawa J, Nakahashi Y, Abe T, Tokunaga R (1992) Structure of the human ferrochelatase gene. Exon/intron gene organization and location of the gene to chromosome 18. Eur J Biochem 205(1):217–222

    Article  CAS  PubMed  Google Scholar 

  81. Tugores A, Magness ST, Brenner DA (1994) A single promoter directs both housekeeping and erythroid preferential expression of the human ferrochelatase gene. J Biol Chem 269(49):30789–30797

    CAS  PubMed  Google Scholar 

  82. Cox TC, Bawden MJ, Martin A, May BK (1991) Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. EMBO J 10(7):1891–1902

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Surinya KH, Cox TC, May BK (1997) Transcriptional regulation of the human erythroid 5-aminolevulinate synthase gene. Identification of promoter elements and role of regulatory proteins. J Biol Chem 272(42):26585–26594

    Article  CAS  PubMed  Google Scholar 

  84. Rheinemann L, Seeger TS, Wehrle J, Pahl HL (2014) NFE2 regulates transcription of multiple enzymes in the heme biosynthesis pathway. Haematologica 99(10):e208–e210. doi:10.3324/haematol.2014.106393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Inamdar NM, Ahn YI, Alam J (1996) The heme-responsive element of the mouse heme oxygenase-1 gene is an extended AP-1 binding site that resembles the recognition sequences for MAF and NF-E2 transcription factors. Biochem Biophys Res Commun 221(3):570–576

    Article  CAS  PubMed  Google Scholar 

  86. Solomon WB, Lin CH, Palma J, Gao XY, Wu S (1993) Suppression of a cellular differentiation program by phorbol esters coincides with inhibition of binding of a cell-specific transcription factor (NF-E2) to an enhancer element required for expression of an erythroid-specific gene. J Biol Chem 268(7):5089–5096

    CAS  PubMed  Google Scholar 

  87. Meguro K, Igarashi K, Yamamoto M, Fujita H, Sassa S (1995) The role of the erythroid-specific delta-aminolevulinate synthase gene expression in erythroid heme synthesis. Blood 86(3):940–948

    CAS  PubMed  Google Scholar 

  88. Lu SJ, Rowan S, Bani MR, Ben-David Y (1994) Retroviral integration within the Fli-2 locus results in inactivation of the erythroid transcription factor NF-E2 in Friend erythroleukemias: evidence that NF-E2 is essential for globin expression. Proc Natl Acad Sci USA 91(18):8398–8402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Woon Kim Y, Kim S, Geun Kim C, Kim A (2011) The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal γ-globin genes. Nucleic Acids Res 39(16):6944–6955

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Palma JF, Gao X, Lin CH, Wu S, Solomon WB (1994) Iron protoporphyrin IX (hemin) but not tin or zinc protoporphyrin IX can stimulate gene expression in K562 cells from enhancer elements containing binding sites for NF-E2. Blood 84(4):1288–1297

    CAS  PubMed  Google Scholar 

  91. Bean TL, Ney PA (1997) Multiple regions of p45 NF-E2 are required for beta-globin gene expression in erythroid cells. Nucleic Acids Res 25(12):2509–2515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Stamatoyannopoulos JA, Goodwin A, Joyce T, Lowrey CH (1995) NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. EMBO J 14(1):106–116

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Pomerantz O, Goodwin AJ, Joyce T, Lowrey CH (1998) Conserved elements containing NF-E2 and tandem GATA binding sites are required for erythroid-specific chromatin structure reorganization within the human beta-globin locus control region. Nucleic Acids Res 26(24):5684–5691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Armstrong JA, Emerson BM (1996) NF-E2 disrupts chromatin structure at human beta-globin locus control region hypersensitive site 2 in vitro. Mol Cell Biol 16(10):5634–5644

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Amrolia PJ, Ramamurthy L, Saluja D, Tanese N, Jane SM, Cunningham JM (1997) The activation domain of the enhancer binding protein p45NF-E2 interacts with TAFII130 and mediates long-range activation of the alpha- and beta-globin gene loci in an erythroid cell line. Proc Natl Acad Sci USA 94(19):10051–10056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Forsberg EC, Downs KM, Bresnick EH (2000) Direct interaction of NF-E2 with hypersensitive site 2 of the beta-globin locus control region in living cells. Blood 96(1):334–339

    CAS  PubMed  Google Scholar 

  97. Onishi Y, Kiyama R (2003) Interaction of NF-E2 in the human beta-globin locus control region before chromatin remodeling. J Biol Chem 278(10):8163–8171

    Article  CAS  PubMed  Google Scholar 

  98. Sawado T, Igarashi K, Groudine M (2001) Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter. Proc Natl Acad Sci USA 98(18):10226–10231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Daftari P, Gawa NR, Shen CK (1999) Distinction between AP1 and NF-E2 factor-binding at specific chromatin regions in mammalian cells. Oncogene 18(39):5482–5486

    Article  CAS  PubMed  Google Scholar 

  100. Bottardi S, Ross J, Pierre-Charles N, Blank V, Milot E (2006) Lineage-specific activators affect beta-globin locus chromatin in multipotent hematopoietic progenitors. EMBO J 25(15):3586–3595. doi:10.1038/sj.emboj.7601232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Kooren J, Palstra RJ, Klous P, Splinter E, von Lindern M, Grosveld F, de Laat W (2007) Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice. J Biol Chem 282(22):16544–16552

    Article  CAS  PubMed  Google Scholar 

  102. Chaturvedi CP, Hosey AM, Palii C, Perez-Iratxeta C, Nakatani Y, Ranish JA, Dilworth FJ, Brand M (2009) Dual role for the methyltransferase G9a in the maintenance of beta-globin gene transcription in adult erythroid cells. Proc Natl Acad Sci USA 106(43):18303–18308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Zhou Z, Li X, Deng C, Ney PA, Huang S, Bungert J (2010) USF and NF-E2 cooperate to regulate the recruitment and activity of RNA polymerase II in the beta-globin gene locus. J Biol Chem 285(21):15894–15905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Boulanger L, Sabatino DE, Wong EY, Cline AP, Garrett LJ, Garbarz M, Dhermy D, Bodine DM, Gallagher PG (2002) Erythroid expression of the human alpha-spectrin gene promoter is mediated by GATA-1- and NF-E2-binding proteins. J Biol Chem 277(44):41563–41570

    Article  CAS  PubMed  Google Scholar 

  105. Guo-wei Z, Rui-feng Y, Xiang L, Mitchell WJ, De-pei L, Chih-chuan L (2010) NF-E2: a novel regulator of alpha-hemoglobin stabilizing protein gene expression. Chin Med Sci J 25(4):193–198

    Article  PubMed  Google Scholar 

  106. Campbell MR, Karaca M, Adamski KN, Chorley BN, Wang X, Bell DA (2013) Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. Oxid Med Cell Longev 2013:120305. doi:10.1155/2013/120305

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Chan JY, Kwong M, Lo M, Emerson R, Kuypers FA (2001) Reduced oxidative-stress response in red blood cells from p45NFE2-deficient mice. Blood 97(7):2151–2158

    Article  CAS  PubMed  Google Scholar 

  108. Li Y, Bai H, Zhang Z, Li W, Dong L, Wei X, Ma Y, Zhang J, Yu J, Sun G, Wang F (2014) The up-regulation of miR-199b-5p in erythroid differentiation is associated with GATA-1 and NF-E2. Mol Cells 37(3):213–219. doi:10.14348/molcells.2014.2288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Shivdasani RA, Orkin SH (1995) Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci USA 92(19):8690–8694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Gasiorek JJ, Nouhi Z, Blank V (2012) Abnormal differentiation of erythroid precursors in p45 NF-E2(−/−) mice. Exp Hematol 40(5):393–400

    Article  CAS  PubMed  Google Scholar 

  111. Martin F, van Deursen JM, Shivdasani RA, Jackson CW, Troutman AG, Ney PA (1998) Erythroid maturation and globin gene expression in mice with combined deficiency of NF-E2 and nrf-2. Blood 91(9):3459–3466

    CAS  PubMed  Google Scholar 

  112. Kuroha T, Takahashi S, Komeno T, Itoh K, Nagasawa T, Yamamoto M (1998) Ablation of Nrf2 function does not increase the erythroid or megakaryocytic cell lineage dysfunction caused by p45 NF-E2 gene disruption. J Biochem (Tokyo) 123(3):376–379

    Article  CAS  Google Scholar 

  113. Li YJ, Higgins RR, Pak BJ, Shivdasani RA, Ney PA, Archer M, Ben-David Y (2001) p45(NFE2) is a negative regulator of erythroid proliferation which contributes to the progression of Friend virus-induced erythroleukemias. Mol Cell Biol 21(1):73–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Goerttler PS, Kreutz C, Donauer J, Faller D, Maiwald T, Marz E, Rumberger B, Sparna T, Schmitt-Graff A, Wilpert J, Timmer J, Walz G, Pahl HL (2005) Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF-E2. Br J Haematol 129(1):138–150. doi:10.1111/j.1365-2141.2005.05416.x

    Article  CAS  PubMed  Google Scholar 

  115. Mutschler M, Magin AS, Buerge M, Roelz R, Schanne DH, Will B, Pilz IH, Migliaccio AR, Pahl HL (2009) NF-E2 overexpression delays erythroid maturation and increases erythrocyte production. Br J Haematol 146(2):203–217. doi:10.1111/j.1365-2141.2009.07742.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Bogeska R, Pahl HL (2013) Elevated nuclear factor erythroid-2 levels promote epo-independent erythroid maturation and recapitulate the hematopoietic stem cell and common myeloid progenitor expansion observed in polycythemia vera patients. Stem Cells Transl Med 2(2):112–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Wang W, Schwemmers S, Hexner EO, Pahl HL (2010) AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood 116(2):254–266. doi:10.1182/blood-2009-11-254664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Jutzi JS, Bogeska R, Nikoloski G, Schmid CA, Seeger TS, Stegelmann F, Schwemmers S, Grunder A, Peeken JC, Gothwal M, Wehrle J, Aumann K, Hamdi K, Dierks C, Kamar Wang W, Dohner K, Jansen JH, Pahl HL (2013) MPN patients harbor recurrent truncating mutations in transcription factor NF-E2. J Exp Med 210(5):1003–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Aumann K, Frey AV, May AM, Hauschke D, Kreutz C, Marx JP, Timmer J, Werner M, Pahl HL (2013) Subcellular mislocalization of the transcription factor NF-E2 in erythroid cells discriminates prefibrotic primary myelofibrosis from essential thrombocythemia. Blood 122(1):93–99. doi:10.1182/blood-2012-11-463257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Kaufmann KB, Grunder A, Hadlich T, Wehrle J, Gothwal M, Bogeska R, Seeger TS, Kayser S, Pham KB, Jutzi JS, Ganzenmuller L, Steinemann D, Schlegelberger B, Wagner JM, Jung M, Will B, Steidl U, Aumann K, Werner M, Gunther T, Schule R, Rambaldi A, Pahl HL (2012) A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. J Exp Med 209(1):35–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Hasselbalch HC (2014) A role of NF-E2 in chronic inflammation and clonal evolution in essential thrombocythemia, polycythemia vera and myelofibrosis? Leuk Res 38(2):263–266. doi:10.1016/j.leukres.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  122. Amaru Calzada A, Todoerti K, Donadoni L, Pellicioli A, Tuana G, Gatta R, Neri A, Finazzi G, Mantovani R, Rambaldi A, Introna M, Lombardi L, Golay J, Investigators A (2012) The HDAC inhibitor Givinostat modulates the hematopoietic transcription factors NFE2 and C-MYB in JAK2(V617F) myeloproliferative neoplasm cells. Exp Hematol 40(8):634–645. doi:10.1016/j.exphem.2012.04.007 (e610)

    Article  CAS  PubMed  Google Scholar 

  123. Akada H, Akada S, Gajra A, Bair A, Graziano S, Hutchison RE, Mohi G (2012) Efficacy of vorinostat in a murine model of polycythemia vera. Blood 119(16):3779–3789. doi:10.1182/blood-2011-02-336743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Kapralova K, Lanikova L, Lorenzo F, Song J, Horvathova M, Divoky V, Prchal JT (2014) RUNX1 and NF-E2 upregulation is not specific for MPNs, but is seen in polycythemic disorders with augmented HIF signaling. Blood 123(3):391–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Kacena MA, Gundberg CM, Nelson T, Horowitz MC (2005) Loss of the transcription factor p45 NF-E2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype. Bone 36(2):215–223

    Article  CAS  PubMed  Google Scholar 

  126. Kacena MA, Shivdasani RA, Wilson K, Xi Y, Troiano N, Nazarian A, Gundberg CM, Bouxsein ML, Lorenzo JA, Horowitz MC (2004) Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res 19(4):652–660

    Article  CAS  PubMed  Google Scholar 

  127. Kacena MA, Gundberg CM, Kacena WJ 3rd, Landis WJ, Boskey AL, Bouxsein ML, Horowitz MC (2013) The effects of GATA-1 and NF-E2 deficiency on bone biomechanical, biochemical, and mineral properties. J Cell Physiol 228(7):1594–1600. doi:10.1002/jcp.24322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Kashif M, Hellwig A, Hashemolhosseini S, Kumar V, Bock F, Wang H, Shahzad K, Ranjan S, Wolter J, Madhusudhan T, Bierhaus A, Nawroth P, Isermann B (2012) Nuclear factor erythroid-derived 2 (Nfe2) regulates JunD DNA-binding activity via acetylation: a novel mechanism regulating trophoblast differentiation. J Biol Chem 287(8):5400–5411. doi:10.1074/jbc.M111.289801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Chan JY, Kwong M, Lu R, Chang J, Wang B, Yen TS, Kan YW (1998) Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. EMBO J 17(6):1779–1787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Ohtsu H, Kuramasu A, Suzuki S, Igarashi K, Ohuchi Y, Sato M, Tanaka S, Nakagawa S, Shirato K, Yamamoto M, Ichikawa A, Watanabe T (1996) Histidine decarboxylase expression in mouse mast cell line P815 is induced by mouse peritoneal cavity incubation. J Biol Chem 271(45):28439–28444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a McGill University Faculty of Medicine internal studentship and a joint fellowship from the CIHR and the Thalassemia Foundation of Canada to JG. We would also like to acknowledge grants from the Thalassemia Foundation of Canada as well as CIHR (MOP-79361 and MOP-97932) to VB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Blank.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasiorek, J.J., Blank, V. Regulation and function of the NFE2 transcription factor in hematopoietic and non-hematopoietic cells. Cell. Mol. Life Sci. 72, 2323–2335 (2015). https://doi.org/10.1007/s00018-015-1866-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1866-6

Keywords

Navigation