Skip to main content

Megakaryocytic Transcription Factors in Disease and Leukemia

  • Chapter
  • First Online:
Molecular and Cellular Biology of Platelet Formation

Abstract

An understanding of the transcriptional regulation of megakaryopoiesis has lagged behind that of other hematopoietic lineages due to the rarity of these cells and the relatively recent development of systems to culture large numbers of megakaryocytes. However, significant progress has been made over the past few decades resulting in the identification of many key transcription factors involved in megakaryocyte specification and maturation. A number of important principles have emerged including physical and functional interactions among a core set of transcription factors including GATA, ETS, and RUNX family members, cross antagonistic network interactions with key erythroid-specific factors in cell fate determination of bipotential erythroid-megakaryocytic progenitor cells, and a surprising overlap with hematopoietic stem cell transcriptional regulators. A high proportion of genes encoding megakaryocytic transcription factors are mutated in human thrombopoiesis disorders, and a number of these are associated with leukemia predisposition. This chapter reviews the current knowledge about transcription factors involved in megakaryopoiesis, how they interact, and how their activities are influenced by cell signaling events. It also highlights the important role that dysregulation of these factors play in certain human platelet biogenesis disorders and leukemogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahmed M, Sternberg A, Hall G, Thomas A, Smith O, O’Marcaigh A, Wynn R, Stevens R, Addison M, King D, Stewart B, Gibson B, Roberts I, Vyas P (2004) Natural history of GATA1 mutations in Down syndrome. Blood 103(7):2480–2489

    Article  CAS  PubMed  Google Scholar 

  2. Alford KA, Reinhardt K, Garnett C, Norton A, Bohmer K, von Neuhoff C, Kolenova A, Marchi E, Klusmann JH, Roberts I, Hasle H, Reinhardt D, Vyas P (2011) Analysis of GATA1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. Blood 118(8):2222–2238. doi:10.1182/blood-2011-03-342774

    Article  CAS  PubMed  Google Scholar 

  3. Aminkeng F (2014) GFI1B mutation causes autosomal dominant gray platelet syndrome. Clin Genet 85(6):534–535. doi:10.1111/cge.12380

    Article  CAS  PubMed  Google Scholar 

  4. Antony-Debre I, Bluteau D, Itzykson R, Baccini V, Renneville A, Boehlen F, Morabito M, Droin N, Deswarte C, Chang Y, Leverger G, Solary E, Vainchenker W, Favier R, Raslova H (2012) MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations. Blood 120(13):2719–2722. doi:10.1182/blood-2012-04-422352

    Article  CAS  PubMed  Google Scholar 

  5. Antony-Debre I, Manchev VT, Balayn N, Bluteau D, Tomowiak C, Legrand C, Langlois T, Bawa O, Tosca L, Tachdjian G, Leheup B, Debili N, Plo I, Mills JA, French DL, Weiss MJ, Solary E, Favier R, Vainchenker W, Raslova H (2015) Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood 125(6):930–940. doi:10.1182/blood-2014-06-585513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartman TE, Hackett NR, Crystal RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de Sauvage F, Rafii S (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10(1):64–71

    Article  CAS  PubMed  Google Scholar 

  7. Azcoitia V, Aracil M, Martinez AC, Torres M (2005) The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev Biol 280(2):307–320

    Article  CAS  PubMed  Google Scholar 

  8. Balduini CL, Pecci A, Loffredo G, Izzo P, Noris P, Grosso M, Bergamaschi G, Rosti V, Magrini U, Ceresa IF, Conti V, Poggi V, Savoia A (2004) Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis. Thromb Haemost 91(1):129–140. doi:10.1267/THRO04010129

    CAS  PubMed  Google Scholar 

  9. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, Kantarjian H, Raza A, Levine RL, Neuberg D, Ebert BL (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364(26):2496–2506. doi:10.1056/NEJMoa1013343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben-David Y, Giddens EB, Bernstein A (1990) Identification and mapping of a common proviral integration site Fli-1 in erythroleukemia cells induced by Friend murine leukemia virus. Proc Natl Acad Sci U S A 87(4):1332–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ben-David Y, Giddens EB, Letwin K, Bernstein A (1991) Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Dev 5(6):908–918

    Article  CAS  PubMed  Google Scholar 

  12. Blink M, Buitenkamp TD, van den Heuvel-Eibrink MM, Danen-van Oorschot AA, de Haas V, Reinhardt D, Klusmann JH, Zimmermann M, Devidas M, Carroll AJ, Basso G, Pession A, Hasle H, Pieters R, Rabin KR, Izraeli S, Zwaan CM (2011) Frequency and prognostic implications of JAK 1–3 aberrations in Down syndrome acute lymphoblastic and myeloid leukemia. Leukemia 25(8):1365–1368. doi:10.1038/leu.2011.86

    Article  CAS  PubMed  Google Scholar 

  13. Blink M, van den Heuvel-Eibrink MM, Aalbers AM, Balgobind BV, Hollink IH, Meijerink JP, van der Velden VH, Beverloo BH, de Haas V, Hasle H, Reinhardt D, Klusmann JH, Pieters R, Calado RT, Zwaan CM (2012) High frequency of copy number alterations in myeloid leukaemia of Down syndrome. Br J Haematol 158(6):800–803. doi:10.1111/j.1365-2141.2012.09224.x

    Article  CAS  PubMed  Google Scholar 

  14. Bluteau D, Gilles L, Hilpert M, Antony-Debre I, James C, Debili N, Camara-Clayette V, Wagner-Ballon O, Cordette-Lagarde V, Robert T, Ripoche H, Gonin P, Swierczek S, Prchal J, Vainchenker W, Favier R, Raslova H (2011) Down-regulation of the RUNX1-target gene NR4A3 contributes to hematopoiesis deregulation in familial platelet disorder/acute myelogenous leukemia. Blood 118(24):6310–6320. doi:10.1182/blood-2010-12-325555

    Article  CAS  PubMed  Google Scholar 

  15. Bluteau D, Glembotsky AC, Raimbault A, Balayn N, Gilles L, Rameau P, Nurden P, Alessi MC, Debili N, Vainchenker W, Heller PG, Favier R, Raslova H (2012) Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood 120(13):2708–2718. doi:10.1182/blood-2012-04-422337

    Article  CAS  PubMed  Google Scholar 

  16. Bresnick EH, Lee HY, Fujiwara T, Johnson KD, Keles S (2010) GATA switches as developmental drivers. J Biol Chem 285:31087–31093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Breton-Gorius J, Favier R, Guichard J, Cherif D, Berger R, Debili N, Vainchenker W, Douay L (1995) A new congenital dysmegakaryopoietic thrombocytopenia (Paris-Trousseau) associated with giant platelet alpha-granules and chromosome 11 deletion at 11q23. Blood 85(7):1805–1814

    CAS  PubMed  Google Scholar 

  18. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M, Witte L, May C, Shawber C, Kimura Y, Kitajewski J, Rosenwaks Z, Bernstein ID, Rafii S (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6(3):251–264. doi:10.1016/j.stem.2010.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cai X, Gao L, Teng L, Ge J, Oo ZM, Kumar AR, Gilliland DG, Mason PJ, Tan K, Speck NA (2015) Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell 17(2):165–177. doi:10.1016/j.stem.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai X, Gaudet JJ, Mangan JK, Chen MJ, De Obaldia ME, Oo Z, Ernst P, Speck NA (2011) Runx1 loss minimally impacts long-term hematopoietic stem cells. PLoS ONE 6(12), e28430. doi:10.1371/journal.pone.0028430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calligaris R, Bottardi S, Cogoi S, Apezteguia I, Santoro C (1995) Alternative translation initiation site usage results in two functionally distinct forms of the GATA-1 transcription factor. Proc Natl Acad Sci U S A 92(25):11598–11602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cantor AB (2015) Myeloid proliferations associated with Down syndrome. J Hematop 8:169–176

    Article  PubMed  Google Scholar 

  23. Cantor AB, Iwasaki H, Arinobu Y, Moran TB, Shigematsu H, Sullivan MR, Akashi K, Orkin SH (2008) Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. J Exp Med 205(3):611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cantor AB, Katz SG, Orkin SH (2002) Distinct domains of the GATA-1 cofactor FOG-1 differentially influence erythroid versus megakaryocytic maturation. Mol Cell Biol 22(12):4268–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cantor AB, Orkin SH (2005) Coregulation of GATA factors by the Friend of GATA (FOG) family of multitype zinc finger proteins. Semin Cell Dev Biol 16(1):117–128

    Article  CAS  PubMed  Google Scholar 

  26. Carpinelli MR, Hilton DJ, Metcalf D, Antonchuk JL, Hyland CD, Mifsud SL, Di Rago L, Hilton AA, Willson TA, Roberts AW, Ramsay RG, Nicola NA, Alexander WS (2004) Suppressor screen in Mpl-/- mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proc Natl Acad Sci U S A 101(17):6553–6558. doi:10.1073/pnas.0401496101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chagraoui H, Kassouf M, Banerjee S, Goardon N, Clark K, Atzberger A, Pearce AC, Skoda RC, Ferguson DJ, Watson SP, Vyas P, Porcher C (2011) SCL-mediated regulation of the cell-cycle regulator p21 is critical for murine megakaryopoiesis. Blood 118(3):723–735. doi:10.1182/blood-2011-01-328765

    Article  CAS  PubMed  Google Scholar 

  28. Chang AN, Cantor AB, Fujiwara Y, Lodish MB, Droho S, Crispino JD, Orkin SH (2002) GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis. Proc Natl Acad Sci U S A 99(14):9237–9242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457(7231):887–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chou ST, Kacena MA, Weiss MJ, Rasking WH (2014) GATA1-related X-linked cytopenia. http://www.ncbi.nlm.nih.gov/books/NBK1364/

  31. Chou ST, Opalinska JB, Yao Y, Fernandes MA, Kalota A, Brooks JS, Choi JK, Gewirtz AM, Danet-Desnoyers GA, Nemiroff RL, Weiss MJ (2008) Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood 112(12):4503–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2004) Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 104(5):1474–1481

    Article  CAS  PubMed  Google Scholar 

  33. Crispino JD, Lodish MB, MacKay JP, Orkin SH (1999) Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol Cell 3(2):219–228

    Article  CAS  PubMed  Google Scholar 

  34. Deveaux S, Filipe A, Lemarchandel V, Ghysdael J, Romeo PH, Mignotte V (1996) Analysis of the thrombopoietin receptor (MPL) promoter implicates GATA and Ets proteins in the coregulation of megakaryocyte-specific genes. Blood 87(11):4678–4685

    CAS  PubMed  Google Scholar 

  35. Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, Lakey JH, Rahman T, Wang XN, McGovern N, Pagan S, Cookson S, McDonald D, Chua I, Wallis J, Cant A, Wright M, Keavney B, Chinnery PF, Loughlin J, Hambleton S, Santibanez-Koref M, Collin M (2011) Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118(10):2656–2658. doi:10.1182/blood-2011-06-360313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dore LC, Chlon TM, Brown CD, White KP, Crispino JD (2012) Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood 119(16):3724–3733. doi:10.1182/blood-2011-09-380634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eisbacher M, Holmes ML, Newton A, Hogg PJ, Khachigian LM, Crossley M, Chong BH (2003) Protein-protein interaction between Fli-1 and GATA-1 mediates synergistic expression of megakaryocyte-specific genes through cooperative DNA binding. Mol Cell Biol 23(10):3427–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elagib KE, Racke FK, Mogass M, Khetawat R, Delehanty LL, Goldfarb AN (2003) RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101(11):4333–4341

    Article  CAS  PubMed  Google Scholar 

  39. Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J (2003) Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 22(17):4478–4488. doi:10.1093/emboj/cdg434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evans T, Reitman M, Felsenfeld G (1988) An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci U S A 85(16):5976–5980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M (1998) Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci U S A 95(8):4584–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M (1999) Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. Embo J 18(10):2812–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Freson K, Devriendt K, Matthijs G, Van Hoof A, De Vos R, Thys C, Minner K, Hoylaerts MF, Vermylen J, Van Geet C (2001) Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 98(1):85–92

    Article  CAS  PubMed  Google Scholar 

  44. Freson K, Matthijs G, Thys C, Marien P, Hoylaerts MF, Vermylen J, Van Geet C (2002) Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet 11(2):147–152

    Article  CAS  PubMed  Google Scholar 

  45. Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH (1996) Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A 93(22):12355–12358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gamis AS, Alonzo TA, Gerbing RB, Hilden JM, Sorrell AD, Sharma M, Loew TW, Arceci RJ, Barnard D, Doyle J, Massey G, Perentesis J, Ravindranath Y, Taub J, Smith FO (2011) Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children’s Oncology Group Study A2971. Blood 118(26):6752–6759. doi:10.1182/blood-2011-04-350017; quiz 6996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ge Y, LaFiura KM, Dombkowski AA, Chen Q, Payton SG, Buck SA, Salagrama S, Diakiw AE, Matherly LH, Taub JW (2008) The role of the proto-oncogene ETS2 in acute megakaryocytic leukemia biology and therapy. Leukemia 22(3):521–529. doi:10.1038/sj.leu.2405066

    Article  CAS  PubMed  Google Scholar 

  48. Greene ME, Mundschau G, Wechsler J, McDevitt M, Gamis A, Karp J, Gurbuxani S, Arceci R, Crispino JD (2003) Mutations in GATA1 in both transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome. Blood Cells Mol Dis 31(3):351–356

    Article  CAS  PubMed  Google Scholar 

  49. Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R, Curley DP, Kutok JL, Akashi K, Williams IR, Speck NA, Gilliland DG (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106(2):494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, Li XC, Babic M, Lin M, Carmagnac A, Lee YK, Kok CH, Gagliardi L, Friend KL, Ekert PG, Butcher CM, Brown AL, Lewis ID, To LB, Timms AE, Storek J, Moore S, Altree M, Escher R, Bardy PG, Suthers GK, D’Andrea RJ, Horwitz MS, Scott HS (2011) Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet 43(10):1012–1017. doi:10.1038/ng.913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harada H, Harada Y, Tanaka H, Kimura A, Inaba T (2003) Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 101(2):673–680

    Article  CAS  PubMed  Google Scholar 

  52. Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, Favier R, Bernstein A (2000) Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13(2):167–177

    Article  CAS  PubMed  Google Scholar 

  53. Heller PG, Glembotsky AC, Gandhi MJ, Cummings CL, Pirola CJ, Marta RF, Kornblihtt LI, Drachman JG, Molinas FC (2005) Low Mpl receptor expression in a pedigree with familial platelet disorder with predisposition to acute myelogenous leukemia and a novel AML1 mutation. Blood 105(12):4664–4670

    Article  CAS  PubMed  Google Scholar 

  54. Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM, Devor-Henneman DE, Saiki Y, Kutsuna H, Tessarollo L, Jenkins NA, Copeland NG (2004) Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. Embo J 23(2):450–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hitzler JK, Cheung J, Li Y, Scherer SW, Zipursky A (2003) GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 101(11):4301–4304

    Article  CAS  PubMed  Google Scholar 

  56. Hock H, Meade E, Medeiros S, Schindler JW, Valk PJ, Fujiwara Y, Orkin SH (2004) Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev 18(19):2336–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hollanda LM, Lima CS, Cunha AF, Albuquerque DM, Vassallo J, Ozelo MC, Joazeiro PP, Saad ST, Costa FF (2006) An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Nat Genet 38(7):807–812

    Article  CAS  PubMed  Google Scholar 

  58. Hong W, Nakazawa M, Chen YY, Kori R, Vakoc CR, Rakowski C, Blobel GA (2005) FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J 24(13):2367–2378. doi:10.1038/sj.emboj.7600703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Horvat-Switzer RD, Thompson AA (2006) HOXA11 mutation in amegakaryocytic thrombocytopenia with radio-ulnar synostosis syndrome inhibits megakaryocytic differentiation in vitro. Blood Cells Mol Dis 37(1):55–63. doi:10.1016/j.bcmd.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  60. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, Frucht DM, Vinh DC, Auth RD, Freeman AF, Olivier KN, Uzel G, Zerbe CS, Spalding C, Pittaluga S, Raffeld M, Kuhns DB, Ding L, Paulson ML, Marciano BE, Gea-Banacloche JC, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM (2011) Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118(10):2653–2655. doi:10.1182/blood-2011-05-356352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang H, Cantor AB (2009) Common features of megakaryocytes and hematopoietic stem cells: what’s the connection? J Cell Biochem 107(5):857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang H, Woo AJ, Waldon Z, Schindler Y, Moran TB, Zhu HH, Feng G, Steen H, Cantor AB (2012) A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T lymphocyte differentiation. Genes Dev 26:1587–1601, Jul 3. [Epub ahead of print] PMID: 22759635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang H, Yu M, Akie TE, Moran TB, Woo AJ, Tu N, Waldon Z, Lin YY, Steen H, Cantor AB (2009) Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development. Mol Cell Biol 29(15):4103–4115. doi:10.1128/MCB.00090-09, doi:MCB.00090-09 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang X, Peng JW, Speck NA, Bushweller JH (1999) Solution structure of core binding factor beta and map of the CBF alpha binding site. Nat Struct Biol 6(7):624–627

    Article  CAS  PubMed  Google Scholar 

  65. Ichikawa M, Asai T, Saito T, Yamamoto G, Seo S, Yamazaki I, Yamagata T, Mitani K, Chiba S, Hirai H, Ogawa S, Kurokawa M (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10(3):299–304

    Article  CAS  PubMed  Google Scholar 

  66. Ito Y, Bae SC, Chuang LS (2015) The RUNX family: developmental regulators in cancer. Nat Rev Cancer 15(2):81–95. doi:10.1038/nrc3877

    Article  CAS  PubMed  Google Scholar 

  67. Jacob B, Osato M, Yamashita N, Wang CQ, Taniuchi I, Littman DR, Asou N, Ito Y (2010) Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood 115(8):1610–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, Wagner DD, Graf T, Italiano JE Jr, Shivdasani RA, von Andrian UH (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317(5845):1767–1770

    Article  CAS  PubMed  Google Scholar 

  69. Katsumura KR, Yang C, Boyer ME, Li L, Bresnick EH (2014) Molecular basis of crosstalk between oncogenic Ras and the master regulator of hematopoiesis GATA-2. EMBO Rep 15(9):938–947. doi:10.15252/embr.201438808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaur G, Jalagadugula G, Mao G, Rao AK (2010) RUNX1/core binding factor A2 regulates platelet 12-lipoxygenase gene (ALOX12): studies in human RUNX1 haplodeficiency. Blood 115(15):3128–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kazenwadel J, Secker GA, Liu YJ, Rosenfeld JA, Wildin RS, Cuellar-Rodriguez J, Hsu AP, Dyack S, Fernandez CV, Chong CE, Babic M, Bardy PG, Shimamura A, Zhang MY, Walsh T, Holland SM, Hickstein DD, Horwitz MS, Hahn CN, Scott HS, Harvey NL (2012) Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood 119(5):1283–1291. doi:10.1182/blood-2011-08-374363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kirito K, Fox N, Kaushansky K (2004) Thrombopoietin induces HOXA9 nuclear transport in immature hematopoietic cells: potential mechanism by which the hormone favorably affects hematopoietic stem cells. Mol Cell Biol 24(15):6751–6762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Klusmann JH, Creutzig U, Zimmermann M, Dworzak M, Jorch N, Langebrake C, Pekrun A, Macakova-Reinhardt K, Reinhardt D (2008) Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood 111(6):2991–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Klusmann JH, Godinho FJ, Heitmann K, Maroz A, Koch ML, Reinhardt D, Orkin SH, Li Z (2010) Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes Dev 24(15):1659–1672. doi:10.1101/gad.1903410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Klusmann JH, Li Z, Bohmer K, Maroz A, Koch ML, Emmrich S, Godinho FJ, Orkin SH, Reinhardt D (2010) miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 24(5):478–490. doi:10.1101/gad.1856210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kruse EA, Loughran SJ, Baldwin TM, Josefsson EC, Ellis S, Watson DK, Nurden P, Metcalf D, Hilton DJ, Alexander WS, Kile BT (2009) Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc Natl Acad Sci U S A 106(33):13814–13819. doi:10.1073/pnas.0906556106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kuvardina ON, Herglotz J, Kolodziej S, Kohrs N, Herkt S, Wojcik B, Oellerich T, Corso J, Behrens K, Kumar A, Hussong H, Urlaub H, Koch J, Serve H, Bonig H, Stocking C, Rieger MA, Lausen J (2015) RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood 125(23):3570–3579. doi:10.1182/blood-2014-11-610519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kwiatkowski BA, Bastian LS, Bauer TR Jr, Tsai S, Zielinska-Kwiatkowska AG, Hickstein DD (1998) The ets family member Tel binds to the Fli-1 oncoprotein and inhibits its transcriptional activity. J Biol Chem 273(28):17525–17530

    Article  CAS  PubMed  Google Scholar 

  79. Kwiatkowski BA, Zielinska-Kwiatkowska AG, Bauer TR Jr, Hickstein DD (2000) The ETS family member Tel antagonizes the Fli-1 phenotype in hematopoietic cells. Blood Cells Mol Dis 26(1):84–90. doi:10.1006/bcmd.2000.0282

    Article  CAS  PubMed  Google Scholar 

  80. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457(7231):892–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lange B (2000) The management of neoplastic disorders of haematopoiesis in children with Down’s syndrome. Br J Haematol 110(3):512–524

    Article  CAS  PubMed  Google Scholar 

  82. Lemarchandel V, Ghysdael J, Mignotte V, Rahuel C, Romeo PH (1993) GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression. Mol Cell Biol 13(1):668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Letting DL, Chen YY, Rakowski C, Reedy S, Blobel GA (2004) Context-dependent regulation of GATA-1 by friend of GATA-1. Proc Natl Acad Sci U S A 101(2):476–481

    Article  CAS  PubMed  Google Scholar 

  84. Li Z, Godinho FJ, Klusmann JH, Garriga-Canut M, Yu C, Orkin SH (2005) Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet 37(6):613–619

    Article  CAS  PubMed  Google Scholar 

  85. Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, Pretz J, Schlanger R, Wang JY, Mak RH, Dombkowski DM, Preffer FI, Scadden DT, Golub TR (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14(6):843–853. doi:10.1016/j.devcel.2008.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu J, Pazin MJ, Ravid K (2004) Properties of ets-1 binding to chromatin and its effect on platelet factor 4 gene expression. Mol Cell Biol 24(1):428–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ludlow LB, Schick BP, Budarf ML, Driscoll DA, Zackai EH, Cohen A, Konkle BA (1996) Identification of a mutation in a GATA binding site of the platelet glycoprotein Ibbeta promoter resulting in the Bernard-Soulier syndrome. J Biol Chem 271(36):22076–22080

    Article  CAS  PubMed  Google Scholar 

  88. Ludwig LS, Gazda HT, Eng JC, Eichhorn SW, Thiru P, Ghazvinian R, George TI, Gotlib JR, Beggs AH, Sieff CA, Lodish HF, Lander ES, Sankaran VG (2014) Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med 20(7):748–753. doi:10.1038/nm.3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lulli V, Romania P, Morsilli O, Gabbianelli M, Pagliuca A, Mazzeo S, Testa U, Peschle C, Marziali G (2006) Overexpression of Ets-1 in human hematopoietic progenitor cells blocks erythroid and promotes megakaryocytic differentiation. Cell Death Differ 13(7):1064–1074. doi:10.1038/sj.cdd.4401811

    Article  CAS  PubMed  Google Scholar 

  90. Maclean GA, Menne TF, Guo G, Sanchez DJ, Park IH, Daley GQ, Orkin SH (2012) Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proc Natl Acad Sci U S A 109(43):17567–17572. doi:10.1073/pnas.1215468109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Malinge S, Izraeli S, Crispino JD (2009) Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 113(12):2619–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Perez C, Villeval JL, Reinhardt D, Landman-Parker J, Michaux L, Dastugue N, Baruchel A, Vainchenker W, Bourquin JP, Penard-Lacronique V, Bernard OA (2008) Activating mutations in human acute megakaryoblastic leukemia. Blood 112(10):4220–4226. doi:10.1182/blood-2008-01-136366

    Article  CAS  PubMed  Google Scholar 

  93. Malkin D, Brown EJ, Zipursky A (2000) The role of p53 in megakaryocyte differentiation and the megakaryocytic leukemias of Down syndrome. Cancer Genet Cytogenet 116(1):1–5

    Article  CAS  PubMed  Google Scholar 

  94. Massey GV, Zipursky A, Chang MN, Doyle JJ, Nasim S, Taub JW, Ravindranath Y, Dahl G, Weinstein HJ (2006) A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children’s Oncology Group (COG) study POG-9481. Blood 107(12):4606–4613

    Article  CAS  PubMed  Google Scholar 

  95. Mehaffey MG, Newton AL, Gandhi MJ, Crossley M, Drachman JG (2001) X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 98(9):2681–2688

    Article  CAS  PubMed  Google Scholar 

  96. Mercher T, Cornejo MG, Sears C, Kindler T, Moore SA, Maillard I, Pear WS, Aster JC, Gilliland DG (2008) Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell 3(3):314–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miccio A, Wang Y, Hong W, Gregory GD, Wang H, Yu X, Choi JK, Shelat S, Tong W, Poncz M, Blobel GA (2010) NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. Embo J 29(2):442–456

    Article  CAS  PubMed  Google Scholar 

  98. Miller CA, Wilson RK, Ley TJ (2013) Genomic landscapes and clonality of de novo AML. N Engl J Med 369:1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Monteferrario D, Bolar NA, Marneth AE, Hebeda KM, Bergevoet SM, Veenstra H, Laros-van Gorkom BA, MacKenzie MA, Khandanpour C, Botezatu L, Fransen E, Van Camp G, Duijnhouwer AL, Salemink S, Willemsen B, Huls G, Preijers F, Van Heerde W, Jansen JH, Kempers MJ, Loeys BL, Van Laer L, Van der Reijden BA (2014) A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med 370(3):245–253. doi:10.1056/NEJMoa1308130

    Article  CAS  PubMed  Google Scholar 

  100. Mukai HY, Motohashi H, Ohneda O, Suzuki N, Nagano M, Yamamoto M (2006) Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation. Mol Cell Biol 26(21):7953–7965. doi:10.1128/MCB.00718-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mundschau G, Gurbuxani S, Gamis AS, Greene ME, Arceci RJ, Crispino JD (2003) Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 101(11):4298–4300

    Article  CAS  PubMed  Google Scholar 

  102. Muramatsu H, Kato K, Watanabe N, Matsumoto K, Nakamura T, Horikoshi Y, Mimaya J, Suzuki C, Hayakawa M, Kojima S (2008) Risk factors for early death in neonates with Down syndrome and transient leukaemia. Br J Haematol 142(4):610–615. doi:10.1111/j.1365-2141.2008.07231.x

    Article  PubMed  Google Scholar 

  103. Nakao M, Horiike S, Fukushima-Nakase Y, Nishimura M, Fujita Y, Taniwaki M, Okuda T (2004) Novel loss-of-function mutations of the haematopoiesis-related transcription factor, acute myeloid leukaemia 1/runt-related transcription factor 1, detected in acute myeloblastic leukaemia and myelodysplastic syndrome. Br J Haematol 125(6):709–719

    Article  CAS  PubMed  Google Scholar 

  104. Ng AP, Hu Y, Metcalf D, Hyland CD, Ierino H, Phipson B, Wu D, Baldwin TM, Kauppi M, Kiu H, Di Rago L, Hilton DJ, Smyth GK, Alexander WS (2015) Early lineage priming by trisomy of erg leads to myeloproliferation in a down syndrome model. PLoS Genet 11(5), e1005211. doi:10.1371/journal.pgen.1005211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ng AP, Hyland CD, Metcalf D, Carmichael CL, Loughran SJ, Di Rago L, Kile BT, Alexander WS (2010) Trisomy of Erg is required for myeloproliferation in a mouse model of Down syndrome. Blood 115(19):3966–3969. doi:10.1182/blood-2009-09-242107

    Article  CAS  PubMed  Google Scholar 

  106. Nichols KE, Crispino JD, Poncz M, White JG, Orkin SH, Maris JM, Weiss MJ (2000) Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 24(3):266–270

    Article  CAS  PubMed  Google Scholar 

  107. Noetzli L, Lo RW, Lee-Sherick AB, Callaghan M, Noris P, Savoia A, Rajpurkar M, Jones K, Gowan K, Balduini CL, Pecci A, Gnan C, De Rocco D, Doubek M, Li L, Lu L, Leung R, Landolt-Marticorena C, Hunger S, Heller P, Gutierrez-Hartmann A, Xiayuan L, Pluthero FG, Rowley JW, Weyrich AS, Kahr WH, Porter CC, Di Paola J (2015) Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. doi:10.1038/ng.3253

    PubMed  PubMed Central  Google Scholar 

  108. O’Neil J, Look AT (2007) Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene 26(47):6838–6849. doi:10.1038/sj.onc.1210766

    Article  PubMed  CAS  Google Scholar 

  109. Okada Y, Nagai R, Sato T, Matsuura E, Minami T, Morita I, Doi T (2003) Homeodomain proteins MEIS1 and PBXs regulate the lineage-specific transcription of the platelet factor 4 gene. Blood 101(12):4748–4756. doi:10.1182/blood-2002-02-0380

    Article  CAS  PubMed  Google Scholar 

  110. Onodera K, Shavit JA, Motohashi H, Yamamoto M, Engel JD (2000) Perinatal synthetic lethality and hematopoietic defects in compound mafG::mafK mutant mice. Embo J 19(6):1335–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G, Woollard WJ, Dafou D, Kilo T, Smithson S, Lunt P, Murday VA, Hodgson S, Keenan R, Pilz DT, Martinez-Corral I, Makinen T, Mortimer PS, Jeffery S, Trembath RC, Mansour S (2011) Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet 43(10):929–931. doi:10.1038/ng.923

    Article  CAS  PubMed  Google Scholar 

  112. Owen CJ, Toze CL, Koochin A, Forrest DL, Smith CA, Stevens JM, Jackson SC, Poon MC, Sinclair GD, Leber B, Johnson PR, Macheta A, Yin JA, Barnett MJ, Lister TA, Fitzgibbon J (2008) Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy (FPD/AML). Blood 112:4639–4645

    Article  CAS  PubMed  Google Scholar 

  113. Ozaki T, Nakagawara A, Nagase H (2013) RUNX family participates in the regulation of p53-dependent DNA damage response. Int J Genom 2013:271347. doi:10.1155/2013/271347

    Google Scholar 

  114. Ozaki T, Wu D, Sugimoto H, Nagase H, Nakagawara A (2013) Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis 4, e610. doi:10.1038/cddis.2013.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pal S, Cantor AB, Johnson KD, Moran TB, Boyer ME, Orkin SH, Bresnick EH (2004) Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc Natl Acad Sci U S A 101(4):980–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pang L, Xue HH, Szalai G, Wang X, Wang Y, Watson DK, Leonard WJ, Blobel GA, Poncz M (2006) Maturation stage-specific regulation of megakaryopoiesis by pointed-domain Ets proteins. Blood 108(7):2198–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Phillips JD, Steensma DP, Pulsipher MA, Spangrude GJ, Kushner JP (2007) Congenital erythropoietic porphyria due to a mutation in GATA-1: the first trans-acting mutation causative for a human porphyria. Blood 109(6):2618–2621

    Google Scholar 

  118. Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt FW, Orkin SH (1996) The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86(1):47–57

    Article  CAS  PubMed  Google Scholar 

  119. Qin X, Jiang Q, Matsuo Y, Kawane T, Komori H, Moriishi T, Taniuchi I, Ito K, Kawai Y, Rokutanda S, Izumi S, Komori T (2015) Cbfb regulates bone development by stabilizing Runx family proteins. J Bone Miner Res 30(4):706–714. doi:10.1002/jbmr.2379

    Article  CAS  PubMed  Google Scholar 

  120. Rainis L, Bercovich D, Strehl S, Teigler-Schlegel A, Stark B, Trka J, Amariglio N, Biondi A, Muler I, Rechavi G, Kempski H, Haas OA, Izraeli S (2003) Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood 102(3):981–986

    Article  CAS  PubMed  Google Scholar 

  121. Raskind WH, Niakan KK, Wolff J, Matsushita M, Vaughan T, Stamatoyannopoulos G, Watanabe C, Rios J, Ochs HD (2000) Mapping of a syndrome of X-linked thrombocytopenia with Thalassemia to band Xp11-12: further evidence of genetic heterogeneity of X-linked thrombocytopenia. Blood 95(7):2262–2268

    CAS  PubMed  Google Scholar 

  122. Raslova H, Komura E, Le Couedic JP, Larbret F, Debili N, Feunteun J, Danos O, Albagli O, Vainchenker W, Favier R (2004) FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 114(1):77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A (2005) RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132(5):1117–1126

    Article  CAS  PubMed  Google Scholar 

  124. Roberts I, Alford K, Hall G, Juban G, Richmond H, Norton A, Vallance G, Perkins K, Marchi E, McGowan S, Roy A, Cowan G, Anthony M, Gupta A, Ho J, Uthaya S, Curley A, Rasiah SV, Watts T, Nicholl R, Bedford-Russell A, Blumberg R, Thomas A, Gibson B, Halsey C, Lee PW, Godambe S, Sweeney C, Bhatnagar N, Goriely A, Campbell P, Vyas P (2013) GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood 122(24):3908–3917. doi:10.1182/blood-2013-07-515148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Roberts I, O’Connor D, Roy A, Cowan G, Vyas P (2013) The impact of trisomy 21 on foetal haematopoiesis. Blood Cells Mol Dis 51(4):277–281. doi:10.1016/j.bcmd.2013.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Roy A, Cowan G, Mead AJ, Filippi S, Bohn G, Chaidos A, Tunstall O, Chan JK, Choolani M, Bennett P, Kumar S, Atkinson D, Wyatt-Ashmead J, Hu M, Stumpf MP, Goudevenou K, O’Connor D, Chou ST, Weiss MJ, Karadimitris A, Jacobsen SE, Vyas P, Roberts I (2012) Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc Natl Acad Sci U S A 109(43):17579–17584. doi:10.1073/pnas.1211405109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Saleque S, Cameron S, Orkin SH (2002) The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev 16(3):301–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Saleque S, Kim J, Rooke HM, Orkin SH (2007) Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 27(4):562–572

    Article  CAS  PubMed  Google Scholar 

  129. Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T, Tarantino LM, Hogenesch JB, Cooke MP (2005) c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 8(2):153–166. doi:10.1016/j.devcel.2004.12.015

    Article  CAS  PubMed  Google Scholar 

  130. Satoh Y, Matsumura I, Tanaka H, Harada H, Harada Y, Matsui K, Shibata M, Mizuki M, Kanakura Y (2012) C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells. Leukemia 26(2):303–311. doi:10.1038/leu.2011.202

    Article  CAS  PubMed  Google Scholar 

  131. Schuh AH, Tipping AJ, Clark AJ, Hamlett I, Guyot B, Iborra FJ, Rodriguez P, Strouboulis J, Enver T, Vyas P, Porcher C (2005) ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol Cell Biol 25(23):10235–10250. doi:10.1128/MCB.25.23.10235-10250.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH (1997) A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. Embo J 16(13):3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81(5):695–704

    Article  CAS  PubMed  Google Scholar 

  134. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, Loh M, Felix C, Roy DC, Busque L, Kurnit D, Willman C, Gewirtz AM, Speck NA, Bushweller JH, Li FP, Gardiner K, Poncz M, Maris JM, Gilliland DG (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23(2):166–175

    Article  CAS  PubMed  Google Scholar 

  135. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, Arthur DC, Gu W, Gould CM, Brewer CC, Cowen EW, Freeman AF, Olivier KN, Uzel G, Zelazny AM, Daub JR, Spalding CD, Claypool RJ, Giri NK, Alter BP, Mace EM, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM (2014) GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123(6):809–821. doi:10.1182/blood-2013-07-515528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stankiewicz MJ, Crispino JD (2009) ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood 113(14):3337–3347. doi:10.1182/blood-2008-08-174813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stankiewicz MJ, Crispino JD (2013) AKT collaborates with ERG and Gata1s to dysregulate megakaryopoiesis and promote AMKL. Leukemia 27(6):1339–1347. doi:10.1038/leu.2013.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Starck J, Cohet N, Gonnet C, Sarrazin S, Doubeikovskaia Z, Doubeikovski A, Verger A, Duterque-Coquillaud M, Morle F (2003) Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 23(4):1390–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Starck J, Weiss-Gayet M, Gonnet C, Guyot B, Vicat JM, Morle F (2010) Inducible Fli-1 gene deletion in adult mice modifies several myeloid lineage commitment decisions and accelerates proliferation arrest and terminal erythrocytic differentiation. Blood 116(23):4795–4805. doi:10.1182/blood-2010-02-270405

    Article  CAS  PubMed  Google Scholar 

  140. Stevenson WS, Morel-Kopp MC, Chen Q, Liang HP, Bromhead CJ, Wright S, Turakulov R, Ng AP, Roberts AW, Bahlo M, Ward CM (2013) GFI1B mutation causes a bleeding disorder with abnormal platelet function. J Thromb Haemost JTH 11(11):2039–2047. doi:10.1111/jth.12368

    Article  CAS  PubMed  Google Scholar 

  141. Stevenson WS, Rabbolini DJ, Beutler L, Chen Q, Gabrielli S, Mackay JP, Brighton TA, Ward CM, Morel-Kopp MC (2015) Paris-Trousseau thrombocytopenia is phenocopied by the autosomal recessive inheritance of a DNA-binding domain mutation in FLI1. Blood 126(17):2027–2030. doi:10.1182/blood-2015-06-650887

    Article  CAS  PubMed  Google Scholar 

  142. Stockley J, Morgan NV, Bem D, Lowe GC, Lordkipanidze M, Dawood B, Simpson MA, Macfarlane K, Horner K, Leo VC, Talks K, Motwani J, Wilde JT, Collins PW, Makris M, Watson SP, Daly ME (2013) Enrichment of FLI1 and RUNX1 mutations in families with excessive bleeding and platelet dense granule secretion defects. Blood 122(25):4090–4093. doi:10.1182/blood-2013-06-506873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sun L, Gorospe JR, Hoffman EP, Rao AK (2007) Decreased platelet expression of myosin regulatory light chain polypeptide (MYL9) and other genes with platelet dysfunction and CBFA2/RUNX1 mutation: insights from platelet expression profiling. J Thromb Haemost 5(1):146–154

    Article  CAS  PubMed  Google Scholar 

  144. Sun L, Mao G, Rao AK (2004) Association of CBFA2 mutation with decreased platelet PKC-theta and impaired receptor-mediated activation of GPIIb-IIIa and pleckstrin phosphorylation: proteins regulated by CBFA2 play a role in GPIIb-IIIa activation. Blood 103(3):948–954

    Article  CAS  PubMed  Google Scholar 

  145. Talebian L, Li Z, Guo Y, Gaudet J, Speck ME, Sugiyama D, Kaur P, Pear WS, Maillard I, Speck NA (2007) T-lymphoid, megakaryocyte, and granulocyte development are sensitive to decreases in CBFbeta dosage. Blood 109(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K, Okazaki K, Sagata N, Yazaki Y, Shibata Y, Kadowaki T, Hirai H (1996) The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol 16(7):3967–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, Huang CF, Lee FY, Liu MC, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Lin LI, Tien HF (2009) AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 114:5352–5361

    Article  CAS  PubMed  Google Scholar 

  148. Taub JW, Mundschau G, Ge Y, Poulik JM, Qureshi F, Jensen T, James SJ, Matherly LH, Wechsler J, Crispino JD (2004) Prenatal origin of GATA1 mutations may be an initiating step in the development of megakaryocytic leukemia in Down syndrome. Blood 104(5):1588–1589. doi:10.1182/blood-2004-04-1563

    Article  CAS  PubMed  Google Scholar 

  149. Thompson AA, Nguyen LT (2000) Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet 26(4):397–398. doi:10.1038/82511

    Article  CAS  PubMed  Google Scholar 

  150. Tijssen MR, Cvejic A, Joshi A, Hannah RL, Ferreira R, Forrai A, Bellissimo DC, Oram SH, Smethurst PA, Wilson NK, Wang X, Ottersbach K, Stemple DL, Green AR, Ouwehand WH, Gottgens B (2011) Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell 20(5):597–609. doi:10.1016/j.devcel.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Topka S, Vijai J, Walsh MF, Jacobs L, Maria A, Villano D, Gaddam P, Wu G, McGee RB, Quinn E, Inaba H, Hartford C, Pui CH, Pappo A, Edmonson M, Zhang MY, Stepensky P, Steinherz P, Schrader K, Lincoln A, Bussel J, Lipkin SM, Goldgur Y, Harit M, Stadler ZK, Mullighan C, Weintraub M, Shimamura A, Zhang J, Downing JR, Nichols KE, Offit K (2015) Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukemia and thrombocytopenia. PLoS Genet 11(6), e1005262. doi:10.1371/journal.pgen.1005262

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371(6494):221–226

    Article  CAS  PubMed  Google Scholar 

  153. Tsai SF, Martin DI, Zon LI, D’Andrea AD, Wong GG, Orkin SH (1989) Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 339(6224):446–451

    Article  CAS  PubMed  Google Scholar 

  154. Tsang AP, Fujiwara Y, Hom DB, Orkin SH (1998) Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev 12(8):1176–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, Crossley M, Orkin SH (1997) FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90(1):109–119

    Article  CAS  PubMed  Google Scholar 

  156. Tubman VN, Levine JE, Campagna DR, Monahan-Earley R, Dvorak AM, Neufeld EJ, Fleming MD (2007) X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation. Blood 109(8):3297–3299. doi:10.1182/blood-2006-02-004101

    Article  CAS  PubMed  Google Scholar 

  157. Tunstall-Pedoe O, Roy A, Karadimitris A, de la Fuente J, Fisk NM, Bennett P, Norton A, Vyas P, Roberts I (2008) Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. Blood 112(12):4507–4511

    Article  CAS  PubMed  Google Scholar 

  158. Vannucchi AM, Bianchi L, Cellai C, Paoletti F, Rana RA, Lorenzini R, Migliaccio G, Migliaccio AR (2002) Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood 100(4):1123–1132

    Article  CAS  PubMed  Google Scholar 

  159. Visvader JE, Fujiwara Y, Orkin SH (1998) Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev 12(4):473–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA (1999) Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 93(9):2867–2875

    CAS  PubMed  Google Scholar 

  161. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH (1997) The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. Embo J 16(11):3145–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Walters DK, Mercher T, Gu TL, O’Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, Stoffregen EP, McGreevey L, Nardone J, Moore SA, Crispino J, Boggon TJ, Heinrich MC, Deininger MW, Polakiewicz RD, Gilliland DG, Druker BJ (2006) Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10(1):65–75. doi:10.1016/j.ccr.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  163. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 93(8):3444–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang X, Crispino JD, Letting DL, Nakazawa M, Poncz M, Blobel GA (2002) Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. Embo J 21(19):5225–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, Le Beau MM, Crispino JD (2002) Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 32(1):148–152

    Article  CAS  PubMed  Google Scholar 

  166. Weiss MJ, Yu C, Orkin SH (1997) Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol 17(3):1642–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. White JG, Nichols WL, Steensma DP (2007) Platelet pathology in sex-linked GATA-1 dyserythropoietic macrothrombocytopenia I ultrastructure. Platelets 18(4):273–283. doi:10.1080/09537100601065825

    Article  CAS  PubMed  Google Scholar 

  168. White JG, Nichols WL, Steensma DP (2007) Platelet pathology in sex-linked GATA-1 dyserythropoietic macrothrombocytopenia II. Cytochemistry. Platelets 18(6):436–450. doi:10.1080/09537100701280662

    Article  CAS  PubMed  Google Scholar 

  169. Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, Kaimakis P, Chilarska PM, Kinston S, Ouwehand WH, Dzierzak E, Pimanda JE, de Bruijn MF, Gottgens B (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7(4):532–544. doi:10.1016/j.stem.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  170. Woo AJ, Wieland K, Huang H, Akie TE, Piers T, Kim J, Cantor AB (2013) Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation. J Clin Invest 123:3292–3304. doi:10.1172/JCI40609

    Article  CAS  PubMed Central  Google Scholar 

  171. Wu D, Ozaki T, Yoshihara Y, Kubo N, Nakagawara A (2013) Runt-related transcription factor 1 (RUNX1) stimulates tumor suppressor p53 protein in response to DNA damage through complex formation and acetylation. J Biol Chem 288(2):1353–1364. doi:10.1074/jbc.M112.402594

    Article  CAS  PubMed  Google Scholar 

  172. Xu G, Nagano M, Kanezaki R, Toki T, Hayashi Y, Taketani T, Taki T, Mitui T, Koike K, Kato K, Imaizumi M, Sekine I, Ikeda Y, Hanada R, Sako M, Kudo K, Kojima S, Ohneda O, Yamamoto M, Ito E (2003) Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood 102(8):2960–2968

    Article  CAS  PubMed  Google Scholar 

  173. Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, Sanada M, Park MJ, Terui K, Suzuki H, Kon A, Nagata Y, Sato Y, Wang R, Shiba N, Chiba K, Tanaka H, Hama A, Muramatsu H, Hasegawa D, Nakamura K, Kanegane H, Tsukamoto K, Adachi S, Kawakami K, Kato K, Nishimura R, Izraeli S, Hayashi Y, Miyano S, Kojima S, Ito E, Ogawa S (2013) The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet 45(11):1293–1299. doi:10.1038/ng.2759

    Article  CAS  PubMed  Google Scholar 

  174. Yoshimi A, Toya T, Kawazu M, Ueno T, Tsukamoto A, Iizuka H, Nakagawa M, Nannya Y, Arai S, Harada H, Usuki K, Hayashi Y, Ito E, Kirito K, Nakajima H, Ichikawa M, Mano H, Kurokawa M (2014) Recurrent CDC25C mutations drive malignant transformation in FPD/AML. Nat Commun 5:4770. doi:10.1038/ncomms5770

    Article  CAS  PubMed  Google Scholar 

  175. Yu C, Niakan KK, Matsushita M, Stamatoyannopoulos G, Orkin SH, Raskind WH (2002) X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 100(6):2040–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang L, Fried FB, Guo H, Friedman AD (2008) Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation. Blood 111(3):1193–1200. doi:10.1182/blood-2007-08-109702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang MY, Churpek JE, Keel SB, Walsh T, Lee MK, Loeb KR, Gulsuner S, Pritchard CC, Sanchez-Bonilla M, Delrow JJ, Basom RS, Forouhar M, Gyurkocza B, Schwartz BS, Neistadt B, Marquez R, Mariani CJ, Coats SA, Hofmann I, Lindsley RC, Williams DA, Abkowitz JL, Horwitz MS, King MC, Godley LA, Shimamura A (2015) Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet 47(2):180–185. doi:10.1038/ng.3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang SJ, Ma LY, Huang QH, Li G, Gu BW, Gao XD, Shi JY, Wang YY, Gao L, Cai X, Ren RB, Zhu J, Chen Z, Chen SJ (2008) Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci U S A 105(6):2076–2081. doi:10.1073/pnas.0711824105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S, Zhang J, Dunne R, Xiao A, Erdjument-Bromage H, Allis CD, Tempst P, Nimer SD (2008) Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 22(5):640–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zharlyganova D, Harada H, Harada Y, Shinkarev S, Zhumadilov Z, Zhunusova A, Tchaizhunusova NJ, Apsalikov KN, Kemaikin V, Zhumadilov K, Kawano N, Kimura A, Hoshi M (2008) High frequency of AML1/RUNX1 point mutations in radiation-associated myelodysplastic syndrome around Semipalatinsk nuclear test site. J Radiat Res 49(5):549–555

    Article  CAS  PubMed  Google Scholar 

  181. Zipursky A (2003) Transient leukaemia – a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol 120(6):930–938

    Article  PubMed  Google Scholar 

  182. Zon LI, Yamaguchi Y, Yee K, Albee EA, Kimura A, Bennett JC, Orkin SH, Ackerman SJ (1993) Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood 81(12):3234–3241

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank the many colleagues in the field and members of the laboratory who have contributed ideas and insights to the material discussed in this chapter. I apologize for any work from others that was omitted due to space limitations. A.B.C. is supported by grants from the NIH (R01 DK098448 and R01 HL130793).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan B. Cantor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cantor, A.B. (2016). Megakaryocytic Transcription Factors in Disease and Leukemia. In: Schulze, H., Italiano, J. (eds) Molecular and Cellular Biology of Platelet Formation. Springer, Cham. https://doi.org/10.1007/978-3-319-39562-3_3

Download citation

Publish with us

Policies and ethics