Skip to main content

Advertisement

Log in

New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1’s role in replicating template strand repair. The key requirement for this event, which we named as the ‘cow-catcher’ mechanism of pre-replicative BER, is NEIL1’s non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory proteins guiding distinct BER sub-pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martinez MC, Andriantsitohaina R (2009) Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 11(3):669–702

    CAS  PubMed  Google Scholar 

  2. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63(1):218–242

    CAS  PubMed  Google Scholar 

  4. Hegde ML, Hegde PM, Rao KS, Mitra S (2011) Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword. J Alzheimers Dis 24(Suppl 2):183–198

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Dizdaroglu M (2012) Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 327(1–2):26–47

    CAS  PubMed  Google Scholar 

  6. Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18(1):27–47

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Jones LE Jr, Ying L, Hofseth AB, Jelezcova E, Sobol RW, Ambs S, Harris CC, Espey MG, Hofseth LJ, Wyatt MD (2009) Differential effects of reactive nitrogen species on DNA base excision repair initiated by the alkyladenine DNA glycosylase. Carcinogenesis 30(12):2123–2129

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715

    CAS  PubMed  Google Scholar 

  9. Thiviyanathan V, Somasunderam A, Volk DE, Hazra TK, Mitra S, Gorenstein DG (2008) Base-pairing properties of the oxidized cytosine derivative, 5-hydroxy uracil. Biochem Biophys Res Commun 366(3):752–757

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349(6308):431–434

    CAS  PubMed  Google Scholar 

  11. Yang N, Galick H, Wallace SS (2004) Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks. DNA Repair (Amst) 3(10):1323–1334

    CAS  Google Scholar 

  12. Odell ID, Wallace SS, Pederson DS (2013) Rules of engagement for base excision repair in chromatin. J Cell Physiol 228(2):258–266

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Lindahl T (1974) An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci USA 71(9):3649–3653

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Hadi SM, Goldthwait DA (1971) Endonuclease II of Escherichia coli. Degradation of partially depurinated deoxyribonucleic acid. Biochemistry 10(26):4986–4993

    CAS  PubMed  Google Scholar 

  15. Paquette Y, Crine P, Verly WG (1972) Properties of the endonuclease for depurinated DNA from Escherichia coli. Can J Biochem 50(11):1199–1209

    CAS  PubMed  Google Scholar 

  16. Verly WG, Paquette Y (1972) An endonuclease for depurinated DNA in Escherichia coli B. Can J Biochem 50(2):217–224

    CAS  PubMed  Google Scholar 

  17. Laval J (1977) Two enzymes are required from strand incision in repair of alkylated DNA. Nature 269(5631):829–832

    CAS  PubMed  Google Scholar 

  18. Demple B, Herman T, Chen DS (1991) Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci USA 88(24):11450–11454

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Kane CM, Linn S (1981) Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J Biol Chem 256(7):3405–3414

    CAS  PubMed  Google Scholar 

  20. Boiteux S, O’Connor TR, Laval J (1987) Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein. EMBO J 6(10):3177–3183

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Jilani A, Ramotar D, Slack C, Ong C, Yang XM, Scherer SW, Lasko DD (1999) Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem 274(34):24176–24186

    CAS  PubMed  Google Scholar 

  22. Frosina G, Fortini P, Rossi O, Carrozzino F, Raspaglio G, Cox LS, Lane DP, Abbondandolo A, Dogliotti E (1996) Two pathways for base excision repair in mammalian cells. J Biol Chem 271(16):9573–9578

    CAS  PubMed  Google Scholar 

  23. Fortini P, Pascucci B, Parlanti E, Sobol RW, Wilson SH, Dogliotti E (1998) Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry 37(11):3575–3580

    CAS  PubMed  Google Scholar 

  24. Klungland A, Lindahl T (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 16(11):3341–3348

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Balakrishnan L, Brandt PD, Lindsey-Boltz LA, Sancar A, Bambara RA (2009) Long patch base excision repair proceeds via coordinated stimulation of the multienzyme DNA repair complex. J Biol Chem 284(22):15158–15172

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Petermann E, Ziegler M, Oei SL (2003) ATP-dependent selection between single nucleotide and long patch base excision repair. DNA Repair (Amst) 2(10):1101–1114

    CAS  Google Scholar 

  27. Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ (2007) gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE 2(10):e1057

    PubMed Central  PubMed  Google Scholar 

  28. Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, Yoshikawa K, Yoshikawa Y, Maeshima K (2013) Chromatin compaction protects genomic DNA from radiation damage. PLoS ONE 8(10):e75622

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Banerjee D, Mandal SM, Das A, Hegde ML, Das S, Bhakat KK, Boldogh I, Sarkar PS, Mitra S, Hazra TK (2011) Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J Biol Chem 286(8):6006–6016

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Parlanti E, Locatelli G, Maga G, Dogliotti E (2007) Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins. Nucleic Acids Res 35(5):1569–1577

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Hegde ML, Hegde PM, Bellot LJ, Mandal SM, Hazra TK, Li GM, Boldogh I, Tomkinson AE, Mitra S (2013) Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins. Proc Natl Acad Sci USA 110(33):E3090–E3099

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Dou H, Mitra S, Hazra TK (2003) Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J Biol Chem 278(50):49679–49684

    CAS  PubMed  Google Scholar 

  33. Dou H, Theriot CA, Das A, Hegde ML, Matsumoto Y, Boldogh I, Hazra TK, Bhakat KK, Mitra S (2008) Interaction of the human DNA glycosylase NEIL1 with proliferating cell nuclear antigen. The potential for replication-associated repair of oxidized bases in mammalian genomes. J Biol Chem 283(6):3130–3140

    CAS  PubMed  Google Scholar 

  34. Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O, Krokan HE (1999) Post-replicative base excision repair in replication foci. EMBO J 18(13):3834–3844

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Hayashi H, Tominaga Y, Hirano S, McKenna AE, Nakabeppu Y, Matsumoto Y (2002) Replication-associated repair of adenine:8-oxoguanine mispairs by MYH. Curr Biol 12(4):335–339

    CAS  PubMed  Google Scholar 

  36. Rao S, Chenna A, Slupska M, Singer B (1996) Replication of O4-methylthymine-containing oligonucleotides: effect of 3’ and 5’ flanking bases on formation and extension of O4-methylthymine guanine basepairs. Mutat Res 356(2):179–185

    PubMed  Google Scholar 

  37. Le Page F, Guy A, Cadet J, Sarasin A, Gentil A (1998) Repair and mutagenic potency of 8-oxoG: A and 8-oxoG: C base pairs in mammalian cells. Nucleic Acids Res 26(5):1276–1281

    PubMed Central  PubMed  Google Scholar 

  38. Boldogh I, Milligan D, Lee MS, Bassett H, Lloyd RS, McCullough AK (2001) hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs. Nucleic Acids Res 29(13):2802–2809

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Theriot CA, Hegde ML, Hazra TK, Mitra S (2010) RPA physically interacts with the human DNA glycosylase NEIL1 to regulate excision of oxidative DNA base damage in primer-template structures. DNA Repair (Amst) 9(6):643–652

    CAS  Google Scholar 

  40. Bansbach CE, Betous R, Lovejoy CA, Glick GG, Cortez D (2009) The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 23(20):2405–2414

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Betous R, Mason AC, Rambo RP, Bansbach CE, Badu-Nkansah A, Sirbu BM, Eichman BF, Cortez D (2012) SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev 26(2):151–162

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Evans J, Maccabee M, Hatahet Z, Courcelle J, Bockrath R, Ide H, Wallace S (1993) Thymine ring saturation and fragmentation products: lesion bypass, misinsertion and implications for mutagenesis. Mutat Res 299(3–4):147–156

    CAS  PubMed  Google Scholar 

  43. Tornaletti S, Maeda LS, Lloyd DR, Reines D, Hanawalt PC (2001) Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J Biol Chem 276(48):45367–45371

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhao X, Krishnamurthy N, Burrows CJ, David SS (2011) Mutation versus repair: NEIL1 removal of hydantoin lesions in single-stranded, bulge, bubble, and duplex DNA contexts. Biochemistry 49(8):1658–1666

    Google Scholar 

  45. Banerjee D, Mandal SM, Das A, Hegde ML, Das S, Bhakat KK, Boldogh I, Sarkar PS, Mitra S, Hazra TK (2011) Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J Biol Chem 286:6006–6016

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Takao M, Kanno S, Kobayashi K, Zhang QM, Yonei S, van der Horst GT, Yasui A (2002) A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. J Biol Chem 277(44):42205–42213

    CAS  PubMed  Google Scholar 

  47. Mitra S, Hegde ML, Theriot CA, Das A, Hegde PM, Hazra TK (2009) Complexity in repair of oxidative genome damage and its regulation. Proceedings of Princess Takamatsu Symposium, Tokyo

    Google Scholar 

  48. Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, Aas PA, Hagen L, Krokan HE, Slupphaug G (2002) hUNG2 is the major repair enzyme for removal of uracil from U: A matches, U: G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 277(42):39926–39936

    CAS  PubMed  Google Scholar 

  49. Vartanian V, Lowell B, Minko IG, Wood TG, Ceci JD, George S, Ballinger SW, Corless CL, McCullough AK, Lloyd RS (2006) The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci USA 103(6):1864–1869

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA 96(23):13300–13305

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Minowa O, Arai T, Hirano M, Monden Y, Nakai S, Fukuda M, Itoh M, Takano H, Hippou Y, Aburatani H, Masumura K, Nohmi T, Nishimura S, Noda T (2000) Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proc Natl Acad Sci USA 97(8):4156–4161

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Chan MK, Ocampo-Hafalla MT, Vartanian V, Jaruga P, Kirkali G, Koenig KL, Brown S, Lloyd RS, Dizdaroglu M, Teebor GW (2009) Targeted deletion of the genes encoding NTH1 and NEIL1 DNA N-glycosylases reveals the existence of novel carcinogenic oxidative damage to DNA. DNA Repair (Amst) 8(7):786–794

    CAS  Google Scholar 

  53. Xie Y, Yang H, Cunanan C, Okamoto K, Shibata D, Pan J, Barnes DE, Lindahl T, McIlhatton M, Fishel R, Miller JH (2004) Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res 64(9):3096–3102

    CAS  PubMed  Google Scholar 

  54. Russo MT, De Luca G, Degan P, Parlanti E, Dogliotti E, Barnes DE, Lindahl T, Yang H, Miller JH, Bignami M (2004) Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases. Cancer Res 64(13):4411–4414

    CAS  PubMed  Google Scholar 

  55. Parrilla-Castellar ER, Arlander SJ, Karnitz L (2004) Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 3(8–9):1009–1014

    CAS  Google Scholar 

  56. Pichierri P, Nicolai S, Cignolo L, Bignami M, Franchitto A (2012) The RAD9-RAD1-HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling. Oncogene 31(23):2809–2823

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Machwe A, Xiao L, Lloyd RG, Bolt E, Orren DK (2007) Replication fork regression in vitro by the Werner syndrome protein (WRN): holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity. Nucleic Acids Res 35(17):5729–5747

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Guan X, Bai H, Shi G, Theriot CA, Hazra TK, Mitra S, Lu AL (2007) The human checkpoint sensor Rad9-Rad1-Hus1 interacts with and stimulates NEIL1 glycosylase. Nucleic Acids Res 35(8):2463–2472

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Guan X, Madabushi A, Chang DY, Fitzgerald ME, Shi G, Drohat AC, Lu AL (2007) The human checkpoint sensor Rad9–Rad1–Hus1 interacts with and stimulates DNA repair enzyme TDG glycosylase. Nucleic Acids Res 35(18):6207–6218

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Toueille M, El-Andaloussi N, Frouin I, Freire R, Funk D, Shevelev I, Friedrich-Heineken E, Villani G, Hottiger MO, Hubscher U (2004) The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair. Nucleic Acids Res 32(11):3316–3324

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Smirnova E, Toueille M, Markkanen E, Hubscher U (2005) The human checkpoint sensor and alternative DNA clamp Rad9–Rad1–Hus1 modulates the activity of DNA ligase I, a component of the long-patch base excision repair machinery. Biochem J 389(Pt 1):13–17

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Wang W, Brandt P, Rossi ML, Lindsey-Boltz L, Podust V, Fanning E, Sancar A, Bambara RA (2004) The human Rad9–Rad1–Hus1 checkpoint complex stimulates flap endonuclease 1. Proc Natl Acad Sci USA 101(48):16762–16767

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Fan J, Wilson DM 3rd (2005) Protein-protein interactions and posttranslational modifications in mammalian base excision repair. Free Radic Biol Med 38(9):1121–1138

    CAS  PubMed  Google Scholar 

  64. Xia K, Fu Z, Hou L, Han JD (2008) Impacts of protein-protein interaction domains on organism and network complexity. Genome Res 18(9):1500–1508

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Liu X, Roy R (2002) Truncation of amino-terminal tail stimulates activity of human endonuclease III (hNTH1). J Mol Biol 321(2):265–276

    CAS  PubMed  Google Scholar 

  66. Doublie S, Bandaru V, Bond JP, Wallace SS (2004) The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proc Natl Acad Sci USA 101(28):10284–10289

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F, Rasouli-Nia A, Weinfeld M, Tomkinson AE, Izumi T, Prasad R, Wilson SH, Mitra S, Hazra TK (2004) AP endonuclease-independent DNA base excision repair in human cells. Mol Cell 15(2):209–220

    CAS  PubMed  Google Scholar 

  68. Hegde ML, Hegde PM, Arijit D, Boldogh I, Mitra S (2012) Human DNA glycosylase NEIL1’s interactions with downstream repair proteins is critical for efficient repair of oxidized DNA base damage and enhanced cell survival. Biomolecules 2(4):564–578

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Hegde ML, Tsutakawa SE, Hegde PM, Holthauzen LM, Li J, Oezguen N, Hilser VJ, Tainer JA, Mitra S (2013) The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions. J Mol Biol 425(13):2359–2371

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Bhakat KK, Mantha AK, Mitra S (2009) Transcriptional regulatory functions of mammalian AP-endonuclease (APE1/Ref-1), an essential multifunctional protein. Antioxid Redox Signal 11(3):621–638

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Izumi T, Mitra S (1998) Deletion analysis of human AP-endonuclease: minimum sequence required for the endonuclease activity. Carcinogenesis 19(3):525–527

    CAS  PubMed  Google Scholar 

  72. Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, Kohno K, Mitra S, Bhakat KK (2008) Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol Cell Biol 28(23):7066–7080

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Sengupta S, Mantha AK, Mitra S, Bhakat KK (2011) Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1. Oncogene 30(4):482–493

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Fantini D, Vascotto C, Deganuto M, Bivi N, Gustincich S, Marcon G, Quadrifoglio F, Damante G, Bhakat KK, Mitra S, Tell G (2008) APE1/Ref-1 regulates PTEN expression mediated by Egr-1. Free Radic Res 42(1):20–29

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Sengupta S, Mitra S, Bhakat KK (2013) Dual regulatory roles of human AP-endonuclease (APE1/Ref-1) in CDKN1A/p21 expression. PLoS ONE 8(7):e68467

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Popuri V, Croteau DL, Bohr VA (2010) Substrate specific stimulation of NEIL1 by WRN but not the other human RecQ helicases. DNA Repair (Amst) 9(6):636–642

    CAS  Google Scholar 

  77. Hegde ML, Banerjee S, Hegde PM, Bellot LJ, Hazra TK, Boldogh I, Mitra S (2012) Enhancement of NEIL1 protein-initiated oxidized DNA base excision repair by heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct interaction. J Biol Chem 287(41):34202–34211

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Hegde ML, Hazra TK, Mitra S (2010) Functions of disordered regions in mammalian early base excision repair proteins. Cell Mol Life Sci 67(21):3573–3587

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Hsu WL, Oldfield C, Meng J, Huang F, Xue B, Uversky VN, Romero P, Dunker AK (2012) Intrinsic protein disorder and protein-protein interactions. Pac Symp Biocomput, 116–127

  80. Hanssen-Bauer A, Solvang-Garten K, Sundheim O, Pena-Diaz J, Andersen S, Slupphaug G, Krokan HE, Wilson DM 3rd, Akbari M, Otterlei M (2011) XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage. Environ Mol Mutagen 52(8):623–635

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Caldecott KW, Tucker JD, Stanker LH, Thompson LH (1995) Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res 23(23):4836–4843

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM 3rd (2004) XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 32(7):2193–2201

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Vidal AE, Boiteux S, Hickson ID, Radicella JP (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein–protein interactions. EMBO J 20(22):6530–6539

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Marsin S, Vidal AE, Sossou M, Menissier-de Murcia J, Le Page F, Boiteux S, de Murcia G, Radicella JP (2003) Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1. J Biol Chem 278(45):44068–44074

    CAS  PubMed  Google Scholar 

  85. Della-Maria J, Hegde ML, McNeill DR, Matsumoto Y, Tsai MS, Ellenberger T, Wilson DM 3rd, Mitra S, Tomkinson AE (2012) The interaction between polynucleotide kinase phosphatase and the DNA repair protein XRCC1 is critical for repair of DNA alkylation damage and stable association at DNA damage sites. J Biol Chem 287(46):39233–39244

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Campalans A, Marsin S, Nakabeppu Y, O’Connor TR, Boiteux S, Radicella JP (2005) XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair. DNA Repair (Amst) 4(7):826–835

    CAS  Google Scholar 

  87. Gary R, Kim K, Cornelius HL, Park MS, Matsumoto Y (1999) Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J Biol Chem 274(7):4354–4363

    CAS  PubMed  Google Scholar 

  88. Gabel SA, DeRose EF, London RE (2013) XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair. DNA Repair (Amst) 12(12):1105–1113

    CAS  Google Scholar 

  89. Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers NG, Mullenders LH, Yamashita S, Fousteri MI, Lehmann AR (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell 37(5):714–727

    CAS  PubMed  Google Scholar 

  90. Chou WC, Wang HC, Wong FH, Ding SL, Wu PE, Shieh SY, Shen CY (2008) Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J 27(23):3140–3150

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Marintchev A, Mullen MA, Maciejewski MW, Pan B, Gryk MR, Mullen GP (1999) Solution structure of the single-strand break repair protein XRCC1N-terminal domain. Nat Struct Biol 6(9):884–893

    CAS  PubMed  Google Scholar 

  92. Marintchev A, Robertson A, Dimitriadis EK, Prasad R, Wilson SH, Mullen GP (2000) Domain specific interaction in the XRCC1-DNA polymerase beta complex. Nucleic Acids Res 28(10):2049–2059

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Marintchev A, Gryk MR, Mullen GP (2003) Site-directed mutagenesis analysis of the structural interaction of the single-strand-break repair protein, X-ray cross-complementing group 1, with DNA polymerase beta. Nucleic Acids Res 31(2):580–588

    PubMed Central  PubMed  Google Scholar 

  94. Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair (Amst) 2(9):955–969

    CAS  Google Scholar 

  95. Horton JK, Stefanick DF, Gassman NR, Williams JG, Gabel SA, Cuneo MJ, Prasad R, Kedar PS, Derose EF, Hou EW, London RE, Wilson SH (2013) Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses. DNA Repair (Amst) 12(9):774–785

    CAS  Google Scholar 

  96. Kim MY, Zhang T, Kraus WL (2005) Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD + into a nuclear signal. Genes Dev 19(17):1951–1967

    CAS  PubMed  Google Scholar 

  97. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26(8):882–893

    CAS  PubMed  Google Scholar 

  98. Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, Poirier GG, Dawson VL, Dawson TM (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4(167):ra20

    PubMed Central  PubMed  Google Scholar 

  99. Kraus WL, Lis JT (2003) PARP goes transcription. Cell 113(6):677–683

    CAS  PubMed  Google Scholar 

  100. Langelier MF, Servent KM, Rogers EE, Pascal JM (2008) A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation. J Biol Chem 283(7):4105–4114

    CAS  PubMed  Google Scholar 

  101. Langelier MF, Ruhl DD, Planck JL, Kraus WL, Pascal JM (2010) The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem 285(24):18877–18887

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL (2004) NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119(6):803–814

    CAS  PubMed  Google Scholar 

  103. Ali AA, Timinszky G, Arribas-Bosacoma R, Kozlowski M, Hassa PO, Hassler M, Ladurner AG, Pearl LH, Oliver AW (2012) The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat Struct Mol Biol 19(7):685–692

    CAS  PubMed  Google Scholar 

  104. Davidovic L, Vodenicharov M, Affar EB, Poirier GG (2001) Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 268(1):7–13

    CAS  PubMed  Google Scholar 

  105. Beernink PT, Hwang M, Ramirez M, Murphy MB, Doyle SA, Thelen MP (2005) Specificity of protein interactions mediated by BRCT domains of the XRCC1 DNA repair protein. J Biol Chem 280(34):30206–30213

    CAS  PubMed  Google Scholar 

  106. Wei L, Nakajima S, Hsieh CL, Kanno S, Masutani M, Levine AS, Yasui A, Lan L (2013) Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose). J Cell Sci 126(Pt 19):4414–4423

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34(21):6170–6182

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Mansour WY, Rhein T, Dahm-Daphi J (2010) The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 38(18):6065–6077

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Robert I, Dantzer F, Reina-San-Martin B (2009) Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206(5):1047–1056

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Noren Hooten N, Fitzpatrick M, Kompaniez K, Jacob KD, Moore BR, Nagle J, Barnes J, Lohani A, Evans MK (2012) Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging. Aging (Albany NY) 4(10):674–685

    Google Scholar 

  111. Hochegger H, Dejsuphong D, Fukushima T, Morrison C, Sonoda E, Schreiber V, Zhao GY, Saberi A, Masutani M, Adachi N, Koyama H, de Murcia G, Takeda S (2006) Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J 25(6):1305–1314

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Mansour WY, Borgmann K, Petersen C, Dikomey E, Dahm-Daphi J (2013) The absence of Ku but not defects in classical non-homologous end-joining is required to trigger PARP1-dependent end-joining. DNA Repair (Amst) 12(12):1134–1142

    CAS  Google Scholar 

  113. Haince JF, McDonald D, Rodrigue A, Dery U, Masson JY, Hendzel MJ, Poirier GG (2008) PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem 283(2):1197–1208

    CAS  PubMed  Google Scholar 

  114. Sugimura K, Takebayashi S, Taguchi H, Takeda S, Okumura K (2008) PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J Cell Biol 183(7):1203–1212

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Ying S, Hamdy FC, Helleday T (2012) Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res 72(11):2814–2821

    CAS  PubMed  Google Scholar 

  116. Curtin NJ, Szabo C (2013) Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 34(6):1217–1256

    CAS  PubMed  Google Scholar 

  117. Telli ML, Ford JM (2010) PARP inhibitors in breast cancer. Clin Adv Hematol Oncol 8(9):629–635

    PubMed  Google Scholar 

  118. Fathers C, Drayton RM, Solovieva S, Bryant HE (2012) Inhibition of poly(ADP-ribose) glycohydrolase (PARG) specifically kills BRCA2-deficient tumor cells. Cell Cycle 11(5):990–997

    CAS  PubMed  Google Scholar 

  119. Berghammer H, Ebner M, Marksteiner R, Auer B (1999) pADPRT-2: a novel mammalian polymerizing(ADP-ribosyl)transferase gene related to truncated pADPRT homologues in plants and Caenorhabditis elegans. FEBS Lett 449(2–3):259–263

    CAS  PubMed  Google Scholar 

  120. Mortusewicz O, Ame JC, Schreiber V, Leonhardt H (2007) Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res 35(22):7665–7675

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F (2014) Poly(ADP-ribose) polymerases in double-strand break repair: Focus on PARP1, PARP2 and PARP3. Exp Cell Res 329(1):18–25

    CAS  PubMed  Google Scholar 

  122. Beck C, Boehler C, Guirouilh Barbat J, Bonnet ME, Illuzzi G, Ronde P, Gauthier LR, Magroun N, Rajendran A, Lopez BS, Scully R, Boussin FD, Schreiber V, Dantzer F (2014) PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Res 42(9):5616–5632

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Rulten SL, Fisher AE, Robert I, Zuma MC, Rouleau M, Ju L, Poirier G, Reina-San-Martin B, Caldecott KW (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell 41(1):33–45

    CAS  PubMed  Google Scholar 

  124. Han SP, Tang YH, Smith R (2010) Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 430(3):379–392

    CAS  PubMed  Google Scholar 

  125. Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Tsutui K, Nakagawa S (2010) The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 19(3):469–476

    CAS  PubMed  Google Scholar 

  126. Haley B, Paunesku T, Protic M, Woloschak GE (2009) Response of heterogeneous ribonuclear proteins (hnRNP) to ionising radiation and their involvement in DNA damage repair. Int J Radiat Biol 85(8):643–655

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Berglund FM, Clarke PR (2009) hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks. Biochem Biophys Res Commun 381(1):59–64

    CAS  PubMed  Google Scholar 

  128. Mandal SM, Hegde ML, Chatterjee A, Hegde PM, Szczesny B, Banerjee D, Boldogh I, Gao R, Falkenberg M, Gustafsson CM, Sarkar PS, Hazra TK (2012) Role of human DNA glycosylase Nei-like 2 (NEIL2) and single strand break repair protein polynucleotide kinase 3′-phosphatase in maintenance of mitochondrial genome. J Biol Chem 287(4):2819–2829

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Britton S, Froment C, Frit P, Monsarrat B, Salles B, Calsou P (2009) Cell nonhomologous end joining capacity controls SAF-A phosphorylation by DNA-PK in response to DNA double-strand breaks inducers. Cell Cycle 8(22):3717–3722

    CAS  PubMed  Google Scholar 

  130. Polo SE, Blackford AN, Chapman JR, Baskcomb L, Gravel S, Rusch A, Thomas A, Blundred R, Smith P, Kzhyshkowska J, Dobner T, Taylor AM, Turnell AS, Stewart GS, Grand RJ, Jackson SP (2012) Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair. Mol Cell 45(4):505–516

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN (2011) Y-box-binding protein 1 (YB-1) and its functions. Biochemistry (Mosc) 76(13):1402–1433

    CAS  Google Scholar 

  132. Ise T, Nagatani G, Imamura T, Kato K, Takano H, Nomoto M, Izumi H, Ohmori H, Okamoto T, Ohga T, Uchiumi T, Kuwano M, Kohno K (1999) Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res 59(2):342–346

    CAS  PubMed  Google Scholar 

  133. Gaudreault I, Guay D, Lebel M (2004) YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res 32(1):316–327

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Das S, Chattopadhyay R, Bhakat KK, Boldogh I, Kohno K, Prasad R, Wilson SH, Hazra TK (2007) Stimulation of NEIL2-mediated oxidized base excision repair via YB-1 interaction during oxidative stress. J Biol Chem 282(39):28474–28484

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Lyabin DN, Eliseeva IA, Ovchinnikov LP (2014) YB-1 protein: functions and regulation. Wiley Interdiscip Rev RNA 5(1):95–110

    CAS  PubMed  Google Scholar 

  136. Marenstein DR, Ocampo MT, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, Teebor GW (2001) Stimulation of human endonuclease III by Y box-binding protein 1 (DNA-binding protein B). Interaction between a base excision repair enzyme and a transcription factor. J Biol Chem 276(24):21242–21249

    CAS  PubMed  Google Scholar 

  137. Pestryakov P, Zharkov DO, Grin I, Fomina EE, Kim ER, Hamon L, Eliseeva IA, Petruseva IO, Curmi PA, Ovchinnikov LP, Lavrik OI (2012) Effect of the multifunctional proteins RPA, YB-1, and XPC repair factor on AP site cleavage by DNA glycosylase NEIL1. J Mol Recognit 25(4):224–233

    CAS  PubMed  Google Scholar 

  138. Cohen SB, Ma W, Valova VA, Algie M, Harfoot R, Woolley AG, Robinson PJ, Braithwaite AW (2010) Genotoxic stress-induced nuclear localization of oncoprotein YB-1 in the absence of proteolytic processing. Oncogene 29(3):403–410

    CAS  PubMed  Google Scholar 

  139. Liu Y, Prasad R, Wilson SH (2010) HMGB1: roles in base excision repair and related function. Biochim Biophys Acta 1799(1–2):119–130

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Lange SS, Reddy MC, Vasquez KM (2009) Human HMGB1 directly facilitates interactions between nucleotide excision repair proteins on triplex-directed psoralen interstrand crosslinks. DNA Repair (Amst) 8(7):865–872

    CAS  Google Scholar 

  141. Lange SS, Vasquez KM (2009) HMGB1: the jack-of-all-trades protein is a master DNA repair mechanic. Mol Carcinog 48(7):571–580

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Prasad R, Liu Y, Deterding LJ, Poltoratsky VP, Kedar PS, Horton JK, Kanno S, Asagoshi K, Hou EW, Khodyreva SN, Lavrik OI, Tomer KB, Yasui A, Wilson SH (2007) HMGB1 is a cofactor in mammalian base excision repair. Mol Cell 27(5):829–841

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Bonaldi T, Langst G, Strohner R, Becker PB, Bianchi ME (2002) The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J 21(24):6865–6873

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Lange SS, Mitchell DL, Vasquez KM (2008) High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc Natl Acad Sci USA 105(30):10320–10325

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Belgrano FS, de Abreu da Silva IC, Bastos de Oliveira FM, Fantappie MR, Mohana-Borges R (2013) Role of the acidic tail of high mobility group protein B1 (HMGB1) in protein stability and DNA bending. PLoS ONE 8(11):e79572

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Ugrinova I, Zlateva S, Pashev IG, Pasheva EA (2009) Native HMGB1 protein inhibits repair of cisplatin-damaged nucleosomes in vitro. Int J Biochem Cell Biol 41(7):1556–1562

    CAS  PubMed  Google Scholar 

  147. Topalova D, Ugrinova I, Pashev IG, Pasheva EA (2008) HMGB1 protein inhibits DNA replication in vitro: a role of the acetylation and the acidic tail. Int J Biochem Cell Biol 40(8):1536–1542

    CAS  PubMed  Google Scholar 

  148. Jeppesen DK, Bohr VA, Stevnsner T (2011) DNA repair deficiency in neurodegeneration. Prog Neurobiol 94(2):166–200

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Cheng CX, Xue M, Li K, Li WS (2012) Predictive value of XRCC1 and XRCC3 gene polymorphisms for risk of ovarian cancer death after chemotherapy. Asian Pac J Cancer Prev 13(6):2541–2545

    PubMed  Google Scholar 

  150. Chiyomaru K, Nagano T, Nishigori C (2012) XRCC1 Arg194Trp polymorphism, risk of nonmelanoma skin cancer and extramammary Paget’s disease in a Japanese population. Arch Dermatol Res 304(5):363–370

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Muniz-Mendoza R, Ayala-Madrigal ML, Partida-Perez M, Peregrina-Sandoval J, Leal-Ugarte E, Macias-Gomez N, Peralta-Leal V, Meza-Espinoza JP, Moreno-Ortiz JM, Ramirez-Ramirez R, Suarez-Villanueva S, Gutierrez-Angulo M (2012) MLH1 and XRCC1 polymorphisms in Mexican patients with colorectal cancer. Genet Mol Res 11(3):2315–2320

    CAS  PubMed  Google Scholar 

  152. Nakao M, Hosono S, Ito H, Watanabe M, Mizuno N, Sato S, Yatabe Y, Yamao K, Ueda R, Tajima K, Tanaka H, Matsuo K (2012) Selected polymorphisms of base excision repair genes and pancreatic cancer risk in Japanese. J Epidemiol 22(6):477–483

    PubMed  Google Scholar 

  153. Wang N, Wu YJ, Zhou XL, Wu YM (2012) The polymorphisms of XRCC1 gene and susceptibility to pulmonary cancer. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 30(1):41–44

    PubMed  Google Scholar 

  154. Zhi Y, Yu J, Liu Y, Wei Q, Yuan F, Zhou X, Song B, Chen Z, Yang J (2012) Interaction between polymorphisms of DNA repair genes significantly modulated bladder cancer risk. Int J Med Sci 9(6):498–505

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Sultana R, Abdel-Fatah T, Perry C, Moseley P, Albarakti N, Mohan V, Seedhouse C, Chan S, Madhusudan S (2013) Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS ONE 8(2):e57098

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C, Ball G, Chan S, Rakha EA, Ellis IO, Madhusudan S (2013) Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res 73(5):1621–1634

    CAS  PubMed  Google Scholar 

  157. Abdel-Fatah T, Sultana R, Abbotts R, Hawkes C, Seedhouse C, Chan S, Madhusudan S (2013) Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int J Cancer 132(12):2778–2786

    CAS  PubMed  Google Scholar 

  158. Chen B, Zhou Y, Yang P, Wu XT (2012) Polymorphisms of XRCC1 and gastric cancer susceptibility: a meta-analysis. Mol Biol Rep 39(2):1305–1313

    CAS  PubMed  Google Scholar 

  159. Tebbs RS, Flannery ML, Meneses JJ, Hartmann A, Tucker JD, Thompson LH, Cleaver JE, Pedersen RA (1999) Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol 208(2):513–529

    CAS  PubMed  Google Scholar 

  160. Ladiges WC (2006) Mouse models of XRCC1 DNA repair polymorphisms and cancer. Oncogene 25(11):1612–1619

    CAS  PubMed  Google Scholar 

  161. Idogawa M, Yamada T, Honda K, Sato S, Imai K, Hirohashi S (2005) Poly(ADP-ribose) polymerase-1 is a component of the oncogenic T-cell factor-4/beta-catenin complex. Gastroenterology 128(7):1919–1936

    CAS  PubMed  Google Scholar 

  162. Prasad SC, Thraves PJ, Bhatia KG, Smulson ME, Dritschilo A (1990) Enhanced poly(adenosine diphosphate ribose) polymerase activity and gene expression in Ewing’s sarcoma cells. Cancer Res 50(1):38–43

    CAS  PubMed  Google Scholar 

  163. Nosho K, Yamamoto H, Mikami M, Taniguchi H, Takahashi T, Adachi Y, Imamura A, Imai K, Shinomura Y (2006) Overexpression of poly(ADP-ribose) polymerase-1 (PARP-1) in the early stage of colorectal carcinogenesis. Eur J Cancer 42(14):2374–2381

    CAS  PubMed  Google Scholar 

  164. Tomoda T, Kurashige T, Moriki T, Yamamoto H, Fujimoto S, Taniguchi T (1991) Enhanced expression of poly(ADP-ribose) synthetase gene in malignant lymphoma. Am J Hematol 37(4):223–227

    CAS  PubMed  Google Scholar 

  165. Ghabreau L, Roux JP, Frappart PO, Mathevet P, Patricot LM, Mokni M, Korbi S, Wang ZQ, Tong WM, Frappart L (2004) Poly(ADP-ribose) polymerase-1, a novel partner of progesterone receptors in endometrial cancer and its precursors. Int J Cancer 109(3):317–321

    CAS  PubMed  Google Scholar 

  166. Ossovskaya V, Koo IC, Kaldjian EP, Alvares C, Sherman BM (2010) Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer 1(8):812–821

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Quiles-Perez R, Munoz-Gamez JA, Ruiz-Extremera A, O’Valle F, Sanjuan-Nunez L, Martin-Alvarez AB, Martin-Oliva D, Caballero T, Munoz de Rueda P, Leon J, Gonzalez R, Muntane J, Oliver FJ, Salmeron J (2010) Inhibition of poly adenosine diphosphate-ribose polymerase decreases hepatocellular carcinoma growth by modulation of tumor-related gene expression. Hepatology 51(1):255–266

    CAS  PubMed  Google Scholar 

  168. Weil MK, Chen AP (2011) PARP inhibitor treatment in ovarian and breast cancer. Curr Probl Cancer 35(1):7–50

    PubMed Central  PubMed  Google Scholar 

  169. Brustmann H (2007) Poly(adenosine diphosphate-ribose) polymerase expression in serous ovarian carcinoma: correlation with p53, MIB-1, and outcome. Int J Gynecol Pathol 26(2):147–153

    PubMed  Google Scholar 

  170. Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, Giri U, Peyton M, Fan YH, Diao L, Masrorpour F, Shen L, Liu W, Duchemann B, Tumula P, Bhardwaj V, Welsh J, Weber S, Glisson BS, Kalhor N, Wistuba II, Girard L, Lippman SM, Mills GB, Coombes KR, Weinstein JN, Minna JD, Heymach JV (2012) Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov 2(9):798–811

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Cheng H, Zhang Z, Borczuk A, Powell CA, Balajee AS, Lieberman HB, Halmos B (2013) PARP inhibition selectively increases sensitivity to cisplatin in ERCC1-low non-small cell lung cancer cells. Carcinogenesis 34(4):739–749

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Wilson DM 3rd, Kim D, Berquist BR, Sigurdson AJ (2011) Variation in base excision repair capacity. Mutat Res 711(1–2):100–112

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Nemec AA, Wallace SS, Sweasy JB (2010) Variant base excision repair proteins: contributors to genomic instability. Semin Cancer Biol 20(5):320–328

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A, Reis-Filho JS (2011) Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle 10(8):1192–1199

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Hegde ML, Hegde PM, Holthauzen LM, Hazra TK, Rao KS, Mitra S (2010) Specific Inhibition of NEIL-initiated repair of oxidized base damage in human genome by copper and iron: potential etiological linkage to neurodegenerative diseases. J Biol Chem 285(37):28812–28825

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Tomkinson AE, Howes TR, Wiest NE (2013) DNA ligases as therapeutic targets. Transl Cancer Res 2(3)

  177. Tomkinson AE, Chen L, Dong Z, Leppard JB, Levin DS, Mackey ZB, Motycka TA (2001) Completion of base excision repair by mammalian DNA ligases. Prog Nucleic Acid Res Mol Biol 68:151–164

    CAS  PubMed  Google Scholar 

  178. Lillenes MS, Espeseth T, Stoen M, Lundervold AJ, Frye SA, Rootwelt H, Reinvang I, Tonjum T (2011) DNA base excision repair gene polymorphisms modulate human cognitive performance and decline during normal life span. Mech Ageing Dev 132(8–9):449–458

    CAS  PubMed  Google Scholar 

  179. Liu Y, Prasad R, Beard WA, Hou EW, Horton JK, McMurray CT, Wilson SH (2009) Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion. J Biol Chem 284(41):28352–28366

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Noren Hooten N, Kompaniez K, Barnes J, Lohani A, Evans MK (2011) Poly(ADP-ribose) polymerase 1 (PARP-1) binds to 8-oxoguanine-DNA glycosylase (OGG1). J Biol Chem 286(52):44679–44690

    PubMed Central  PubMed  Google Scholar 

  181. Harris JL, Jakob B, Taucher-Scholz G, Dianov GL, Becherel OJ, Lavin MF (2009) Aprataxin, poly-ADP ribose polymerase 1 (PARP-1) and apurinic endonuclease 1 (APE1) function together to protect the genome against oxidative damage. Hum Mol Genet 18(21):4102–4117

    CAS  PubMed  Google Scholar 

  182. Kleppa L, Mari PO, Larsen E, Lien GF, Godon C, Theil AF, Nesse GJ, Wiksen H, Vermeulen W, Giglia-Mari G, Klungland A (2012) Kinetics of endogenous mouse FEN1 in base excision repair. Nucleic Acids Res 40(18):9044–9059

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Koch CA, Agyei R, Galicia S, Metalnikov P, O’Donnell P, Starostine A, Weinfeld M, Durocher D (2004) Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV. EMBO J 23(19):3874–3885

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi AI (2003) Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners. J Biol Chem 278(41):39265–39268

    CAS  PubMed  Google Scholar 

  185. Sukhanova M, Khodyreva S, Lavrik O (2010) Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase beta in long patch base excision repair. Mutat Res 685(1–2):80–89

    CAS  PubMed  Google Scholar 

  186. Leppard JB, Dong Z, Mackey ZB, Tomkinson AE (2003) Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol 23(16):5919–5927

    PubMed Central  CAS  PubMed  Google Scholar 

  187. von Kobbe C, Harrigan JA, Schreiber V, Stiegler P, Piotrowski J, Dawut L, Bohr VA (2004) Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Res 32(13):4003–4014

    Google Scholar 

  188. Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH (2012) Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res 40(9):4168–4177

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18(6):3563–3571

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Luo H, Chan DW, Yang T, Rodriguez M, Chen BP, Leng M, Mu JJ, Chen D, Songyang Z, Wang Y, Qin J (2004) A new XRCC1-containing complex and its role in cellular survival of methyl methanesulfonate treatment. Mol Cell Biol 24(19):8356–8365

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Dianova II, Sleeth KM, Allinson SL, Parsons JL, Breslin C, Caldecott KW, Dianov GL (2004) XRCC1-DNA polymerase beta interaction is required for efficient base excision repair. Nucleic Acids Res 32(8):2550–2555

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Cuneo MJ, London RE (2010) Oxidation state of the XRCC1N-terminal domain regulates DNA polymerase beta binding affinity. Proc Natl Acad Sci USA 107(15):6805–6810

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Caldecott KW, McKeown CK, Tucker JD, Ljungquist S, Thompson LH (1994) An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol 14(1):68–76

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Cuneo MJ, Gabel SA, Krahn JM, Ricker MA, London RE (2011) The structural basis for partitioning of the XRCC1/DNA ligase III-alpha BRCT-mediated dimer complexes. Nucleic Acids Res 39(17):7816–7827

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Mortusewicz O, Leonhardt H (2007) XRCC1 and PCNA are loading platforms with distinct kinetic properties and different capacities to respond to multiple DNA lesions. BMC Mol Biol 8:81

    PubMed Central  PubMed  Google Scholar 

  196. Levy N, Martz A, Bresson A, Spenlehauer C, de Murcia G, Menissier-de Murcia J (2006) XRCC1 is phosphorylated by DNA-dependent protein kinase in response to DNA damage. Nucleic Acids Res 34(1):32–41

    PubMed Central  CAS  PubMed  Google Scholar 

  197. Chang YW, Mai RT, Fang WH, Lin CC, Chiu CC, Wu Lee YH (2013) YB-1 disrupts mismatch repair complex formation, interferes with MutSalpha recruitment on mismatch and inhibits mismatch repair through interacting with PCNA. Oncogene, 1–13

Download references

Acknowledgments

The authors’ research is supported by US Public Health Services Research grants R01 CA158910 (SM), R01 GM105090 (SM), P01 CA92584 (SM), and Muscular Dystrophy Association (MDA 294842; MLH) and ALS Association (ALSA 15-IIP-204; MLH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sankar Mitra or Muralidhar L. Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Yang, C., Sengupta, S. et al. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell. Mol. Life Sci. 72, 1679–1698 (2015). https://doi.org/10.1007/s00018-014-1820-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1820-z

Keywords

Navigation