Skip to main content

Advertisement

Log in

Functional and pharmacological induced structural changes of the cystic fibrosis transmembrane conductance regulator in the membrane solved using SAXS

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a membrane-integral protein that belongs to the ATP-binding cassette superfamily. Mutations in the CFTR gene cause cystic fibrosis in which salt, water, and protein transports are defective in various tissues. To investigate the conformation of the CFTR in the membrane, we applied the small-angle x-ray scattering (SAXS) technique on microsomal membranes extracted from NIH/3T3 cells permanentely transfected with wild-type (WT) CFTR and with CFTR carrying the ΔF508 mutation. The electronic density profile of the membranes was calculated from the SAXS data, assuming the lipid bilayer electronic density to be composed by a series of Gaussian shells. The data indicate that membranes in the microsome vesicles, that contain mostly endoplasmic reticulum membranes, are oriented in the outside-out conformation. Phosphorylation does not change significantly the electronic density profile, while dephosphorylation produces a significant modification in the inner side of the profile. Thus, we conclude that the CFTR and its associated protein complex in microsomes are mostly phosphorylated. The electronic density profile of the ΔF508-CFTR microsomes is completely different from WT, suggesting a different assemblage of the proteins in the membranes. Low-temperature treatment of cells rescues the ΔF508-CFTR protein, resulting in a conformation that resembles the WT. Differently, treatment with the corrector VX-809 modifies the electronic profile of ΔF508-CFTR membrane, but does not recover completely the WT conformation. To our knowledge, this is the first report of a direct physical measurement of the structure of membranes containing CFTR in its native environment and in different functional and pharmacological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Awayn NH, Rosenberg MF, Kamis AB, Aleksandrov LA, Riordan JR, Ford RC (2005) Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Biochem Soc Trans 33:996–999

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg MF, Kamis AB, Aleksandrov LA, Ford RC, Riordan JR (2004) Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 279:39051–39057

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg MF, O’Ryan LP, Hughes G, Zhao Z, Aleksandrov LA, Riordan JR, Ford RC (2011) The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate. J Biol Chem 286:42647–42654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Zhang L, Aleksandrov LA, Zhao Z, Birtley JR, Riordan JR, Ford RC (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 167:242–251

    Article  CAS  PubMed  Google Scholar 

  5. Marasini C, Galeno L, Moran O (2013) A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Cell Mol Life Sci 70:923–933

    Article  CAS  PubMed  Google Scholar 

  6. Galeno L, Galfrè E, Moran O (2011) Small-angle X-ray scattering study of the ATP modulation of the structural features of the nucleotide binding domains of the CFTR in solution. Eur Biophys J 40:811–824

    Article  CAS  PubMed  Google Scholar 

  7. Galfrè E, Galeno L, Moran O (2012) A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution. Cell Mol Life Sci 69:3701–3713

    Article  PubMed  Google Scholar 

  8. Atwell S, Brouillette CG, Conners K, Emtage S, Gheyi T, Guggino WB, Hendle J, Hunt JF, Lewis HA, Lu F, Protasevich II, Rodgers LA, Romero R, Wasserman SR, Weber PC, Wetmore D, Zhang FF, Zhao X (2010) Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant. Protein Eng Des Sel 23:375–384

    Article  CAS  PubMed  Google Scholar 

  9. Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, Maloney PC, Guggino WB, Hunt JF, Emtage S (2005) Impact of the DeltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J Biol Chem 280:1346–1353

    Article  CAS  PubMed  Google Scholar 

  11. Mertens HDT, Svergun DI (2010) Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172:128–141

    Article  CAS  PubMed  Google Scholar 

  12. Stuhrmann HB (2008) Small-angle scattering and its interplay with crystallography, contrast variation in SAXS and SANS. Acta Crystallogr A 64:181–191

    Article  CAS  PubMed  Google Scholar 

  13. Sano Y, Inoue H, Kajiwara K, Hiragi Y, Isoda S (1997) Structural analysis of A-protein of cucumber green mottle mosaic virus and tobacco mosaic virus by synchrotron small-angle X-ray scattering. J Protein Chem 16:151–159

    Article  CAS  PubMed  Google Scholar 

  14. Svergun DI, Burkhardt N, Pedersen JS, Koch MH, Volkov VV, Kozin MB, Meerwink W, Stuhrmann HB, Diedrich G, Nierhaus KH (1997) Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. II. A model of the ribosome and its RNA at 3.5 nm resolution. J Mol Biol 271:602–618

    Article  CAS  PubMed  Google Scholar 

  15. Castorph S, Riedel D, Arleth L, Sztucki M, Jahn R, Holt M, Salditt T (2010) Structure parameters of synaptic vesicles quantified by small-angle x-ray scattering. Biophys J 98:1200–1208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Aleksandrov L, Mengos A, Chang X, Aleksandrov A, Riordan JR (2001) Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 276:12918–12923

    Article  CAS  PubMed  Google Scholar 

  17. Gunderson KL, Kopito RR (1994) Effects of pyrophosphate and nucleotide analogs suggest a role for ATP hydrolysis in cystic fibrosis transmembrane regulator channel gating. J Biol Chem 269:19349–19353

    CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  19. Körschen HG, Yildiz Y, Raju DN, Schonauer S, Bönigk W, Jansen V, Kremmer E, Kaupp UB, Wachten D (2013) The non-lysosomal β-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem 288:3381–3393

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kong E, Peng S, Chandra G, Sarkar C, Zhang Z, Bagh MB, Mukherjee AB (2013) Dynamic palmitoylation links cytosol-membrane shuttling of acyl-protein thioesterase-1 and acyl-protein thioesterase-2 with that of proto-oncogene H-ras product and growth-associated protein-43. J Biol Chem 288:9112–9125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mondini A, Sassone F, Civello DA, Garavaglia ML, Bazzini C, Rodighiero S, Vezzoli V, Conti F, Torielli L, Capasso G, Paulmichl M, Meyer G (2012) Hypertension-linked mutation of α-adducin increases CFTR surface expression and activity in HEK and cultured rat distal convoluted tubule cells. PLoS One 7:e52014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726

    Article  CAS  PubMed  Google Scholar 

  23. Guinier A (1994) X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. Courier Dover Publications, San Francisco and London

    Google Scholar 

  24. Brzustowicz MR, Brunger AT (2005) X-ray scattering from unilamellar lipid vesicles. J Appl Cryst 38:126–131

    Article  CAS  Google Scholar 

  25. Wibo M, Amar-Costesec A, Berthet J, Beaufay H (1971) Electron microscope examination of subcellular fractions. 3. Quantitative analysis of the microsomal fraction isolated from rat liver. J Cell Biol 51:52–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lavoie C, Lanoix J, Kan FW, Paiement J (1996) Cell-free assembly of rough and smooth endoplasmic reticulum. J Cell Sci 109(Pt 6):1415–1425

    CAS  PubMed  Google Scholar 

  27. Castorph S, Arleth L, Sztucki M, Vainio U, Ghosh SK, Holt M, Jahn R, Salditt T (2010) Synaptic vesicles studied by SAXS: derivation and validation of a model form factor. J Phys Conf Ser 247:012015

    Article  Google Scholar 

  28. Baroni D, Zegarra-Moran O, Svensson A, Moran O (2014) Direct interaction of a CFTR potentiator and a CFTR corrector with phospholipid bilayers. Eur Biophys J 43:341–346

    Article  CAS  PubMed  Google Scholar 

  29. Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high-quality X-ray data. Phys Rev E 62:4000–4009

    Article  CAS  Google Scholar 

  30. De Duve C (1971) Tissue fractionation past and present. J Cell Biol 50:20d–55d

    Article  PubMed  Google Scholar 

  31. Palade GE, Siekevits P (1956) Liver microsomes: an integrated morphological and biochemical study. J Biophys Biochem Cytol. 2:171–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Blouin A, Bolender RP, Weibel ER (1977) Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 72:441–455

    Article  CAS  PubMed  Google Scholar 

  33. Croze EM, Morré DJ (1984) Isolation of plasma membrane, golgi apparatus, and endoplasmic reticulum fractions from single homogenates of mouse liver. J Cell Physiol 119:46–57

    Article  CAS  PubMed  Google Scholar 

  34. Saeger W, Rübenach-Gerz K, Caselitz J, Lüdecke DK (1987) Electron microscopical morphometry of GH producing pituitary adenomas in comparison with normal GH cells. Virchows Arch A Pathol Anat Histopathol 411:467–472

    Article  CAS  PubMed  Google Scholar 

  35. Navas P, Nowack DD, Morré DJ (1989) Isolation of purified plasma membranes from cultured cells and hepatomas by two-phase partition and preparative free-flow electrophoresis. Cancer Res 49:2147–2156

    CAS  PubMed  Google Scholar 

  36. Moran O (2014) On the structural organization of the intracellular domains of CFTR. Int J Biochem Cell Biol 52C:7–14

    Article  Google Scholar 

  37. Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR, Balch WE (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127:803–815

    Article  CAS  PubMed  Google Scholar 

  38. Ahner A, Gong X, Frizzell RA (2013) Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways. FEBS J 280:4430–4438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Edelman A (2014) Cytoskeleton and CFTR. Int J Biochem Cell Biol 52C:68–72

    Article  Google Scholar 

  40. Pranke IM, Sermet-Gaudelus I (2014) Biosynthesis of cystic fibrosis transmembrane conductance regulator. Int J Biochem Cell Biol 52C:26–38

    Article  Google Scholar 

  41. Zhang F, Kartner N, Lukacs GL (1998) Limited proteolysis as a probe for arrested conformational maturation of delta F508 CFTR. Nat Struct Biol 5:180–183

    Article  CAS  PubMed  Google Scholar 

  42. Bouwstra JA, Gooris GS, Bras W, Talsma H (1993) Small angle X-ray scattering: possibilities and limitations in characterization of vesicles. Chem Phys Lipids 64:83–98

    Article  CAS  PubMed  Google Scholar 

  43. Hirai M, Iwase H, Hayakawa T, Koizumi M, Takahashi H (2003) Determination of asymmetric structure of ganglioside-DPPC mixed vesicle using SANS, SAXS, and DLS. Biophys J 85:1600–1610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Herbette L, Scarpa A, Blasie JK, Wang CT, Saito A, Fleischer S (1981) Comparison of the profile structures of isolated and reconstituted sarcoplasmic reticulum membranes. Biophys J 36:47–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Chang XB, Hou YX, Riordan JR (1997) ATPase activity of purified multidrug resistance-associated protein. J Biol Chem 272:30962–30968

    Article  CAS  PubMed  Google Scholar 

  46. Rich DP, Berger HA, Cheng SH, Travis SM, Saxena M, Smith AE, Welsh MJ (1993) Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. J Biol Chem 268:20259–20267

    CAS  PubMed  Google Scholar 

  47. Rich DP, Gregory RJ, Anderson MP, Manavalan P, Smith AE, Welsh MJ (1991) Effect of deleting the R domain on CFTR-generated chloride channels. Science 253:205–207

    Article  CAS  PubMed  Google Scholar 

  48. Dulhanty AMRJ (1994) Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator. Biochemistry 33:4072–4079

    Article  CAS  PubMed  Google Scholar 

  49. Kanelis V, Hudson RP, Thibodeau PH, Thomas PJ, Forman-Kay JD (2010) NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR. EMBO J 29:263–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Marasini C, Galeno L, Moran O (2012) Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR. Biochem Biophys Res Commun 423:549–552

    Article  CAS  PubMed  Google Scholar 

  51. Baker JMR, Hudson RP, Kanelis V, Choy W, Thibodeau PH, Thomas PJ, Forman-Kay JD (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14:738–745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Lukacs GL, Chang XB, Bear C, Kartner N, Mohamed A, Riordan JR, Grinstein S (1993) The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J Biol Chem 268:21592–21598

    CAS  PubMed  Google Scholar 

  53. Sharma M, Benharouga M, Hu W, Lukacs GL (2001) Conformational and temperature-sensitive stability defects of the delta F508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J Biol Chem 276:8942–8950

    Article  CAS  PubMed  Google Scholar 

  54. Thibodeau PH, Richardson JM, Wang W, Millen L, Watson J, Mendoza JL, Du K, Fischman S, Senderowitz H, Lukacs GL, Kirk K, Thomas PJ (2010) The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. J Biol Chem 285:35825–35835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Du K, Sharma M, Lukacs GL (2005) The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat Struct Mol Biol 12:17–25

    Article  CAS  PubMed  Google Scholar 

  56. Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O, Galietta LJ, Verkman AS (2005) Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest. 115:2564–2571 Epub 2005 Aug 25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Jurkuvenaite A, Chen L, Bartoszewski R, Goldstein R, Bebok Z, Matalon S, Collawn JF (2010) Functional stability of rescued delta F508 cystic fibrosis transmembrane conductance regulator in airway epithelial cells. Am J Respir Cell Mol Biol 42:363–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Rowe SM, Pyle LC, Jurkevante A, Varga K, Collawn J, Sloane PA, Woodworth B, Mazur M, Fulton J, Fan L, Li Y, Fortenberry J, Sorscher EJ, Clancy JP (2010) DeltaF508 CFTR processing correction and activity in polarized airway and non-airway cell monolayers. Pulm Pharmacol Ther 23:268–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528

    Article  CAS  PubMed  Google Scholar 

  60. Haws CM, Nepomuceno IB, Krouse ME, Wakelee H, Law T, Xia Y, Nguyen H, Wine JJ (1996) Delta F508-CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines. Am J Physiol 270:C1544–C1555

    CAS  PubMed  Google Scholar 

  61. Jih K, Li M, Hwang T, Bompadre SG (2011) The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. J Physiol 589:2719–2731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Fondazione per la Ricerca sulla Fibrosi Cistica, grant FFC#4/2012. These experiments were performed at the BL11-NCD beamline of ALBA Synchrotron Light Facility with financial support of the facility and the collaboration of ALBA staff. We thank Marc Malfois, Agneta Svenson and Christina Kamma-Lorger for the technical assistance at the synchrotron beamline. We are indebted to Dr. Cristina D’Arrigo for helping with the EM experiments. We thank also Alessandro Barbin for the construction of the sample cell for SAXS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Moran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1891 kb)

Supplementary material 2 (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroni, D., Zegarra-Moran, O. & Moran, O. Functional and pharmacological induced structural changes of the cystic fibrosis transmembrane conductance regulator in the membrane solved using SAXS. Cell. Mol. Life Sci. 72, 1363–1375 (2015). https://doi.org/10.1007/s00018-014-1747-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1747-4

Keywords

Navigation