Skip to main content
Log in

Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Theveneau E, Mayor R (2012) Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration. Developmental Biology 366 (1):34-54. doi:http://dx.doi.org/10.1016/j.ydbio.20112.041

  2. Richardson BE, Lehmann R (2010) Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 11 (1):37-49. doi:http://www.nature.com/nrm/journal/v11/n1/suppinfo/nrm2815_S1.html

  3. Sadik CD, Luster AD (2012) Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J Leukoc Biol 91(2):207–215. doi:10.1189/jlb.0811402

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175

    PubMed  CAS  Google Scholar 

  5. Sixt M (2011) Interstitial locomotion of leukocytes. Immunology Letters 138 (1):32-34. doi:http://dx.doi.org/10.1016/j.imlet.2011.02.013

  6. Zernecke A, Weber C (2010) Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res 86(2):192–201. doi:10.1093/cvr/cvp391

    PubMed  CAS  Google Scholar 

  7. Bravo-Cordero JJ, Hodgson L, Condeelis J (2012) Directed cell invasion and migration during metastasis. Current Opinion in Cell Biology 24 (2):277-283. doi:http://dx.doi.org/10.1016/j.ceb.2011.12.004

  8. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453 (7191):51-55. doi:http://www.nature.com/nature/journal/v453/n7191/suppinfo/nature06887_S1.html

  9. Friedl P, Zänker KS, Bröcker E-B (1998) Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 43(5):369–378. doi:10.1002/(sici)1097-0029(19981201)43:5<369:aid-jemt3>3.0.co;2-6

    PubMed  CAS  Google Scholar 

  10. Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11 (8):573-587. doi:http://www.nature.com/nrc/journal/v11/n8/suppinfo/nrc3078_S1.html

  11. Rorth P (2012) Fellow travellers: emergent properties of collective cell migration. EMBO Rep 13(11):984–991

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14(8):777–783

    PubMed  Google Scholar 

  13. Li L, Norrelykke SF, Cox EC (2008) Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS ONE 3(5):e2093. doi:10.1371/journal.pone.0002093

    PubMed  PubMed Central  Google Scholar 

  14. Takagi H, Sato MJ, Yanagida T, Ueda M (2008) Functional analysis of spontaneous cell movement under different physiological conditions. PLoS ONE 3(7):e2648. doi:10.1371/journal.pone.0002648

    PubMed  PubMed Central  Google Scholar 

  15. Li L, Cox EC, Flyvbjerg H (2011) ‘Dicty dynamics’: Dictyostelium motility as persistent random motion. Phys Biol 8(4):046006. doi:10.1088/1478-3975/8/4/046006

    PubMed  PubMed Central  Google Scholar 

  16. Hu B, Fuller D, Loomis WF, Levine H, Rappel WJ (2010) Phenomenological approach to eukaryotic chemotactic efficiency. Phys Rev E: Stat, Nonlin, Soft Matter Phys 81(3 Pt 1):031906

    Google Scholar 

  17. Shi C, Huang CH, Devreotes PN, Iglesias PA (2013) Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells. PLoS Comput Biol 9(7):e1003122. doi:10.1371/journal.pcbi.1003122

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Huang CH, Tang M, Shi C, Iglesias PA, Devreotes PN (2013) An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat Cell Biol 15(11):1307–1316. doi:10.1038/ncb2859

    PubMed  CAS  Google Scholar 

  19. Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67(5):1414–1425. doi:10.1124/mol.104.009001

    PubMed  CAS  Google Scholar 

  20. Milne JL, Wu L, Caterina MJ, Devreotes PN (1995) Seven helix cAMP receptors stimulate Ca2+ entry in the absence of functional G proteins in Dictyostelium. J Biol Chem 270(11):5926–5931

    PubMed  CAS  Google Scholar 

  21. Milne JL, Kim JY, Devreotes PN (1997) Chemoattractant receptor signaling: G protein-dependent and -independent pathways. Adv Second Messenger Phosphoprotein Res 31:83–104

    PubMed  CAS  Google Scholar 

  22. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497(7447):137–141. doi:10.1038/nature12120

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Brandt SJ, Dougherty RW, Lapetina EG, Niedel JE (1985) Pertussis toxin inhibits chemotactic peptide-stimulated generation of inositol phosphates and lysosomal enzyme secretion in human leukemic (HL-60) cells. Proc Natl Acad Sci U S A 82(10):3277–3280

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Neptune ER, Bourne HR (1997) Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci U S A 94(26):14489–14494

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Van Keymeulen A, Wong K, Knight ZA, Govaerts C, Hahn KM, Shokat KM, Bourne HR (2006) To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. J Cell Biol 174(3):437–445. doi:10.1083/jcb.200604113

    PubMed  PubMed Central  Google Scholar 

  26. Kesbeke F, Vanhaastert PJM, Dewit RJW, Snaarjagalska BE (1990) Chemotaxis to Cyclic-Amp and Folic-Acid Is Mediated by Different G-Proteins in Dictyostelium-Discoideum. J Cell Sci 96:669–673

    CAS  Google Scholar 

  27. Zhang N, Long Y, Devreotes PN (2001) Ggamma in dictyostelium: its role in localization of gbetagamma to the membrane is required for chemotaxis in shallow gradients. Mol Biol Cell 12(10):3204–3213

    PubMed  CAS  PubMed Central  Google Scholar 

  28. DeFea KA (2007) Stop that cell! Beta-arrestin-dependent chemotaxis: a tale of localized actin assembly and receptor desensitization. Annu Rev Physiol 69:535–560. doi:10.1146/annurev.physiol.69.022405.154804

    PubMed  CAS  Google Scholar 

  29. Gao YJ (2010) Desensitization of vascular endothelin receptors by G protein-coupled receptor kinase 2. Cardiovasc Res 85(3):405–406. doi:10.1093/cvr/cvp392

    PubMed  CAS  Google Scholar 

  30. Xiao Z, Yao Y, Long Y, Devreotes P (1999) Desensitization of G-protein-coupled receptors. agonist-induced phosphorylation of the chemoattractant receptor cAR1 lowers its intrinsic affinity for cAMP. J Biol Chem 274(3):1440–1448

    PubMed  CAS  Google Scholar 

  31. Kim JY, Soede RD, Schaap P, Valkema R, Borleis JA, Van Haastert PJ, Devreotes PN, Hereld D (1997) Phosphorylation of chemoattractant receptors is not essential for chemotaxis or termination of G-protein-mediated responses. J Biol Chem 272(43):27313–27318

    PubMed  CAS  Google Scholar 

  32. Brzostowski JA, Sawai S, Rozov O, Liao XH, Imoto D, Parent CA, Kimmel AR (2013) Phosphorylation of chemoattractant receptors regulates chemotaxis, actin re-organization, and signal-relay. J Cell Sci. doi:10.1242/jcs.122952

    PubMed  PubMed Central  Google Scholar 

  33. Janetopoulos C, Jin T, Devreotes P (2001) Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291(5512):2408–2411. doi:10.1126/science.1055835

    PubMed  CAS  Google Scholar 

  34. Viola A, Luster AD (2008) Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 48:171–197. doi:10.1146/annurev.pharmtox.48.121806.154841

    PubMed  CAS  Google Scholar 

  35. Mellado M, Rodriguez-Frade JM, Manes S, Martinez AC (2001) Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19:397–421. doi:10.1146/annurev.immunol.19.1.397

    PubMed  CAS  Google Scholar 

  36. Xu X, Meckel T, Brzostowski JA, Yan J, Meier-Schellersheim M, Jin T (2010) Coupling mechanism of a GPCR and a heterotrimeric G protein during chemoattractant gradient sensing in Dictyostelium. Science signaling 3 (141):ra71. doi:10.1126/scisignal.2000980

  37. Van Haastert PJM (2010) Chemotaxis: insights from the extending pseudopod. J Cell Sci 123(18):3031–3037. doi:10.1242/jcs.071118

    PubMed  Google Scholar 

  38. Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44(1):1–8. doi:10.1016/j.cyto.2008.06.017

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Boulay F, Tardif M, Brouchon L, Vignais P (1990) The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry 29(50):11123–11133

    PubMed  CAS  Google Scholar 

  40. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184(3):1101–1109

    PubMed  CAS  Google Scholar 

  41. Lim CJ, Spiegelman GB, Weeks G (2002) Cytoskeletal regulation by Dictyostelium Ras subfamily proteins. J Muscle Res Cell Motil 23(7–8):729–736

    PubMed  CAS  Google Scholar 

  42. Sasaki AT, Chun C, Takeda K, Firtel RA (2004) Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. The Journal of Cell Biology 167(3):505–518. doi:10.1083/jcb.200406177

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Chubb JR, Wilkins A, Thomas GM, Insall RH (2000) The Dictyostelium RasS protein is required for macropinocytosis, phagocytosis and the control of cell movement. J Cell Sci 113(Pt 4):709–719

    PubMed  CAS  Google Scholar 

  44. Wilkins A, Khosla M, Fraser DJ, Spiegelman GB, Fisher PR, Weeks G, Insall RH (2000) Dictyostelium RasD is required for normal phototaxis, but not differentiation. Genes Dev 14(11):1407–1413

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Mondal S, Bakthavatsalam D, Steimle P, Gassen B, Rivero F, Noegel AA (2008) Linking Ras to myosin function: RasGEF Q, a Dictyostelium exchange factor for RasB, affects myosin II functions. The Journal of Cell Biology 181(5):747–760. doi:10.1083/jcb.200710111

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Sutherland BW, Spiegelman GB, Weeks G (2001) A Ras subfamily GTPase shows cell cycle-dependent nuclear localization. EMBO Rep 2(11):1024–1028. doi:10.1093/embo-reports/kve222

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Cai H, Das S, Kamimura Y, Long Y, Parent CA, Devreotes PN (2010) Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. J Cell Biol 190(2):233–245. doi:10.1083/jcb.201001129

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Zhang S, Charest PG, Firtel RA (2008) Spatiotemporal regulation of Ras activity provides directional sensing. Current biology : CB 18(20):1587–1593. doi:10.1016/j.cub.2008.08.069

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Srinivasan K, Wright GA, Hames N, Housman M, Roberts A, Aufderheide KJ, Janetopoulos C (2013) Delineating the core regulatory elements crucial for directed cell migration by examining folic-acid-mediated responses. J Cell Sci 126(Pt 1):221–233. doi:10.1242/jcs.113415

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Bolourani P, Spiegelman G, Weeks G (2010) Determinants of RasC specificity during Dictyostelium aggregation. J Biol Chem 285(53):41374–41379. doi:10.1074/jbc.M110.181115

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Khosla M, Spiegelman GB, Insall R, Weeks G (2000) Functional overlap of the dictyostelium RasG, RasD and RasB proteins. J Cell Sci 113(Pt 8):1427–1434

    PubMed  CAS  Google Scholar 

  52. Kortholt A, Kataria R, Keizer-Gunnink I, Van Egmond WN, Khanna A, Van Haastert PJ (2011) Dictyostelium chemotaxis: essential Ras activation and accessory signalling pathways for amplification. EMBO Rep 12(12):1273–1279. doi:10.1038/embor.2011.210

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Kae H, Lim CJ, Spiegelman GB, Weeks G (2004) Chemoattractant-induced Ras activation during Dictyostelium aggregation. EMBO Rep 5(6):602–606. doi:10.1038/sj.embor.7400151

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Kortholt A, Keizer-Gunnink I, Kataria R, Van Haastert PJ (2013) Ras activation and symmetry breaking during Dictyostelium chemotaxis. J Cell Sci. doi:10.1242/jcs.132340

    PubMed  Google Scholar 

  55. Kamimura Y, Xiong Y, Iglesias PA, Hoeller O, Bolourani P, Devreotes PN (2008) PIP3-Independent Activation of TorC2 and PKB at the Cell’s Leading Edge Mediates Chemotaxis. Current Biology 18 (14):1034-1043. doi:http://dx.doi.org/10.1016/j.cub.2008.06.068

  56. Funamoto S, Meili R, Lee S, Parry L, Firtel RA (2002) Spatial and Temporal Regulation of 3-Phosphoinositides by PI 3-Kinase and PTEN Mediates Chemotaxis. Cell 109 (5):611-623. doi:http://dx.doi.org/10.1016/S0092-8674(02)00755-9

  57. Kolsch V, Shen Z, Lee S, Plak K, Lotfi P, Chang J, Charest PG, Romero JL, Jeon TJ, Kortholt A, Briggs SP, Firtel RA (2013) Daydreamer, a Ras effector and GSK-3 substrate, is important for directional sensing and cell motility. Mol Biol Cell 24(2):100–114. doi:10.1091/mbc.E12-04-0271

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Teo R, Lewis KJ, Forde JE, Ryves WJ, Reddy JV, Rogers BJ, Harwood AJ (2010) Glycogen synthase kinase-3 is required for efficient Dictyostelium chemotaxis. Mol Biol Cell 21(15):2788–2796. doi:10.1091/mbc.E09-10-0891

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Taylor SJ, Shalloway D (1996) Cell cycle-dependent activation of Ras. Current biology : CB 6(12):1621–1627

    PubMed  CAS  Google Scholar 

  60. Insall RH, Borleis J, Devreotes PN (1996) The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Current biology : CB 6(6):719–729

    PubMed  CAS  Google Scholar 

  61. Charest PG, Firtel RA (2007) Big roles for small GTPases in the control of directed cell movement. Biochem J 401(2):377–390. doi:10.1042/BJ20061432

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Charest PG, Shen Z, Lakoduk A, Sasaki AT, Briggs SP, Firtel RA (2010) A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev Cell 18(5):737–749. doi:10.1016/j.devcel.2010.03.017

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Kae H, Kortholt A, Rehmann H, Insall RH, Van Haastert PJ, Spiegelman GB, Weeks G (2007) Cyclic AMP signalling in Dictyostelium: G-proteins activate separate Ras pathways using specific RasGEFs. EMBO Rep 8(5):477–482. doi:10.1038/sj.embor.7400936

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Takeda K, Shao D, Adler M, Charest PG, Loomis WF, Levine H, Groisman A, Rappel WJ, Firtel RA (2012) Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway. Science signaling 5 (205):ra2. doi:10.1126/scisignal.2002413

  65. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774. doi:10.1038/nrc3106

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Barbacid M (1987) ras genes. Annu Rev Biochem 56:779–827. doi:10.1146/annurev.bi.56.070187.004023

    PubMed  CAS  Google Scholar 

  67. Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R, Jacks T (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11(19):2468–2481

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Khosravi-Far R, Der CJ (1994) The Ras signal transduction pathway. Cancer metastasis reviews 13(1):67–89

    PubMed  CAS  Google Scholar 

  69. Worthen GS, Avdi N, Buhl AM, Suzuki N, Johnson GL (1994) FMLP activates Ras and Raf in human neutrophils. Potential role in activation of MAP kinase. J Clin Invest 94(2):815–823. doi:10.1172/JCI117401

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Knall C, Young S, Nick JA, Buhl AM, Worthen GS, Johnson GL (1996) Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem 271(5):2832–2838

    PubMed  CAS  Google Scholar 

  71. Zheng L, Sjolander A, Eckerdal J, Andersson T (1996) Antibody-induced engagement of beta 2 integrins on adherent human neutrophils triggers activation of p21ras through tyrosine phosphorylation of the protooncogene product Vav. Proc Natl Acad Sci U S A 93(16):8431–8436

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Weber KS, Ostermann G, Zernecke A, Schroder A, Klickstein LB, Weber C (2001) Dual role of H-Ras in regulation of lymphocyte function antigen-1 activity by stromal cell-derived factor-1alpha: implications for leukocyte transmigration. Mol Biol Cell 12(10):3074–3086

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Thelen M, Stein JV (2008) How chemokines invite leukocytes to dance. Nat Immunol 9(9):953–959. doi:10.1038/ni.f.207

    PubMed  CAS  Google Scholar 

  74. Patrussi L, Ulivieri C, Lucherini OM, Paccani SR, Gamberucci A, Lanfrancone L, Pelicci PG, Baldari CT (2007) p52Shc is required for CXCR4-dependent signaling and chemotaxis in T cells. Blood 110(6):1730–1738. doi:10.1182/blood-2007-01-068411

    PubMed  CAS  Google Scholar 

  75. Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103(6):931–943

    PubMed  CAS  Google Scholar 

  76. Suire S, Lecureuil C, Anderson KE, Damoulakis G, Niewczas I, Davidson K, Guillou H, Pan D, Jonathan C, Phillip TH, Stephens L (2012) GPCR activation of Ras and PI3Kc in neutrophils depends on PLCb2/b3 and the RasGEF RasGRP4. EMBO J 31(14):3118–3129. doi:10.1038/emboj.2012.167

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Zheng L, Eckerdal J, Dimitrijevic I, Andersson T (1997) Chemotactic peptide-induced activation of Ras in human neutrophils is associated with inhibition of p120-GAP activity. J Biol Chem 272(37):23448–23454

    PubMed  CAS  Google Scholar 

  78. Trovo-Marqui AB, Tajara EH (2006) Neurofibromin: a general outlook. Clin Genet 70(1):1–13. doi:10.1111/j.1399-0004.2006.00639.x

    PubMed  CAS  Google Scholar 

  79. Dormann D, Weijer G, Dowler S, Weijer CJ (2004) In vivo analysis of 3-phosphoinositide dynamics during Dictyostelium phagocytosis and chemotaxis. J Cell Sci 117(26):6497–6509. doi:10.1242/jcs.01579

    PubMed  CAS  Google Scholar 

  80. Loovers HM, Veenstra K, Snippe H, Pesesse X, Erneux C, van Haastert PJM (2003) A Diverse Family of Inositol 5-Phosphatases Playing a Role in Growth and Development in Dictyostelium discoideum. J Biol Chem 278(8):5652–5658. doi:10.1074/jbc.M208396200

    PubMed  CAS  Google Scholar 

  81. Iijima M, Huang YE, Luo HR, Vazquez F, Devreotes PN (2004) Novel Mechanism of PTEN Regulation by Its Phosphatidylinositol 4,5-Bisphosphate Binding Motif Is Critical for Chemotaxis. J Biol Chem 279(16):16606–16613. doi:10.1074/jbc.M312098200

    PubMed  CAS  Google Scholar 

  82. Drayer AL, Van der Kaay J, Mayr GW, Van Haastert PJ (1994) Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J 13(7):1601–1609

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Kortholt A, King JS, Keizer-Gunnink I, Harwood AJ, Van Haastert PJM (2007) Phospholipase C Regulation of Phosphatidylinositol 3,4,5-trisphosphate-mediated Chemotaxis. Mol Biol Cell 18(12):4772–4779. doi:10.1091/mbc.E07-05-0407

    PubMed  CAS  Google Scholar 

  84. Moniakis J, Funamoto S, Fukuzawa M, Meisenhelder J, Araki T, Abe T, Meili R, Hunter T, Williams J, Firtel RA (2001) An SH2-domain-containing kinase negatively regulates the phosphatidylinositol-3 kinase pathway. Genes Dev 15(6):687–698. doi:10.1101/gad.871001

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Meili R, Ellsworth C, Lee S, Reddy TBK, Ma H, Firtel RA (1999) Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18(8):2092–2105

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Tang M, Iijima M, Kamimura Y, Chen L, Long Y, Devreotes P (2011) Disruption of PKB signaling restores polarity to cells lacking tumor suppressor PTEN. Mol Biol Cell 22(4):437–447. doi:10.1091/mbc.E10-06-0522

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Chung CY, Potikyan G, Firtel RA (2001) Control of Cell Polarity and Chemotaxis by Akt/PKB and PI3Kinase through the Regulation of PAKa. Molecular Cell 7 (5):937-947. doi:http://dx.doi.org/10.1016/S1097-2765(01)00247-7

  88. Chung CY, Firtel RA (1999) Paka, a Putative Pak Family Member, Is Required for Cytokinesis and the Regulation of the Cytoskeleton in Dictyostelium discoideum Cells during Chemotaxis. The Journal of Cell Biology 147(3):559–576. doi:10.1083/jcb.147.3.559

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Lilly PJ, Devreotes PN (1994) Identification of CRAC, a cytosolic regulator required for guanine nucleotide stimulation of adenylyl cyclase in Dictyostelium. J Biol Chem 269(19):14123–14129

    PubMed  CAS  Google Scholar 

  90. Insall R, Kuspa A, Lilly PJ, Shaulsky G, Levin LR, Loomis WF, Devreotes P (1994) CRAC, a cytosolic protein containing a pleckstrin homology domain, is required for receptor and G protein-mediated activation of adenylyl cyclase in Dictyostelium. The Journal of Cell Biology 126(6):1537–1545. doi:10.1083/jcb.126.6.1537

    PubMed  CAS  Google Scholar 

  91. Comer FI, Lippincott CK, Masbad JJ, Parent CA (2005) The PI3K-Mediated Activation of CRAC Independently Regulates Adenylyl Cyclase Activation and Chemotaxis. Current Biology 15 (2):134-139. doi:http://dx.doi.org/10.1016/j.cub.2005.01.007

  92. Funamoto S, Milan K, Meili R, Firtel RA (2001) Role of Phosphatidylinositol 3′ Kinase and a Downstream Pleckstrin Homology Domain-Containing Protein in Controlling Chemotaxis inDictyostelium. The Journal of Cell Biology 153(4):795–810. doi:10.1083/jcb.153.4.795

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Zhang P, Wang Y, Sesaki H, Iijima M (2010) Proteomic identification of phosphatidylinositol (3,4,5) triphosphate-binding proteins in Dictyostelium discoideum. Proc Natl Acad Sci 107(26):11829–11834. doi:10.1073/pnas.1006153107

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Jeon TJ, Lee S, Weeks G, Firtel RA (2009) Regulation of Dictyostelium morphogenesis by RapGAP3. Developmental Biology 328 (2):210-220. doi:http://dx.doi.org/10.1016/j.ydbio.2009.01.016

  95. Chen C-L, Wang Y, Sesaki H, Iijima M (2012) Myosin I Links PIP3 Signaling to Remodeling of the Actin Cytoskeleton in Chemotaxis. Sci Signal 5 (209):ra10-. doi:10.1126/scisignal.2002446

  96. Para A, Krischke M, Merlot S, Shen Z, Oberholzer M, Lee S, Briggs S, Firtel RA (2009) Dictyostelium Dock180-related RacGEFs Regulate the Actin Cytoskeleton during Cell Motility. Mol Biol Cell 20(2):699–707. doi:10.1091/mbc.E08-09-0899

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Liao XH, Buggey J, Kimmel AR (2010) Chemotactic activation of Dictyostelium AGC-family kinases AKT and PKBR1 requires separate but coordinated functions of PDK1 and TORC2. J Cell Sci 123(Pt 6):983–992. doi:10.1242/jcs.064022

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Hoeller O, Kay RR (2007) Chemotaxis in the Absence of PIP3 Gradients. Current Biology 17 (9):813-817. doi:http://dx.doi.org/10.1016/j.cub.2007.04.004

  99. Loovers HM, Postma M, Keizer-Gunnink I, Huang YE, Devreotes PN, van Haastert PJM (2006) Distinct Roles of PI(3,4,5)P3 during Chemoattractant Signaling in Dictyostelium: A Quantitative In Vivo Analysis by Inhibition of PI3-Kinase. Mol Biol Cell 17(4):1503–1513. doi:10.1091/mbc.E05-09-0825

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Chen L, Janetopoulos C, Huang YE, Iijima M, Borleis J, Devreotes PN (2003) Two Phases of Actin Polymerization Display Different Dependencies on PI(3,4,5)P3 Accumulation and Have Unique Roles during Chemotaxis. Mol Biol Cell 14(12):5028–5037. doi:10.1091/mbc.E03-05-0339

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Bosgraaf L, Keizer-Gunnink I, Van Haastert PJM (2008) PI3-kinase signaling contributes to orientation in shallow gradients and enhances speed in steep chemoattractant gradients. J Cell Sci 121(21):3589–3597. doi:10.1242/jcs.031781

    PubMed  CAS  Google Scholar 

  102. Huang YE, Iijima M, Parent CA, Funamoto S, Firtel RA, Devreotes P (2003) Receptor-mediated Regulation of PI3Ks Confines PI(3,4,5)P3 to the Leading Edge of Chemotaxing Cells. Mol Biol Cell 14(5):1913–1922. doi:10.1091/mbc.E02-10-0703

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Takeda K, Sasaki AT, Ha H, Seung H-A, Firtel RA (2007) Role of Phosphatidylinositol 3-Kinases in Chemotaxis in Dictyostelium. J Biol Chem 282(16):11874–11884. doi:10.1074/jbc.M610984200

    PubMed  CAS  Google Scholar 

  104. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000) Polarization of Chemoattractant Receptor Signaling During Neutrophil Chemotaxis. Science 287(5455):1037–1040. doi:10.1126/science.287.5455.1037

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Suire S, Condliffe AM, Ferguson GJ, Ellson CD, Guillou H, Davidson K, Welch H, Coadwell J, Turner M, Chilvers ER, Hawkins PT, Stephens L (2006) G[β][γ]s and the Ras binding domain of p110[γ] are both important regulators of PI3K[γ] signalling in neutrophils. Nat Cell Biol 8 (11):1303-1309. doi:http://www.nature.com/ncb/journal/v8/n11/suppinfo/ncb1494_S1.html

  106. Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287(5455):1049–1053

    PubMed  CAS  Google Scholar 

  107. Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak TW, Ohashi PS, Suzuki A, Penninger JM (2000) Function of PI3Kγ in Thymocyte Development, T Cell Activation, and Neutrophil Migration. Science 287(5455):1040–1046. doi:10.1126/science.287.5455.1040

    PubMed  CAS  Google Scholar 

  108. Hannigan M, Zhan L, Li Z, Ai Y, Wu D, Huang C-K (2002) Neutrophils lacking phosphoinositide 3-kinase γ show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc Natl Acad Sci 99(6):3603–3608. doi:10.1073/pnas.052010699

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Ferguson GJ, Milne L, Kulkarni S, Sasaki T, Walker S, Andrews S, Crabbe T, Finan P, Jones G, Jackson S, Camps M, Rommel C, Wymann M, Hirsch E, Hawkins P, Stephens L (2007) PI(3)K[gamma] has an important context-dependent role in neutrophil chemokinesis. Nat Cell Biol 9 (1):86-91. doi:http://www.nature.com/ncb/journal/v9/n1/suppinfo/ncb1517_S1.html

  110. Coffer PJ, Geijsen N, M’rabet L, Schweizer RC, Maikoe T, Raaijmakers JA, Lammers JW, Koenderman L (1998) Comparison of the roles of mitogen-activated protein kinase kinase and phosphatidylinositol 3-kinase signal transduction in neutrophil effector function. Biochem J 329(1):121–130

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Knall C, Worthen GS, Johnson GL (1997) Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc Natl Acad Sci 94(7):3052–3057

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Niggli V, Keller H (1997) The phosphatidylinositol 3-kinase inhibitor wortmannin markedly reduces chemotactic peptide-induced locomotion and increases in cytoskeletal actin in human neutrophils. European Journal of Pharmacology 335 (1):43-52. doi:http://dx.doi.org/10.1016/S0014-2999(97)01169-2

  113. Vicente-Manzanares M, Rey M, Jones DR, Sancho D, Mellado M, Rodriguez-Frade JM, del Pozo MA, Yáñez-Mó M, de Ana AM, Martínez-A C, Mérida I, Sánchez-Madrid F (1999) Involvement of Phosphatidylinositol 3-Kinase in Stromal Cell-Derived Factor-1α-Induced Lymphocyte Polarization and Chemotaxis. J Immunol 163(7):4001–4012

    PubMed  CAS  Google Scholar 

  114. Al-Aoukaty A, Rolstad B, Maghazachi AA (1999) Recruitment of Pleckstrin and Phosphoinositide 3-Kinase γ into the Cell Membranes, and Their Association with Gβγ After Activation of NK Cells with Chemokines. J Immunol 162(6):3249–3255

    PubMed  CAS  Google Scholar 

  115. Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D (2000) Roles of PLC-β2 and -β3 and PI3Kγ in Chemoattractant-Mediated Signal Transduction. Science 287(5455):1046–1049. doi:10.1126/science.287.5455.1046

    PubMed  CAS  Google Scholar 

  116. Nishio M, Watanabe K-i, Sasaki J, Taya C, Takasuga S, Iizuka R, Balla T, Yamazaki M, Watanabe H, Itoh R, Kuroda S, Horie Y, Forster I, Mak TW, Yonekawa H, Penninger JM, Kanaho Y, Suzuki A, Sasaki T (2007) Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 9 (1):36-44. doi:http://www.nature.com/ncb/journal/v9/n1/suppinfo/ncb1515_S1.html

  117. Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B, Cyster JG (2004) Cutting Edge: Differential Roles for Phosphoinositide 3-Kinases, p110γ and p110δ, in Lymphocyte Chemotaxis and Homing. J Immunol 173(4):2236–2240

    PubMed  CAS  Google Scholar 

  118. Curnock AP, Sotsios Y, Wright KL, Ward SG (2003) Optimal Chemotactic Responses of Leukemic T Cells to Stromal Cell-Derived Factor-1 Requires the Activation of Both Class IA and IB Phosphoinositide 3-Kinases. J Immunol 170(8):4021–4030

    PubMed  CAS  Google Scholar 

  119. Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE (2003) Essential Role of Phosphoinositide 3-Kinase δ in Neutrophil Directional Movement. J Immunol 170(5):2647–2654

    PubMed  CAS  Google Scholar 

  120. Boulven I, Levasseur S, Marois S, Paré G, Rollet-Labelle E, Naccache PH (2006) Class IA Phosphatidylinositide 3-Kinases, rather than p110γ, Regulate Formyl-Methionyl-Leucyl-Phenylalanine-Stimulated Chemotaxis and Superoxide Production in Differentiated Neutrophil-Like PLB-985 Cells. J Immunol 176(12):7621–7627

    PubMed  CAS  Google Scholar 

  121. Liu L, Puri KD, Penninger JM, Kubes P (2007) Leukocyte PI3Kγ and PI3Kδ have temporally distinct roles for leukocyte recruitment in vivo. Blood 110(4):1191–1198. doi:10.1182/blood-2006-11-060103

    PubMed  CAS  Google Scholar 

  122. Liu L, Das S, Losert W, Parent CA (2010) mTORC2 Regulates Neutrophil Chemotaxis in a cAMP- and RhoA-Dependent Fashion. Developmental Cell 19 (6):845-857. doi:http://dx.doi.org/10.1016/j.devcel.2010.11.004

  123. Chen J, Tang H, Hay N, Xu J, Ye RD (2010) Akt isoforms differentially regulate neutrophil functions. Blood 115(21):4237–4246. doi:10.1182/blood-2009-11-255323

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Chodniewicz D, Zhelev DV (2003) Chemoattractant receptor-stimulated F-actin polymerization in the human neutrophil is signaled by 2 distinct pathways. Blood 101(3):1181–1184. doi:10.1182/blood-2002-05-1435

    PubMed  CAS  Google Scholar 

  125. Tang W, Zhang Y, Xu W, Harden TK, Sondek J, Sun L, Li L, Wu D (2011) A PLCβ/PI3Kγ-GSK3 Signaling Pathway Regulates Cofilin Phosphatase Slingshot2 and Neutrophil Polarization and Chemotaxis. Developmental Cell 21 (6):1038-1050. doi:http://dx.doi.org/10.1016/j.devcel.2011.10.023

  126. Li Z, Hannigan M, Mo Z, Liu B, Lu W, Wu Y, Smrcka AV, Wu G, Li L, Liu M, Huang C-K, Wu D (2003) Directional Sensing Requires Gβγ-Mediated PAK1 and PIXα-Dependent Activation of Cdc42. Cell 114 (2):215-227. doi:http://dx.doi.org/10.1016/S0092-8674(03)00559-2

  127. Itakura A, Aslan JE, Kusanto BT, Phillips KG, Porter JE, Newton PK, Nan X, Insall RH, Chernoff J, McCarty OJT (2013) p21-Activated Kinase (PAK) Regulates Cytoskeletal Reorganization and Directional Migration in Human Neutrophils. PLoS ONE 8(9):e73063. doi:10.1371/journal.pone.0073063

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Volinsky N, Gantman A, Yablonski D (2006) A Pak- and Pix-dependent branch of the SDF-1α signalling pathway mediates T cell chemotaxis across restrictive barriers. Biochem J 397(1):213–222. doi:10.1042/bj20051655

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Zhou G-L, Zhuo Y, King CC, Fryer BH, Bokoch GM, Field J (2003) Akt Phosphorylation of Serine 21 on Pak1 Modulates Nck Binding and Cell Migration. Mol Cell Biol 23(22):8058–8069. doi:10.1128/mcb.23.22.8058-8069.2003

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Welch HCE, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-Regulated Guanine-Nucleotide Exchange Factor for Rac. Cell 108 (6):809-821. doi:http://dx.doi.org/10.1016/S0092-8674(02)00663-3

  131. Dong X, Mo Z, Bokoch G, Guo C, Li Z, Wu D (2005) P-Rex1 Is a Primary Rac2 Guanine Nucleotide Exchange Factor in Mouse Neutrophils. Current Biology 15 (20):1874-1879. doi:http://dx.doi.org/10.1016/j.cub.2005.09.014

  132. Kunisaki Y, Nishikimi A, Tanaka Y, Takii R, Noda M, Inayoshi A, Watanabe KI, Sanematsu F, Sasazuki T, Sasaki T, Fukui Y (2006) DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. The Journal of Cell Biology 174(5):647–652. doi:10.1083/jcb.200602142

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Zhao T, Nalbant P, Hoshino M, Dong X, Wu D, Bokoch GM (2007) Signaling requirements for translocation of P-Rex1, a key Rac2 exchange factor involved in chemoattractant-stimulated human neutrophil function. J Leukoc Biol 81(4):1127–1136. doi:10.1189/jlb.0406251

    PubMed  CAS  Google Scholar 

  134. Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, Cao Q, Sanematsu F, Kanai M, Hasegawa H, Tanaka Y, Shibasaki M, Kanaho Y, Sasaki T, Frohman MA, Fukui Y (2009) Sequential Regulation of DOCK2 Dynamics by Two Phospholipids During Neutrophil Chemotaxis. Science 324(5925):384–387. doi:10.1126/science.1170179

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Chen S, Lin F, Shin ME, Wang F, Shen L, Hamm HE (2008) RACK1 Regulates Directional Cell Migration by Acting on Gβγ at the Interface with Its Effectors PLCβ and PI3Kγ. Mol Biol Cell 19(9):3909–3922. doi:10.1091/mbc.E08-04-0433

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Bach TL, Chen Q-M, Kerr WT, Wang Y, Lian L, Choi JK, Wu D, Kazanietz MG, Koretzky GA, Zigmond S, Abrams CS (2007) Phospholipase Cβ Is Critical for T Cell Chemotaxis. J Immunol 179(4):2223–2227

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Cronshaw DG, Kouroumalis A, Parry R, Webb A, Brown Z, Ward SG (2006) Evidence that phospholipase C-dependent, calcium-independent mechanisms are required for directional migration of T lymphocytes in response to the CCR4 ligands CCL17 and CCL22. J Leukoc Biol 79(6):1369–1380. doi:10.1189/jlb.0106035

    PubMed  CAS  Google Scholar 

  138. Lacalle RA, Gómez-Moutón C, Barber DF, Jiménez-Baranda S, Mira E, Martínez-A C, Carrera AC, Mañes S (2004) PTEN regulates motility but not directionality during leukocyte chemotaxis. J Cell Sci 117(25):6207–6215. doi:10.1242/jcs.01545

    PubMed  CAS  Google Scholar 

  139. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR (2003) Divergent Signals and Cytoskeletal Assemblies Regulate Self-Organizing Polarity in Neutrophils. Cell 114 (2):201-214. doi:http://dx.doi.org/10.1016/S0092-8674(03)00555-5

  140. Heit B, Robbins SM, Downey CM, Guan Z, Colarusso P, Miller BJ, Jirik FR, Kubes P (2008) PTEN functions to ‘prioritize’ chemotactic cues and prevent ‘distraction’ in migrating neutrophils. Nat Immunol 9 (7):743-752. doi:http://www.nature.com/ni/journal/v9/n7/suppinfo/ni.1623_S1.html

  141. Fox JA, Ung K, Tanlimco SG, Jirik FR (2002) Disruption of a Single Pten Allele Augments the Chemotactic Response of B Lymphocytes to Stromal Cell-Derived Factor-1. J Immunol 169(1):49–54

    PubMed  CAS  Google Scholar 

  142. Gao P, Wange RL, Zhang N, Oppenheim JJ, Howard OMZ (2005) Negative regulation of CXCR4-mediated chemotaxis by the lipid phosphatase activity of tumor suppressor PTEN. Blood 106(8):2619–2626. doi:10.1182/blood-2004-08-3362

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Subramanian KK, Jia Y, Zhu D, Simms BT, Jo H, Hattori H, You J, Mizgerd JP, Luo HR (2007) Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood 109(9):4028–4037. doi:10.1182/blood-2006-10-055319

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Sarraj B, Massberg S, Li Y, Kasorn A, Subramanian K, Loison F, Silberstein LE, von Andrian U, Luo HR (2009) Myeloid-Specific Deletion of Tumor Suppressor PTEN Augments Neutrophil Transendothelial Migration during Inflammation. J Immunol 182(11):7190–7200. doi:10.4049/jimmunol.0802562

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Mondal S, Subramanian KK, Sakai J, Bajrami B, Luo HR (2012) Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion. Mol Biol Cell 23(7):1219–1230. doi:10.1091/mbc.E11-10-0889

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Harris SJ, Parry RV, Foster JG, Blunt MD, Wang A, Marelli-Berg F, Westwick J, Ward SG (2011) Evidence That the Lipid Phosphatase SHIP-1 Regulates T Lymphocyte Morphology and Motility. J Immunol 186(8):4936–4945. doi:10.4049/jimmunol.1002350

    PubMed  CAS  Google Scholar 

  147. Heit B, Tavener S, Raharjo E, Kubes P (2002) An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. The Journal of Cell Biology 159(1):91–102. doi:10.1083/jcb.200202114

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Meili R, Ellsworth C, Firtel RA (2000) A novel Akt/PKB-related kinase is essential for morphogenesis in Dictyostelium. Current Biology 10 (12):708-717. doi:http://dx.doi.org/10.1016/S0960-9822(00)00536-4

  149. Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502. doi:10.1016/j.devcel.2007.03.020

    PubMed  CAS  Google Scholar 

  150. Lee S, Parent CA, Insall R, Firtel RA (1999) A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium. Mol Biol Cell 10(9):2829–2845

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Chen MY, Long Y, Devreotes PN (1997) A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium. Genes Dev 11(23):3218–3231

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Cybulski N, Hall MN (2009) TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34(12):620–627. doi:10.1016/j.tibs.2009.09.004

    PubMed  CAS  Google Scholar 

  153. Lee S, Comer FI, Sasaki A, McLeod IX, Duong Y, Okumura K, Yates JR 3rd, Parent CA, Firtel RA (2005) TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Biol Cell 16(10):4572–4583. doi:10.1091/mbc.E05-04-0342

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Kamimura Y, Devreotes PN (2010) Phosphoinositide-dependent protein kinase (PDK) activity regulates phosphatidylinositol 3,4,5-trisphosphate-dependent and -independent protein kinase B activation and chemotaxis. J Biol Chem 285(11):7938–7946. doi:10.1074/jbc.M109.089235

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Lim CJ, Spiegelman GB, Weeks G (2001) RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation. EMBO J 20(16):4490–4499

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2(2):129–134. doi:10.1038/84224

    PubMed  CAS  Google Scholar 

  157. Delgado-Martin C, Escribano C, Pablos JL, Riol-Blanco L, Rodriguez-Fernandez JL (2011) Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J Biol Chem 286(43):37222–37236. doi:10.1074/jbc.M111.294116

    PubMed  CAS  PubMed Central  Google Scholar 

  158. Yagi M, Kantarci A, Iwata T, Omori K, Ayilavarapu S, Ito K, Hasturk H, Van Dyke TE (2009) PDK1 regulates chemotaxis in human neutrophils. J Dent Res 88(12):1119–1124. doi:10.1177/0022034509349402

    PubMed  CAS  PubMed Central  Google Scholar 

  159. He Y, Li D, Cook SL, Yoon MS, Kapoor A, Rao CV, Kenis PJ, Chen J, Wang F (2013) Mammalian Target of Rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell. doi:10.1091/mbc.E13-07-0405

    Google Scholar 

  160. Chen L, Iijima M, Tang M, Landree MA, Huang YE, Xiong Y, Iglesias PA, Devreotes PN (2007) PLA2 and PI3K/PTEN Pathways Act in Parallel to Mediate Chemotaxis. Developmental Cell 12 (4):603-614. doi:http://dx.doi.org/10.1016/j.devcel.2007.03.005

  161. van Haastert PJM, Keizer-Gunnink I, Kortholt A (2007) Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. The Journal of Cell Biology 177(5):809–816. doi:10.1083/jcb.200701134

    PubMed  PubMed Central  Google Scholar 

  162. Meliton AY, Munoz NM, Meliton LN, Binder DC, Osan CM, Zhu X, Dudek SM, Leff AR (2010) Cytosolic group IVa phospholipase A2 mediates IL-8/CXCL8-induced transmigration of human polymorphonuclear leukocytes in vitro. J Inflamm (Lond) 7:14. doi:10.1186/1476-9255-7-14

    Google Scholar 

  163. Carnevale KA, Cathcart MK (2001) Calcium-Independent Phospholipase A2 Is Required for Human Monocyte Chemotaxis to Monocyte Chemoattractant Protein 1. J Immunol 167(6):3414–3421

    PubMed  CAS  Google Scholar 

  164. Mishra RS, Carnevale KA, Cathcart MK (2008) iPLA2β: front and center in human monocyte chemotaxis to MCP-1. J Exp Med 205(2):347–359. doi:10.1084/jem.20071243

    PubMed  CAS  PubMed Central  Google Scholar 

  165. Locati M, Lamorte G, Luini W, Introna M, Bernasconi S, Mantovani A, Sozzani S (1996) Inhibition of Monocyte Chemotaxis to C-C Chemokines by Antisense Oligonucleotide for Cytosolic Phospholipase A. J Biol Chem 271(11):6010–6016. doi:10.1074/jbc.271.11.6010

    PubMed  CAS  Google Scholar 

  166. Traynor D, Milne JLS, Insall RH, Kay RR (2000) Ca2+ signalling is not required for chemotaxis in Dictyostelium. EMBO J 19(17):4846–4854

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Schaloske R, Lusche D, Bezares-Roder K, Happle K, Malchow D, Schlatterer C (2005) Ca2+ regulation in the absence of the iplA gene product in Dictyostelium discoideum. BMC Cell Biology 6(1):13

    PubMed  PubMed Central  Google Scholar 

  168. Lusche DF, Wessels D, Soll DR (2009) The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. Cell Motil Cytoskelet 66(8):567–587. doi:10.1002/cm.20367

    CAS  Google Scholar 

  169. Van Duijn B, Van Haastert PJ (1992) Independent control of locomotion and orientation during Dictyostelium discoideum chemotaxis. J Cell Sci 102(4):763–768

    PubMed  Google Scholar 

  170. Unterweger N, Schlatterer C (1995) Introduction of calcium buffers into the cytosol of Dictyostelium discoideum amoebae alters cell morphology and inhibits chemotaxis. Cell Calcium 17 (2):97-110. doi:http://dx.doi.org/10.1016/0143-4160(95)90079-9

  171. Lusche D, Bezares-Roder K, Happle K, Schlatterer C (2005) cAMP controls cytosolic Ca2+ levels in Dictyostelium discoideum. BMC Cell Biology 6(1):12

    PubMed  PubMed Central  Google Scholar 

  172. Maxfield FR (1993) Regulation of leukocyte locomotion by Ca2+. Trends in Cell Biology 3 (11):386-391. doi:http://dx.doi.org/10.1016/0962-8924(93)90088-I

  173. Brundage RA, Fogarty KE, Tuft RA, Fay FS (1991) Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254(5032):703–706

    PubMed  CAS  Google Scholar 

  174. Eddy RJ, Pierini LM, Matsumura F, Maxfield FR (2000) Ca2+ -dependent myosin II activation is required for uropod retraction during neutrophil migration. J Cell Sci 113(7):1287–1298

    PubMed  CAS  Google Scholar 

  175. Hendey B, Klee CB, Maxfield FR (1992) Inhibition of neutrophil chemokinesis on vitronectin by inhibitors of calcineurin. Science 258(5080):296–299

    PubMed  CAS  Google Scholar 

  176. Goldberg JM, Manning G, Liu A, Fey P, Pilcher KE, Xu Y, Smith JL (2006) The dictyostelium kinome–analysis of the protein kinases from a simple model organism. PLoS Genet 2(3):e38. doi:10.1371/journal.pgen.0020038

    PubMed  PubMed Central  Google Scholar 

  177. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79(1):143–180

    PubMed  CAS  Google Scholar 

  178. Chung CY, Reddy TB, Zhou K, Firtel RA (1998) A novel, putative MEK kinase controls developmental timing and spatial patterning in Dictyostelium and is regulated by ubiquitin-mediated protein degradation. Genes Dev 12(22):3564–3578

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Sun B, Ma H, Firtel RA (2003) Dictyostelium stress-activated protein kinase alpha, a novel stress-activated mitogen-activated protein kinase kinase kinase-like kinase, is important for the proper regulation of the cytoskeleton. Mol Biol Cell 14(11):4526–4540. doi:10.1091/mbc.E03-01-0039

    PubMed  CAS  PubMed Central  Google Scholar 

  180. Ma H, Gamper M, Parent C, Firtel RA (1997) The Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase. EMBO J 16(14):4317–4332

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Sobko A, Ma H, Firtel RA (2002) Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis. Dev Cell 2(6):745–756

    PubMed  CAS  Google Scholar 

  182. Mendoza MC, Booth EO, Shaulsky G, Firtel RA (2007) MEK1 and protein phosphatase 4 coordinate Dictyostelium development and chemotaxis. Mol Cell Biol 27(10):3817–3827. doi:10.1128/MCB.02194-06

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Mendoza MC, Du F, Iranfar N, Tang N, Ma H, Loomis WF, Firtel RA (2005) Loss of SMEK, a novel, conserved protein, suppresses MEK1 null cell polarity, chemotaxis, and gene expression defects. Mol Cell Biol 25(17):7839–7853. doi:10.1128/MCB.25.17.7839-7853.2005

    PubMed  CAS  PubMed Central  Google Scholar 

  184. Gaskins C, Maeda M, Firtel RA (1994) Identification and functional analysis of a developmentally regulated extracellular signal-regulated kinase gene in Dictyostelium discoideum. Mol Cell Biol 14(10):6996–7012

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Gaskins C, Clark AM, Aubry L, Segall JE, Firtel RA (1996) The Dictyostelium MAP kinase ERK2 regulates multiple, independent developmental pathways. Genes Dev 10(1):118–128

    PubMed  CAS  Google Scholar 

  186. Segall JE, Kuspa A, Shaulsky G, Ecke M, Maeda M, Gaskins C, Firtel RA, Loomis WF (1995) A MAP kinase necessary for receptor-mediated activation of adenylyl cyclase in Dictyostelium. J Cell Biol 128(3):405–413

    PubMed  CAS  Google Scholar 

  187. Knetsch ML, Epskamp SJ, Schenk PW, Wang Y, Segall JE, Snaar-Jagalska BE (1996) Dual role of cAMP and involvement of both G-proteins and ras in regulation of ERK2 in Dictyostelium discoideum. EMBO J 15(13):3361–3368

    PubMed  CAS  PubMed Central  Google Scholar 

  188. Maeda M, Aubry L, Insall R, Gaskins C, Devreotes PN, Firtel RA (1996) Seven helix chemoattractant receptors transiently stimulate mitogen-activated protein kinase in Dictyostelium. Role of heterotrimeric G proteins. J Biol Chem 271(7):3351–3354

    PubMed  CAS  Google Scholar 

  189. Brzostowski JA, Kimmel AR (2006) Nonadaptive regulation of ERK2 in Dictyostelium: implications for mechanisms of cAMP relay. Mol Biol Cell 17(10):4220–4227. doi:10.1091/mbc.E06-05-0376

    PubMed  CAS  PubMed Central  Google Scholar 

  190. Maeda M, Firtel RA (1997) Activation of the mitogen-activated protein kinase ERK2 by the chemoattractant folic acid in Dictyostelium. J Biol Chem 272(38):23690–23695

    PubMed  CAS  Google Scholar 

  191. Thomason PA, Traynor D, Cavet G, Chang WT, Harwood AJ, Kay RR (1998) An intersection of the cAMP/PKA and two-component signal transduction systems in Dictyostelium. EMBO J 17(10):2838–2845. doi:10.1093/emboj/17.10.2838

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Maeda M, Lu S, Shaulsky G, Miyazaki Y, Kuwayama H, Tanaka Y, Kuspa A, Loomis WF (2004) Periodic signaling controlled by an oscillatory circuit that includes protein kinases ERK2 and PKA. Science 304(5672):875–878. doi:10.1126/science.1094647

    PubMed  CAS  Google Scholar 

  193. Wessels DJ, Zhang H, Reynolds J, Daniels K, Heid P, Lu S, Kuspa A, Shaulsky G, Loomis WF, Soll DR (2000) The internal phosphodiesterase RegA is essential for the suppression of lateral pseudopods during Dictyostelium chemotaxis. Mol Biol Cell 11(8):2803–2820

    PubMed  CAS  PubMed Central  Google Scholar 

  194. Grinstein S, Butler JR, Furuya W, L’Allemain G, Downey GP (1994) Chemotactic peptides induce phosphorylation and activation of MEK-1 in human neutrophils. J Biol Chem 269(30):19313–19320

    PubMed  CAS  Google Scholar 

  195. Thompson HL, Marshall CJ, Saklatvala J (1994) Characterization of two different forms of mitogen-activated protein kinase kinase induced in polymorphonuclear leukocytes following stimulation by N-formylmethionyl-leucyl-phenylalanine or granulocyte-macrophage colony-stimulating factor. J Biol Chem 269(13):9486–9492

    PubMed  CAS  Google Scholar 

  196. Knall C, Worthen GS, Buhl AM, Johnson GL (1995) IL-8 signal transduction in human neutrophils. Ann N Y Acad Sci 766:288–291

    PubMed  CAS  Google Scholar 

  197. Nick JA, Avdi NJ, Young SK, Knall C, Gerwins P, Johnson GL, Worthen GS (1997) Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP. J Clin Invest 99(5):975–986. doi:10.1172/JCI119263

    PubMed  CAS  PubMed Central  Google Scholar 

  198. Marshall CJ (1996) Ras effectors. Curr Opin Cell Biol 8(2):197–204

    CAS  Google Scholar 

  199. Rane MJ, Carrithers SL, Arthur JM, Klein JB, McLeish KR (1997) Formyl peptide receptors are coupled to multiple mitogen-activated protein kinase cascades by distinct signal transduction pathways: role in activation of reduced nicotinamide adenine dinucleotide oxidase. Journal of immunology 159(10):5070–5078

    CAS  Google Scholar 

  200. Coxon PY, Rane MJ, Uriarte S, Powell DW, Singh S, Butt W, Chen Q, McLeish KR (2003) MAPK-activated protein kinase-2 participates in p38 MAPK-dependent and ERK-dependent functions in human neutrophils. Cell Signal 15(11):993–1001

    PubMed  CAS  Google Scholar 

  201. Zu YL, Qi J, Gilchrist A, Fernandez GA, Vazquez-Abad D, Kreutzer DL, Huang CK, Sha’afi RI (1998) p38 mitogen-activated protein kinase activation is required for human neutrophil function triggered by TNF-alpha or FMLP stimulation. Journal of immunology 160(4):1982–1989

    CAS  Google Scholar 

  202. Liu X, Ma B, Malik AB, Tang H, Yang T, Sun B, Wang G, Minshall RD, Li Y, Zhao Y, Ye RD, Xu J (2012) Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nat Immunol 13(5):457–464. doi:10.1038/ni.2258

    PubMed  CAS  PubMed Central  Google Scholar 

  203. Boehme SA, Sullivan SK, Crowe PD, Santos M, Conlon PJ, Sriramarao P, Bacon KB (1999) Activation of mitogen-activated protein kinase regulates eotaxin-induced eosinophil migration. Journal of immunology 163(3):1611–1618

    CAS  Google Scholar 

  204. Weber M, Sixt M (2010) MEK signalling tunes actin treadmilling for interstitial lymphocyte migration. EMBO J 29(17):2861–2863. doi:10.1038/emboj.2010.183

    PubMed  CAS  PubMed Central  Google Scholar 

  205. Klemke M, Kramer E, Konstandin MH, Wabnitz GH, Samstag Y (2010) An MEK-cofilin signalling module controls migration of human T cells in 3D but not 2D environments. EMBO J 29(17):2915–2929. doi:10.1038/emboj.2010.153

    PubMed  CAS  PubMed Central  Google Scholar 

  206. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    PubMed  CAS  Google Scholar 

  207. Hannigan MO, Zhan L, Ai Y, Kotlyarov A, Gaestel M, Huang CK (2001) Abnormal migration phenotype of mitogen-activated protein kinase-activated protein kinase 2-/- neutrophils in Zigmond chambers containing formyl-methionyl-leucyl-phenylalanine gradients. Journal of immunology 167(7):3953–3961

    CAS  Google Scholar 

  208. Decaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P (2011) CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem 286(37):32188–32197. doi:10.1074/jbc.M111.277038

    PubMed  CAS  PubMed Central  Google Scholar 

  209. Sanchez-Martin L, Sanchez-Mateos P, Cabanas C (2013) CXCR7 impact on CXCL12 biology and disease. Trends in molecular medicine 19(1):12–22. doi:10.1016/j.molmed.2012.10.004

    PubMed  CAS  Google Scholar 

  210. Bosgraaf L, Waijer A, Engel R, Visser AJWG, Wessels D, Soll D, van Haastert PJM (2005) RasGEF-containing proteins GbpC and GbpD have differential effects on cell polarity and chemotaxis in Dictyostelium. J Cell Sci 118(9):1899–1910. doi:10.1242/jcs.02317

    PubMed  CAS  Google Scholar 

  211. Kortholt A, Rehmann H, Kae H, Bosgraaf L, Keizer-Gunnink I, Weeks G, Wittinghofer A, Van Haastert PJM (2006) Characterization of the GbpD-activated Rap1 Pathway Regulating Adhesion and Cell Polarity in Dictyostelium discoideum. J Biol Chem 281(33):23367–23376. doi:10.1074/jbc.M600804200

    PubMed  CAS  Google Scholar 

  212. Rebstein PJ, Cardelli J, Weeks G, Spiegelman GB (1997) Mutational Analysis of the Role of Rap1 in Regulating Cytoskeletal Function inDictyostelium. Experimental Cell Research 231 (2):276-283. doi:http://dx.doi.org/10.1006/excr.1996.3466

  213. Jeon TJ, Lee D-J, Merlot S, Weeks G, Firtel RA (2007) Rap1 controls cell adhesion and cell motility through the regulation of myosin II. The Journal of Cell Biology 176(7):1021–1033. doi:10.1083/jcb.200607072

    PubMed  CAS  PubMed Central  Google Scholar 

  214. Cha I, Lee S, Jeon T (2010) Chemoattractant-mediated Rap1 activation requires GPCR/G proteins. Mol Cells 30(6):563–567. doi:10.1007/s10059-010-0153-5

    PubMed  CAS  Google Scholar 

  215. Bolourani P, Spiegelman GB, Weeks G (2008) Rap1 Activation in Response to cAMP Occurs Downstream of Ras Activation during Dictyostelium Aggregation. J Biol Chem 283(16):10232–10240. doi:10.1074/jbc.M707459200

    PubMed  CAS  Google Scholar 

  216. Jeon TJ, Lee D-J, Lee S, Weeks G, Firtel RA (2007) Regulation of Rap1 activity by RapGAP1 controls cell adhesion at the front of chemotaxing cells. The Journal of Cell Biology 179(5):833–843. doi:10.1083/jcb.200705068

    PubMed  CAS  PubMed Central  Google Scholar 

  217. Parkinson K, Bolourani P, Traynor D, Aldren NL, Kay RR, Weeks G, Thompson CRL (2009) Regulation of Rap1 activity is required for differential adhesion, cell-type patterning and morphogenesis in Dictyostelium. J Cell Sci 122(3):335–344. doi:10.1242/jcs.036822

    PubMed  CAS  PubMed Central  Google Scholar 

  218. Gebbie L, Benghezal M, Cornillon S, Froquet R, Cherix N, Malbouyres M, Lefkir Y, Grangeasse C, Fache S, Dalous J, Brückert F, Letourneur F, Cosson P (2004) Phg2, a Kinase Involved in Adhesion and Focal Site Modeling in Dictyostelium. Mol Biol Cell 15(8):3915–3925. doi:10.1091/mbc.E03-12-0908

    PubMed  CAS  PubMed Central  Google Scholar 

  219. Mun H, Jeon T (2012) Regulation of actin cytoskeleton by Rap1 binding to RacGEF1. Mol Cells 34(1):71–76. doi:10.1007/s10059-012-0097-z

    PubMed  CAS  PubMed Central  Google Scholar 

  220. Plak K, Veltman D, Fusetti F, Beeksma J, Rivero F, Van Haastert P, Kortholt A (2013) GxcC connects Rap and Rac signaling during Dictyostelium development. BMC Cell Biology 14(1):6

    PubMed  CAS  PubMed Central  Google Scholar 

  221. Kortholt A, Bolourani P, Rehmann H, Keizer-Gunnink I, Weeks G, Wittinghofer A, Van Haastert PJM (2010) A Rap/Phosphatidylinositol 3-Kinase Pathway Controls Pseudopod Formation. Mol Biol Cell 21(6):936–945. doi:10.1091/mbc.E09-03-0177

    PubMed  CAS  PubMed Central  Google Scholar 

  222. Artemenko Y, Batsios P, Borleis J, Gagnon Z, Lee J, Rohlfs M, Sanséau D, Willard SS, Schleicher M, Devreotes PN (2012) Tumor suppressor Hippo/MST1 kinase mediates chemotaxis by regulating spreading and adhesion. Proc Natl Acad Sci 109(34):13632–13637. doi:10.1073/pnas.1211304109

    PubMed  CAS  PubMed Central  Google Scholar 

  223. Bos JL, de Rooij J, Reedquist KA (2001) Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2(5):369–377

    PubMed  CAS  Google Scholar 

  224. McLeod SJ, Li AHY, Lee RL, Burgess AE, Gold MR (2002) The Rap GTPases Regulate B Cell Migration Toward the Chemokine Stromal Cell-Derived Factor-1 (CXCL12): Potential Role for Rap2 in Promoting B Cell Migration. J Immunol 169(3):1365–1371

    PubMed  CAS  Google Scholar 

  225. Shimonaka M, Katagiri K, Nakayama T, Fujita N, Tsuruo T, Yoshie O, Kinashi T (2003) Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. The Journal of Cell Biology 161(2):417–427. doi:10.1083/jcb.200301133

    PubMed  CAS  PubMed Central  Google Scholar 

  226. Gérard A, Mertens AEE, van der Kammen RA, Collard JG (2007) The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. The Journal of Cell Biology 176(6):863–875. doi:10.1083/jcb.200608161

    PubMed  PubMed Central  Google Scholar 

  227. Liu L, Aerbajinai W, Ahmed SM, Rodgers GP, Angers S, Parent CA (2012) Radil controls neutrophil adhesion and motility through β2-integrin activation. Mol Biol Cell 23(24):4751–4765. doi:10.1091/mbc.E12-05-0408

    PubMed  CAS  PubMed Central  Google Scholar 

  228. Miertzschke M, Stanley P, Bunney TD, Rodrigues-Lima F, Hogg N, Katan M (2007) Characterization of Interactions of Adapter Protein RAPL/Nore1B with RAP GTPases and Their Role in T Cell Migration. J Biol Chem 282(42):30629–30642. doi:10.1074/jbc.M704361200

    PubMed  CAS  Google Scholar 

  229. M’Rabet L, Coffer P, Zwartkruis F, Franke B, Segal AW, Koenderman L, Bos JL (1998) Activation of the Small GTPase Rap1 in Human Neutrophils. Blood 92(6):2133–2140

    PubMed  Google Scholar 

  230. He Y, Kapoor A, Cook S, Liu S, Xiang Y, Rao CV, Kenis PJA, Wang F (2011) The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL–C3G complex and activating Rap1 at the leading edge. J Cell Sci 124(13):2153–2164. doi:10.1242/jcs.078535

    PubMed  CAS  PubMed Central  Google Scholar 

  231. Gu JJ, Lavau CP, Pugacheva E, Soderblom EJ, Moseley MA, Pendergast AM (2012) Abl Family Kinases Modulate T Cell-Mediated Inflammation and Chemokine-Induced Migration Through the Adaptor HEF1 and the GTPase Rap1. Sci Signal 5 (233):ra51-. doi:10.1126/scisignal.2002632

  232. Lafuente EM, van Puijenbroek AAFL, Krause M, Carman CV, Freeman GJ, Berezovskaya A, Constantine E, Springer TA, Gertler FB, Boussiotis VA (2004) RIAM, an Ena/VASP and Profilin Ligand, Interacts with Rap1-GTP and Mediates Rap1-Induced Adhesion. Developmental Cell 7 (4):585-595. doi:http://dx.doi.org/10.1016/j.devcel.2004.07.021

  233. Kliche S, Worbs T, Wang X, Degen J, Patzak I, Meineke B, Togni M, Moser M, Reinhold A, Kiefer F, Freund C, Förster R, Schraven B (2012) CCR7-mediated LFA-1 functions in T cells are regulated by 2 independent ADAP/SKAP55 modules. Blood 119(3):777–785. doi:10.1182/blood-2011-06-362269

    PubMed  CAS  Google Scholar 

  234. Katagiri K, Maeda A, Shimonaka M, Kinashi T (2003) RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol 4 (8):741-748. doi:http://www.nature.com/ni/journal/v4/n8/suppinfo/ni950_S1.html

  235. Katagiri K, Ohnishi N, Kabashima K, Iyoda T, Takeda N, Shinkai Y, Inaba K, Kinashi T (2004) Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol 5 (10):1045-1051. doi:http://www.nature.com/ni/journal/v5/n10/suppinfo/ni1111_S1.html

  236. Katagiri K, Imamura M, Kinashi T (2006) Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol 7 (9):919-928. doi:http://www.nature.com/ni/journal/v7/n9/suppinfo/ni1374_S1.html

  237. Dong Y, Du X, Ye J, Han M, Xu T, Zhuang Y, Tao W (2009) A Cell-Intrinsic Role for Mst1 in Regulating Thymocyte Egress. J Immunol 183(6):3865–3872. doi:10.4049/jimmunol.0900678

    PubMed  CAS  Google Scholar 

  238. Katagiri K, Katakai T, Ebisuno Y, Ueda Y, Okada T, Kinashi T (2009) Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes. EMBO J 28 (9):1319-1331. doi:http://www.nature.com/emboj/journal/v28/n9/suppinfo/emboj200982a_S1.html

  239. Gambardella L, Anderson KE, Nussbaum C, Segonds-Pichon A, Margarido T, Norton L, Ludwig T, Sperandio M, Hawkins PT, Stephens L, Vermeren S (2011) The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood 118(4):1087–1098. doi:10.1182/blood-2010-10-312959

    PubMed  CAS  Google Scholar 

  240. Bosgraaf L, van Haastert PJM (2006) The regulation of myosin II in Dictyostelium. European Journal of Cell Biology 85 (9–10):969-979. doi:http://dx.doi.org/10.1016/j.ejcb.2006.04.004

  241. Peters DJM, Knecht DA, Loomis WF, De Lozanne A, Spudich J, Van Haastert PJM (1988) Signal transduction, chemotaxis, and cell aggregation in Dictyostelium discoideum cells without myosin heavy chain. Developmental Biology 128 (1):158-163. doi:http://dx.doi.org/10.1016/0012-1606(88)90278-3

  242. Wessels D, Soll DR, Knecht D, Loomis WF, De Lozanne A, Spudich J (1988) Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain. Developmental Biology 128 (1):164-177. doi:http://dx.doi.org/10.1016/0012-1606(88)90279-5

  243. Heid PJ, Wessels D, Daniels KJ, Gibson DP, Zhang H, Voss E, Soll DR (2004) The role of myosin heavy chain phosphorylation in Dictyostelium motility, chemotaxis and F-actin localization. J Cell Sci 117(20):4819–4835. doi:10.1242/jcs.01358

    PubMed  CAS  Google Scholar 

  244. Laevsky G, Knecht DA (2003) Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. J Cell Sci 116(18):3761–3770. doi:10.1242/jcs.00684

    PubMed  CAS  Google Scholar 

  245. Chen TL, Kowalczyk PA, Ho G, Chisholm RL (1995) Targeted disruption of the Dictyostelium myosin essential light chain gene produces cells defective in cytokinesis and morphogenesis. J Cell Sci 108(10):3207–3218

    PubMed  CAS  Google Scholar 

  246. Yumura S, Uyeda TQP (1997) Myosin II can be localized to the cleavage furrow and to the posterior region of Dictyostelium amoebae without control by phosphorylation of myosin heavy and light chains. Cell Motil Cytoskelet 36(4):313–322. doi:10.1002/(sici)1097-0169 (1997) 36:4 < 313:aid-cm2 > 3.0.co;2-6

    CAS  Google Scholar 

  247. Zhang H, Wessels D, Fey P, Daniels K, Chisholm RL, Soll DR (2002) Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity during Dictyostelium chemotaxis. J Cell Sci 115(8):1733–1747

    PubMed  CAS  Google Scholar 

  248. Lück-Vielmetter D, Schleicher M, Grabatin B, Wippler J, Gerisch G (1990) Replacement of threonine residues by serine and alanine in a phosphorylatable heavy chain fragment of Dictyostelium myosin II. FEBS Letters 269 (1):239-243. doi:http://dx.doi.org/10.1016/0014-5793(90)81163-I

  249. Vaillancourt JP, Lyons C, Côté GP (1988) Identification of two phosphorylated threonines in the tail region of Dictyostelium myosin II. J Biol Chem 263(21):10082–10087

    PubMed  CAS  Google Scholar 

  250. Kuczmarski ER, Tafuri SR, Parysek LM (1987) Effect of heavy chain phosphorylation on the polymerization and structure of Dictyostelium myosin filaments. The Journal of Cell Biology 105(6):2989–2997. doi:10.1083/jcb.105.6.2989

    PubMed  CAS  Google Scholar 

  251. Egelhoff TT, Lee RJ, Spudich JA (1993) Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 75 (2):363-371. doi:http://dx.doi.org/10.1016/0092-8674(93)80077-R

  252. Levi S, Polyakov MV, Egelhoff TT (2002) Myosin II dynamics in Dictyostelium: Determinants for filament assembly and translocation to the cell cortex during chemoattractant responses. Cell Motil Cytoskelet 53(3):177–188. doi:10.1002/cm.10068

    CAS  Google Scholar 

  253. Berlot CH, Spudich JA, Devreotes PN (1985) Chemoattractant-elicited increases in myosin phosphorylation in dictyostelium. Cell 43 (1):307-314. doi:http://dx.doi.org/10.1016/0092-8674(85)90036-4

  254. Liu G, Newell PC (1991) Evidence of cyclic GMP may regulate the association of myosin II heavy chain with the cytoskeleton by inhibiting its phosphorylation. J Cell Sci 98(4):483–490

    PubMed  CAS  Google Scholar 

  255. Moores SL, Sabry JH, Spudich JA (1996) Myosin dynamics in live Dictyostelium cells. Proc Natl Acad Sci 93(1):443–446

    PubMed  CAS  PubMed Central  Google Scholar 

  256. Steimle PA, Yumura S, Côté GP, Medley QG, Polyakov MV, Leppert B, Egelhoff TT (2001) Recruitment of a myosin heavy chain kinase to actin-rich protrusions in Dictyostelium. Current Biology 11 (9):708-713. doi:http://dx.doi.org/10.1016/S0960-9822(01)00182-8

  257. Stites J, Wessels D, Uhl A, Egelhoff T, Shutt D, Soll DR (1998) Phosphorylation of the Dictyostelium myosin II heavy chain is necessary for maintaining cellular polarity and suppressing turning during chemotaxis. Cell Motil Cytoskelet 39(1):31–51. doi:10.1002/(sici)1097-0169 (1998) 39:1 < 31:aid-cm4 > 3.0.co;2-j

    CAS  Google Scholar 

  258. Liang W, Licate L, Warrick H, Spudich J, Egelhoff T (2002) Differential localization in cells of myosin II heavy chain kinases during cytokinesis and polarized migration. BMC Cell Biology 3(1):19

    PubMed  PubMed Central  Google Scholar 

  259. Brakefield PM, Kesbeke F, Koch PB (1998) The regulation of phenotypic plasticity of eyespots in the butterfly Bicyclus anynana. Am Nat 152(6):853–860. doi:10.1086/286213

    PubMed  CAS  Google Scholar 

  260. Wang Y, Steimle PA, Ren Y, Ross CA, Robinson DN, Egelhoff TT, Sesaki H, Iijima M (2011) Dictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation. Mol Biol Cell 22(13):2270–2281. doi:10.1091/mbc.E10-11-0926

    PubMed  CAS  PubMed Central  Google Scholar 

  261. Roelofs J, Van Haastert PJM (2002) Characterization of Two Unusual Guanylyl Cyclases fromDictyostelium. J Biol Chem 277(11):9167–9174. doi:10.1074/jbc.M111437200

    PubMed  CAS  Google Scholar 

  262. Kuwayama H, Snippe H, Derks M, Roelofs J, Van Haastert PJ (2001) Identification and characterization of DdPDE3, a cGMP-selective phosphodiesterase from Dictyostelium. Biochem J 353(3):635–644

    PubMed  CAS  PubMed Central  Google Scholar 

  263. Bosgraaf L, Russcher H, Snippe H, Bader S, Wind J, Van Haastert PJM (2002) Identification and Characterization of Two Unusual cGMP-stimulated Phoshodiesterases in Dictyostelium. Mol Biol Cell 13(11):3878–3889. doi:10.1091/mbc.E02-05-0302

    PubMed  CAS  PubMed Central  Google Scholar 

  264. Bader S, Kortholt A, Van haastert PJM (2007) Seven Dictyostelium discoideum phosphodiesterases degrade three pools of cAMP and cGMP. Biochem J 402(1):153–161. doi:10.1042/bj20061153

    PubMed  CAS  PubMed Central  Google Scholar 

  265. Bosgraaf L, Russcher H, Smith JL, Wessels D, Soll DR, Van Haastert PJ (2002) A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium. EMBO J 21(17):4560–4570

    PubMed  CAS  PubMed Central  Google Scholar 

  266. Veltman DM, Van Haastert PJM (2006) Guanylyl Cyclase Protein and cGMP Product Independently Control Front and Back of Chemotaxing Dictyostelium Cells. Mol Biol Cell 17(9):3921–3929. doi:10.1091/mbc.E06-05-0381

    PubMed  CAS  PubMed Central  Google Scholar 

  267. Goldberg JM, Wolpin ES, Bosgraaf L, Clarkson BK, Van Haastert PJM, Smith JL (2006) Myosin light chain kinase A is activated by cGMP-dependent and cGMP-independent pathways. FEBS Letters 580 (8):2059-2064. doi:http://dx.doi.org/10.1016/j.febslet.2006.03.008

  268. Ostrow BD, Chen P, Chisholm RL (1994) Expression of a myosin regulatory light chain phosphorylation site mutant complements the cytokinesis and developmental defects of Dictyostelium RMLC null cells. The Journal of Cell Biology 127(6):1945–1955. doi:10.1083/jcb.127.6.1945

    PubMed  CAS  Google Scholar 

  269. Pfannes EK, Anielski A, Gerhardt M, Beta C (2013) Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells. Integr Biol (Camb) 5(12):1456–1463. doi:10.1039/c3ib40109j

    CAS  Google Scholar 

  270. Morin NA, Oakes PW, Hyun Y-M, Lee D, Chin YE, King MR, Springer TA, Shimaoka M, Tang JX, Reichner JS, Kim M (2008) Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. J Exp Med 205(1):195–205. doi:10.1084/jem.20071543

    PubMed  CAS  PubMed Central  Google Scholar 

  271. Worthylake RA, Lemoine S, Watson JM, Burridge K (2001) RhoA is required for monocyte tail retraction during transendothelial migration. The Journal of Cell Biology 154(1):147–160. doi:10.1083/jcb.200103048

    PubMed  CAS  PubMed Central  Google Scholar 

  272. Vicente-Manzanares M, Cabrero JR, Rey M, Pérez-Martínez M, Ursa A, Itoh K, Sánchez-Madrid F (2002) A Role for the Rho-p160 Rho Coiled-Coil Kinase Axis in the Chemokine Stromal Cell-Derived Factor-1α-Induced Lymphocyte Actomyosin and Microtubular Organization and Chemotaxis. J Immunol 168(1):400–410

    PubMed  CAS  Google Scholar 

  273. Takesono A, Heasman SJ, Wojciak-Stothard B, Garg R, Ridley AJ (2010) Microtubules Regulate Migratory Polarity through Rho/ROCK Signaling in T Cells. PLoS ONE 5(1):e8774. doi:10.1371/journal.pone.0008774

    PubMed  PubMed Central  Google Scholar 

  274. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790

    PubMed  CAS  PubMed Central  Google Scholar 

  275. Jacobelli J, Chmura SA, Buxton DB, Davis MM, Krummel MF (2004) A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat Immunol 5 (5):531-538. doi:http://www.nature.com/ni/journal/v5/n5/suppinfo/ni1065_S1.html

  276. Soede RDM, Zeelenberg IS, Wijnands YM, Kamp M, Roos E (2001) Stromal Cell-Derived Factor-1-Induced LFA-1 Activation During In Vivo Migration of T Cell Hybridoma Cells Requires Gq/11, RhoA, and Myosin, as well as Gi and Cdc42. J Immunol 166(7):4293–4301

    PubMed  CAS  Google Scholar 

  277. Tan W, Martin D, Gutkind JS (2006) The Gα13-Rho Signaling Axis Is Required for SDF-1-induced Migration through CXCR4. J Biol Chem 281(51):39542–39549. doi:10.1074/jbc.M609062200

    PubMed  CAS  Google Scholar 

  278. Pestonjamasp KN, Forster C, Sun C, Gardiner EM, Bohl B, Weiner O, Bokoch GM, Glogauer M (2006) Rac1 links leading edge and uropod events through Rho and myosin activation during chemotaxis. Blood 108(8):2814–2820. doi:10.1182/blood-2006-01-010363

    PubMed  CAS  PubMed Central  Google Scholar 

  279. del Pozo MA, Nieto M, Serrador JM, Sancho D, Vicente-Manzanares M, Martínez C, Sánchez-Madrid F (1998) The two poles of the lymphocyte: specialized cell compartments for migration and recruitment. Cell Adhes Commun 6(2–3):125–133

    PubMed  Google Scholar 

  280. Smith A, Bracke M, Leitinger B, Porter JC, Hogg N (2003) LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J Cell Sci 116(15):3123–3133. doi:10.1242/jcs.00606

    PubMed  CAS  Google Scholar 

  281. Gerisch G, Bretschneider T, Muller-Taubenberger A, Simmeth E, Ecke M, Diez S, Anderson K (2004) Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys J 87(5):3493–3503. doi:10.1529/biophysj.104.047589

    PubMed  CAS  PubMed Central  Google Scholar 

  282. Schneider N, Weber I, Faix J, Prassler J, Muller-Taubenberger A, Kohler J, Burghardt E, Gerisch G, Marriott G (2003) A Lim protein involved in the progression of cytokinesis and regulation of the mitotic spindle. Cell Motil Cytoskeleton 56(2):130–139. doi:10.1002/cm.10139

    PubMed  CAS  Google Scholar 

  283. Chung CY, Lee S, Briscoe C, Ellsworth C, Firtel RA (2000) Role of Rac in controlling the actin cytoskeleton and chemotaxis in motile cells. Proc Natl Acad Sci U S A 97(10):5225–5230

    PubMed  CAS  PubMed Central  Google Scholar 

  284. Park KC, Rivero F, Meili R, Lee S, Apone F, Firtel RA (2004) Rac regulation of chemotaxis and morphogenesis in Dictyostelium. EMBO J 23(21):4177–4189. doi:10.1038/sj.emboj.7600368

    PubMed  CAS  PubMed Central  Google Scholar 

  285. Han JW, Leeper L, Rivero F, Chung CY (2006) Role of RacC for the regulation of WASP and phosphatidylinositol 3-kinase during chemotaxis of Dictyostelium. J Biol Chem 281(46):35224–35234. doi:10.1074/jbc.M605997200

    PubMed  CAS  PubMed Central  Google Scholar 

  286. Filic V, Marinovic M, Faix J, Weber I (2012) A dual role for Rac1 GTPases in the regulation of cell motility. J Cell Sci 125(Pt 2):387–398. doi:10.1242/jcs.089680

    PubMed  CAS  Google Scholar 

  287. Plak K, Veltman D, Fusetti F, Beeksma J, Rivero F, Van Haastert PJ, Kortholt A (2013) GxcC connects Rap and Rac signaling during Dictyostelium development. BMC Cell Biol 14:6. doi:10.1186/1471-2121-14-6

    PubMed  CAS  PubMed Central  Google Scholar 

  288. Yan J, Mihaylov V, Xu X, Brzostowski JA, Li H, Liu L, Veenstra TD, Parent CA, Jin T (2012) A Gbetagamma effector, ElmoE, transduces GPCR signaling to the actin network during chemotaxis. Dev Cell 22(1):92–103. doi:10.1016/j.devcel.2011.11.007

    PubMed  CAS  Google Scholar 

  289. Seastone DJ, Harris E, Temesvari LA, Bear JE, Saxe CL, Cardelli J (2001) The WASp-like protein scar regulates macropinocytosis, phagocytosis and endosomal membrane flow in Dictyostelium. J Cell Sci 114(Pt 14):2673–2683

    PubMed  CAS  Google Scholar 

  290. Caracino D, Jones C, Compton M, Saxe CL 3rd (2007) The N-terminus of Dictyostelium Scar interacts with Abi and HSPC300 and is essential for proper regulation and function. Mol Biol Cell 18(5):1609–1620. doi:10.1091/mbc.E06-06-0518

    PubMed  CAS  PubMed Central  Google Scholar 

  291. Veltman DM, King JS, Machesky LM, Insall RH (2012) SCAR knockouts in Dictyostelium: WASP assumes SCAR’s position and upstream regulators in pseudopods. J Cell Biol 198(4):501–508. doi:10.1083/jcb.201205058

    PubMed  CAS  PubMed Central  Google Scholar 

  292. Pollitt AY, Insall RH (2009) Loss of Dictyostelium HSPC300 causes a scar-like phenotype and loss of SCAR protein. BMC Cell Biol 10:13. doi:10.1186/1471-2121-10-13

    PubMed  PubMed Central  Google Scholar 

  293. Blagg SL, Stewart M, Sambles C, Insall RH (2003) PIR121 regulates pseudopod dynamics and SCAR activity in Dictyostelium. Current biology : CB 13(17):1480–1487

    PubMed  CAS  Google Scholar 

  294. Ura S, Pollitt AY, Veltman DM, Morrice NA, Machesky LM, Insall RH (2012) Pseudopod growth and evolution during cell movement is controlled through SCAR/WAVE dephosphorylation. Current biology : CB 22(7):553–561. doi:10.1016/j.cub.2012.02.020

    PubMed  CAS  Google Scholar 

  295. Myers SA, Han JW, Lee Y, Firtel RA, Chung CY (2005) A Dictyostelium homologue of WASP is required for polarized F-actin assembly during chemotaxis. Mol Biol Cell 16(5):2191–2206. doi:10.1091/mbc.E04-09-0844

    PubMed  CAS  PubMed Central  Google Scholar 

  296. Chung CY, Feoktistov A, Hollingsworth RJ, Rivero F, Mandel NS (2013) An attenuating role of a WASP-related protein, WASP-B, in the regulation of F-actin polymerization and pseudopod formation via the regulation of RacC during Dictyostelium chemotaxis. Biochem Biophys Res Commun 436(4):719–724. doi:10.1016/j.bbrc.2013.06.022

    PubMed  CAS  PubMed Central  Google Scholar 

  297. Shu S, Liu X, Kriebel PW, Hong MS, Daniels MP, Parent CA, Korn ED (2010) Expression of Y53A-actin in Dictyostelium disrupts the cytoskeleton and inhibits intracellular and intercellular chemotactic signaling. J Biol Chem 285(36):27713–27725. doi:10.1074/jbc.M110.116277

    PubMed  CAS  PubMed Central  Google Scholar 

  298. Choi CH, Thomason PA, Zaki M, Insall RH, Barber DL (2013) Phosphorylation of actin-related protein 2 (Arp2) is required for normal development and cAMP chemotaxis in Dictyostelium. J Biol Chem 288(4):2464–2474. doi:10.1074/jbc.M112.435313

    PubMed  CAS  PubMed Central  Google Scholar 

  299. Schirenbeck A, Bretschneider T, Arasada R, Schleicher M, Faix J (2005) The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 7(6):619–625. doi:10.1038/ncb1266

    PubMed  CAS  Google Scholar 

  300. Rivero F, Koppel B, Peracino B, Bozzaro S, Siegert F, Weijer CJ, Schleicher M, Albrecht R, Noegel AA (1996) The role of the cortical cytoskeleton: F-actin crosslinking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. J Cell Sci 109(Pt 11):2679–2691

    PubMed  CAS  Google Scholar 

  301. Khaire N, Muller R, Blau-Wasser R, Eichinger L, Schleicher M, Rief M, Holak TA, Noegel AA (2007) Filamin-regulated F-actin assembly is essential for morphogenesis and controls phototaxis in Dictyostelium. J Biol Chem 282(3):1948–1955. doi:10.1074/jbc.M610262200

    PubMed  CAS  Google Scholar 

  302. Faix J, Steinmetz M, Boves H, Kammerer RA, Lottspeich F, Mintert U, Murphy J, Stock A, Aebi U, Gerisch G (1996) Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail. Cell 86(4):631–642

    PubMed  CAS  Google Scholar 

  303. Shu S, Liu X, Kriebel PW, Daniels MP, Korn ED (2012) Actin cross-linking proteins cortexillin I and II are required for cAMP signaling during Dictyostelium chemotaxis and development. Mol Biol Cell 23(2):390–400. doi:10.1091/mbc.E11-09-0764

    PubMed  CAS  PubMed Central  Google Scholar 

  304. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633–643. doi:10.1038/nrm2957

    PubMed  CAS  PubMed Central  Google Scholar 

  305. Sebe-Pedros A, Roger AJ, Lang FB, King N, Ruiz-Trillo I (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci U S A 107(22):10142–10147. doi:10.1073/pnas.1002257107

    PubMed  CAS  PubMed Central  Google Scholar 

  306. Brown MC, West KA, Turner CE (2002) Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Biol Cell 13(5):1550–1565. doi:10.1091/mbc.02-02-0015

    PubMed  CAS  PubMed Central  Google Scholar 

  307. Fuortes M, Jin WW, Nathan C (1994) Beta 2 integrin-dependent tyrosine phosphorylation of paxillin in human neutrophils treated with tumor necrosis factor. J Cell Biol 127(5):1477–1483

    PubMed  CAS  Google Scholar 

  308. Duran MB, Rahman A, Colten M, Brazill D (2009) Dictyostelium discoideum paxillin regulates actin-based processes. Protist 160(2):221–232. doi:10.1016/j.protis.2008.09.005

    PubMed  CAS  PubMed Central  Google Scholar 

  309. Heinrich D, Youssef S, Schroth-Diez B, Engel U, Aydin D, Blummel J, Spatz JP, Gerisch G (2008) Actin-cytoskeleton dynamics in non-monotonic cell spreading. Cell adhesion & migration 2(2):58–68

    Google Scholar 

  310. Ichetovkin I, Han J, Pang KM, Knecht DA, Condeelis JS (2000) Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motil Cytoskeleton 45(4):293–306. doi:10.1002/(SICI)1097-0169(200004)45:4<293:AID-CM5>3.0.CO;2-1

    PubMed  CAS  Google Scholar 

  311. Aizawa H, Fukui Y, Yahara I (1997) Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J Cell Sci 110(Pt 19):2333–2344

    PubMed  CAS  Google Scholar 

  312. Haugwitz M, Noegel AA, Karakesisoglou J, Schleicher M (1994) Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development. Cell 79(2):303–314

    PubMed  CAS  Google Scholar 

  313. Arasada R, Gloss A, Tunggal B, Joseph JM, Rieger D, Mondal S, Faix J, Schleicher M, Noegel AA (2007) Profilin isoforms in Dictyostelium discoideum. Biochim Biophys Acta 1773(5):631–641. doi:10.1016/j.bbamcr.2007.03.009

    PubMed  CAS  Google Scholar 

  314. Lammermann T, Sixt M (2009) Mechanical modes of ‘amoeboid’ cell migration. Curr Opin Cell Biol 21(5):636–644. doi:10.1016/j.ceb.2009.05.003

    PubMed  Google Scholar 

  315. Howard TH, Oresajo CO (1985) The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution, and the shape of neutrophils. J Cell Biol 101(3):1078–1085

    PubMed  CAS  Google Scholar 

  316. Weiner OD, Servant G, Welch MD, Mitchison TJ, Sedat JW, Bourne HR (1999) Spatial control of actin polymerization during neutrophil chemotaxis. Nat Cell Biol 1(2):75–81. doi:10.1038/10042

    PubMed  CAS  PubMed Central  Google Scholar 

  317. Fukui Y, Hashimoto O, Sanui T, Oono T, Koga H, Abe M, Inayoshi A, Noda M, Oike M, Shirai T, Sasazuki T (2001) Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412(6849):826–831. doi:10.1038/35090591

    PubMed  CAS  Google Scholar 

  318. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5(7):605–607. doi:10.1038/nmeth.1220

    PubMed  CAS  PubMed Central  Google Scholar 

  319. Yoo SK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A (2010) Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell 18(2):226–236. doi:10.1016/j.devcel.2009.11.015

    PubMed  CAS  PubMed Central  Google Scholar 

  320. Millius A, Dandekar SN, Houk AR, Weiner OD (2009) Neutrophils establish rapid and robust WAVE complex polarity in an actin-dependent fashion. Current biology : CB 19(3):253–259. doi:10.1016/j.cub.2008.12.044

    PubMed  CAS  PubMed Central  Google Scholar 

  321. Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y, Filippi MD (2012) Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 120(17):3563–3574. doi:10.1182/blood-2012-04-426981

    PubMed  CAS  PubMed Central  Google Scholar 

  322. Welch HC, Condliffe AM, Milne LJ, Ferguson GJ, Hill K, Webb LM, Okkenhaug K, Coadwell WJ, Andrews SR, Thelen M, Jones GE, Hawkins PT, Stephens LR (2005) P-Rex1 regulates neutrophil function. Current biology : CB 15(20):1867–1873. doi:10.1016/j.cub.2005.09.050

    PubMed  CAS  Google Scholar 

  323. Reynolds LF, Smyth LA, Norton T, Freshney N, Downward J, Kioussis D, Tybulewicz VL (2002) Vav1 transduces T cell receptor signals to the activation of phospholipase C-gamma1 via phosphoinositide 3-kinase-dependent and -independent pathways. J Exp Med 195(9):1103–1114

    PubMed  CAS  PubMed Central  Google Scholar 

  324. Hornstein I, Alcover A, Katzav S (2004) Vav proteins, masters of the world of cytoskeleton organization. Cell Signal 16(1):1–11

    PubMed  CAS  Google Scholar 

  325. Tedford K, Nitschke L, Girkontaite I, Charlesworth A, Chan G, Sakk V, Barbacid M, Fischer KD (2001) Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat Immunol 2(6):548–555. doi:10.1038/88756

    PubMed  CAS  Google Scholar 

  326. Doody GM, Bell SE, Vigorito E, Clayton E, McAdam S, Tooze R, Fernandez C, Lee IJ, Turner M (2001) Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation. Nat Immunol 2(6):542–547. doi:10.1038/88748

    PubMed  CAS  Google Scholar 

  327. Garcia-Bernal D, Wright N, Sotillo-Mallo E, Nombela-Arrieta C, Stein JV, Bustelo XR, Teixido J (2005) Vav1 and Rac control chemokine-promoted T lymphocyte adhesion mediated by the integrin alpha4beta1. Mol Biol Cell 16(7):3223–3235. doi:10.1091/mbc.E04-12-1049

    PubMed  CAS  PubMed Central  Google Scholar 

  328. Lawson CD, Donald S, Anderson KE, Patton DT, Welch HC (2011) P-Rex1 and Vav1 cooperate in the regulation of formyl-methionyl-leucyl-phenylalanine-dependent neutrophil responses. Journal of immunology 186(3):1467–1476. doi:10.4049/jimmunol.1002738

    CAS  Google Scholar 

  329. Gerard A, van der Kammen RA, Janssen H, Ellenbroek SI, Collard JG (2009) The Rac activator Tiam1 controls efficient T-cell trafficking and route of transendothelial migration. Blood 113(24):6138–6147. doi:10.1182/blood-2008-07-167668

    PubMed  CAS  Google Scholar 

  330. Costa C, Germena G, Martin-Conte EL, Molineris I, Bosco E, Marengo S, Azzolino O, Altruda F, Ranieri VM, Hirsch E (2011) The RacGAP ArhGAP15 is a master negative regulator of neutrophil functions. Blood 118(4):1099–1108. doi:10.1182/blood-2010-12-324756

    PubMed  CAS  Google Scholar 

  331. Wilkins A, Insall RH (2001) Small GTPases in Dictyostelium: lessons from a social amoeba. Trends in genetics : TIG 17(1):41–48

    PubMed  CAS  Google Scholar 

  332. Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR (2002) Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol 4(7):513–518. doi:10.1038/ncb810

    PubMed  CAS  Google Scholar 

  333. Dandekar SN, Park JS, Peng GE, Onuffer JJ, Lim WA, Weiner OD (2013) Actin dynamics rapidly reset chemoattractant receptor sensitivity following adaptation in neutrophils. Philos Trans R Soc Lond B Biol Sci 368(1629):20130008. doi:10.1098/rstb.2013.0008

    PubMed  Google Scholar 

  334. Kim SV, Mehal WZ, Dong X, Heinrich V, Pypaert M, Mellman I, Dembo M, Mooseker MS, Wu D, Flavell RA (2006) Modulation of cell adhesion and motility in the immune system by Myo1f. Science 314(5796):136–139. doi:10.1126/science.1131920

    PubMed  CAS  Google Scholar 

  335. Goode BL, Eck MJ (2007) Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76:593–627. doi:10.1146/annurev.biochem.75.103004.142647

    PubMed  CAS  Google Scholar 

  336. Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297(5581):612–615. doi:10.1126/science.1072309

    PubMed  CAS  Google Scholar 

  337. Vicente-Manzanares M, Rey M, Perez-Martinez M, Yanez-Mo M, Sancho D, Cabrero JR, Barreiro O, de la Fuente H, Itoh K, Sanchez-Madrid F (2003) The RhoA effector mDia is induced during T cell activation and regulates actin polymerization and cell migration in T lymphocytes. Journal of immunology 171(2):1023–1034

    CAS  Google Scholar 

  338. Shi Y, Zhang J, Mullin M, Dong B, Alberts AS, Siminovitch KA (2009) The mDial formin is required for neutrophil polarization, migration, and activation of the LARG/RhoA/ROCK signaling axis during chemotaxis. Journal of immunology 182(6):3837–3845. doi:10.4049/jimmunol.0803838

    CAS  Google Scholar 

  339. Yang C, Huang M, DeBiasio J, Pring M, Joyce M, Miki H, Takenawa T, Zigmond SH (2000) Profilin enhances Cdc42-induced nucleation of actin polymerization. J Cell Biol 150(5):1001–1012

    PubMed  CAS  PubMed Central  Google Scholar 

  340. Sun CX, Magalhaes MA, Glogauer M (2007) Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 179(2):239–245. doi:10.1083/jcb.200705122

    PubMed  CAS  PubMed Central  Google Scholar 

  341. Oser M, Condeelis J (2009) The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 108(6):1252–1262. doi:10.1002/jcb.22372

    PubMed  CAS  PubMed Central  Google Scholar 

  342. Yan M, Di Ciano-Oliveira C, Grinstein S, Trimble WS (2007) Coronin function is required for chemotaxis and phagocytosis in human neutrophils. Journal of immunology 178(9):5769–5778

    CAS  Google Scholar 

  343. Das M, Ithychanda SS, Qin J, Plow EF (2011) Migfilin and filamin as regulators of integrin activation in endothelial cells and neutrophils. PLoS ONE 6(10):e26355. doi:10.1371/journal.pone.0026355

    PubMed  CAS  PubMed Central  Google Scholar 

  344. Sun C, Forster C, Nakamura F, Glogauer M (2013) Filamin-A Regulates Neutrophil Uropod Retraction through RhoA during Chemotaxis. PLoS ONE 8(10):e79009. doi:10.1371/journal.pone.0079009

    PubMed  CAS  PubMed Central  Google Scholar 

  345. Yuruker B, Niggli V (1992) Alpha-actinin and vinculin in human neutrophils: reorganization during adhesion and relation to the actin network. J Cell Sci 101(Pt 2):403–414

    PubMed  Google Scholar 

  346. Rehberg M, Kleylein-Sohn J, Faix J, Ho TH, Schulz I, Graf R (2005) Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Mol Biol Cell 16(6):2759–2771. doi:10.1091/mbc.E05-01-0069

    PubMed  CAS  PubMed Central  Google Scholar 

  347. Tang L, Franca-Koh J, Xiong Y, Chen MY, Long Y, Bickford RM, Knecht DA, Iglesias PA, Devreotes PN (2008) tsunami, the Dictyostelium homolog of the Fused kinase, is required for polarization and chemotaxis. Genes Dev 22(16):2278–2290. doi:10.1101/gad.1694508

    PubMed  CAS  PubMed Central  Google Scholar 

  348. Xu J, Wang F, Van Keymeulen A, Rentel M, Bourne HR (2005) Neutrophil microtubules suppress polarity and enhance directional migration. Proc Natl Acad Sci U S A 102(19):6884–6889. doi:10.1073/pnas.0502106102

    PubMed  CAS  PubMed Central  Google Scholar 

  349. van Es S, Wessels D, Soll DR, Borleis J, Devreotes PN (2001) Tortoise, a novel mitochondrial protein, is required for directional responses of Dictyostelium in chemotactic gradients. The Journal of cell biology 152(3):621–632

    PubMed  PubMed Central  Google Scholar 

  350. Lusche DF, Wessels D, Ryerson DE, Soll DR (2011) Nhe1 is essential for potassium but not calcium facilitation of cell motility and the monovalent cation requirement for chemotactic orientation in Dictyostelium discoideum. Eukaryot Cell 10(3):320–331. doi:10.1128/EC.00255-10

    PubMed  CAS  PubMed Central  Google Scholar 

  351. Janetopoulos C, Borleis J, Vazquez F, Iijima M, Devreotes P (2005) Temporal and spatial regulation of phosphoinositide signaling mediates cytokinesis. Dev Cell 8(4):467–477. doi:10.1016/j.devcel.2005.02.010

    PubMed  CAS  Google Scholar 

  352. Postma M, Van Haastert PJ (2001) A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys J 81(3):1314–1323. doi:10.1016/S0006-3495(01)75788-8

    PubMed  CAS  PubMed Central  Google Scholar 

  353. Weiner OD, Neilsen PO, Prestwich GD, Kirschner MW, Cantley LC, Bourne HR (2002) A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4(7):509–513. doi:10.1038/ncb811

    PubMed  CAS  PubMed Central  Google Scholar 

  354. Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER, Angenent SB, Altschuler SJ, Wu LF, Weiner OD (2012) Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148(1–2):175–188. doi:10.1016/j.cell.2011.10.050

    PubMed  CAS  PubMed Central  Google Scholar 

  355. Vicker MG (2002) F-actin assembly in Dictyostelium cell locomotion and shape oscillations propagates as a self-organized reaction–diffusion wave. FEBS Letters 510 (1–2):5-9. doi:http://dx.doi.org/10.1016/S0014-5793(01)03207-0

  356. Vicker MG (2002) Eukaryotic Cell Locomotion Depends on the Propagation of Self-Organized Reaction–Diffusion Waves and Oscillations of Actin Filament Assembly. Experimental Cell Research 275 (1):54-66. doi:http://dx.doi.org/10.1006/excr.2001.5466

  357. Bretschneider T, Anderson K, Ecke M, Müller-Taubenberger A, Schroth-Diez B, Ishikawa-Ankerhold HC, Gerisch G (2009) The Three-Dimensional Dynamics of Actin Waves, a Model of Cytoskeletal Self-Organization. Biophysical journal 96 (7):2888-2900. doi:http://dx.doi.org/10.1016/j.bpj.2008.12.3942

  358. Gerisch G, Ecke M, Schroth-Diez B, Gerwig S, Engel U, Maddera L, Clarke M (2009) Self-organizing actin waves as planar phagocytic cup structures. Cell adhesion & migration 3(4):373–382

    Google Scholar 

  359. Gerisch G (2010) Self-organizing actin waves that simulate phagocytic cup structures. PMC Biophys 3(1):7. doi:10.1186/1757-5036-3-7

    PubMed  PubMed Central  Google Scholar 

  360. Weiner OD, Marganski WA, Wu LF, Altschuler SJ, Kirschner MW (2007) An Actin-Based Wave Generator Organizes Cell Motility. PLoS Biol 5(9):e221. doi:10.1371/journal.pbio.0050221

    PubMed  PubMed Central  Google Scholar 

  361. Case LB, Waterman CM (2011) Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization. PLoS ONE 6(11):e26631. doi:10.1371/journal.pone.0026631

    PubMed  CAS  PubMed Central  Google Scholar 

  362. Westendorf C, Negrete J Jr, Bae AJ, Sandmann R, Bodenschatz E, Beta C (2013) Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations. Proc Natl Acad Sci USA 110(10):3853–3858. doi:10.1073/pnas.1216629110

    PubMed  CAS  PubMed Central  Google Scholar 

  363. Arai Y, Shibata T, Matsuoka S, Sato MJ, Yanagida T, Ueda M (2010) Self-organization of the phosphatidylinositol lipids signaling system for random cell migration. Proc Natl Acad Sci 107(27):12399–12404. doi:10.1073/pnas.0908278107

    PubMed  CAS  PubMed Central  Google Scholar 

  364. Taniguchi D, Ishihara S, Oonuki T, Honda-Kitahara M, Kaneko K, Sawai S (2013) Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. Proc Natl Acad Sci 110(13):5016–5021. doi:10.1073/pnas.1218025110

    PubMed  CAS  PubMed Central  Google Scholar 

  365. Asano Y, Nagasaki A, Uyeda TQP (2008) Correlated waves of actin filaments and PIP3 in Dictyostelium cells. Cell Motil Cytoskelet 65(12):923–934. doi:10.1002/cm.20314

    CAS  Google Scholar 

  366. Huang CH, Tang M, Shi C, Iglesias PA, Devreotes PN (2013) An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat Cell Biol. doi:10.1038/ncb2859

    Google Scholar 

  367. Shibata T, Nishikawa M, Matsuoka S, Ueda M (2013) Intracellular Encoding of Spatiotemporal Guidance Cues in a Self-Organizing Signaling System for Chemotaxis in Dictyostelium Cells. Biophysical journal 105 (9):2199-2209. doi:http://dx.doi.org/10.1016/j.bpj.2013.09.024

  368. Xiong Y, Huang CH, Iglesias PA, Devreotes PN (2010) Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci U S A 107(40):17079–17086. doi:10.1073/pnas.1011271107

    PubMed  CAS  PubMed Central  Google Scholar 

  369. Hecht I, Skoge ML, Charest PG, Ben-Jacob E, Firtel RA, Loomis WF, Levine H, Rappel W-J (2011) Activated Membrane Patches Guide Chemotactic Cell Motility. PLoS Comput Biol 7(6):e1002044. doi:10.1371/journal.pcbi.1002044

    PubMed  CAS  PubMed Central  Google Scholar 

  370. Meinhardt H (1999) Orientation of chemotactic cells and growth cones: models and mechanisms. J Cell Sci 112(17):2867–2874

    PubMed  CAS  Google Scholar 

  371. Hecht I, Kessler DA, Levine H (2010) Transient Localized Patterns in Noise-Driven Reaction-Diffusion Systems. Phys Rev Lett 104(15):158301

    PubMed  PubMed Central  Google Scholar 

  372. Neilson MP, Veltman DM, van Haastert PJM, Webb SD, Mackenzie JA, Insall RH (2011) Chemotaxis: A Feedback-Based Computational Model Robustly Predicts Multiple Aspects of Real Cell Behaviour. PLoS Biol 9(5):e1000618. doi:10.1371/journal.pbio.1000618

    PubMed  CAS  PubMed Central  Google Scholar 

  373. Stephens CG, Snyderman R (1982) Cyclic nucleotides regulate the morphologic alterations required for chemotaxis in monocytes. J Immunol 128(3):1192–1197

    PubMed  CAS  Google Scholar 

  374. Wyatt TA, Lincoln TM, Pryzwansky KB (1991) Vimentin is transiently co-localized with and phosphorylated by cyclic GMP-dependent protein kinase in formyl-peptide-stimulated neutrophils. J Biol Chem 266(31):21274–21280

    PubMed  CAS  Google Scholar 

  375. Belenky SN, Robbins RA, Rubinstein I (1993) Nitric oxide synthase inhibitors attenuate human monocyte chemotaxis in vitro. J Leukoc Biol 53(5):498–503

    PubMed  CAS  Google Scholar 

  376. Elferink JGR, Vanuffelen BE (1996) The role of cyclic nucleotides in neutrophil migration. General Pharmacology: The Vascular System 27 (2):387-393. doi:http://dx.doi.org/10.1016/0306-3623(95)00070-4

  377. Lawrence DW, Pryzwansky KB (2001) The Vasodilator-Stimulated Phosphoprotein Is Regulated by Cyclic GMP-Dependent Protein Kinase During Neutrophil Spreading. J Immunol 166(9):5550–5556

    PubMed  CAS  Google Scholar 

  378. Jenei V, Deevi RK, Adams CA, Axelsson L, Hirst DG, Andersson T, Dib K (2006) Nitric oxide produced in response to engagement of beta2 integrins on human neutrophils activates the monomeric GTPases Rap1 and Rap2 and promotes adhesion. J Biol Chem 281(46):35008–35020. doi:10.1074/jbc.M601335200

    PubMed  CAS  Google Scholar 

  379. Kato M, Blanton R, Wang GR, Judson TJ, Abe Y, Myoishi M, Karas RH, Mendelsohn ME (2012) Direct binding and regulation of RhoA protein by cyclic GMP-dependent protein kinase Ialpha. J Biol Chem 287(49):41342–41351. doi:10.1074/jbc.M112.421040

    PubMed  CAS  PubMed Central  Google Scholar 

  380. Vandekerckhove J, Weber K (1980) Vegetative Dictyostelium cells containing 17 actin genes express a single major actin. Nature 284(5755):475–477

    PubMed  CAS  Google Scholar 

  381. Joseph JM, Fey P, Ramalingam N, Liu XI, Rohlfs M, Noegel AA, Muller-Taubenberger A, Glockner G, Schleicher M (2008) The actinome of Dictyostelium discoideum in comparison to actins and actin-related proteins from other organisms. PLoS ONE 3(7):e2654. doi:10.1371/journal.pone.0002654

    PubMed  PubMed Central  Google Scholar 

  382. Wherlock M, Mellor H (2002) The Rho GTPase family: a Racs to Wrchs story. J Cell Sci 115(Pt 2):239–240

    PubMed  CAS  Google Scholar 

  383. Saxe CL 3rd, Johnson R, Devreotes PN, Kimmel AR (1991) Multiple genes for cell surface cAMP receptors in Dictyostelium discoideum. Dev Genet 12(1–2):6–13. doi:10.1002/dvg.1020120104

    PubMed  CAS  Google Scholar 

  384. Unnewehr H, Rittirsch D, Sarma JV, Zetoune F, Flierl MA, Perl M, Denk S, Weiss M, Schneider ME, Monk PN, Neff T, Mihlan M, Barth H, Gebhard F, Ward PA, Huber-Lang M (2013) Changes and regulation of the C5a receptor on neutrophils during septic shock in humans. Journal of immunology 190(8):4215–4225. doi:10.4049/jimmunol.1200534

    CAS  Google Scholar 

  385. Oostra V, de Jong MA, Invergo BM, Kesbeke F, Wende F, Brakefield PM, Zwaan BJ (2011) Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polyphenic butterfly. Proceedings Biological sciences/The Royal Society 278(1706):789–797. doi:10.1098/rspb.2010.1560

    PubMed  CAS  PubMed Central  Google Scholar 

  386. P-y Lam, Yoo SK, Green JM, Huttenlocher A (2012) The SH2-domain-containing inositol 5-phosphatase (SHIP) limits the motility of neutrophils and their recruitment to wounds in zebrafish. J Cell Sci 125(21):4973–4978. doi:10.1242/jcs.106625

    Google Scholar 

  387. Liu L, Luo Y, Chen L, Shen T, Xu B, Chen W, Zhou H, Han X, Huang S (2010) Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J Biol Chem 285(49):38362–38373. doi:10.1074/jbc.M110.141168

    PubMed  CAS  PubMed Central  Google Scholar 

  388. Murphy MB, Egelhoff TT (1999) Biochemical characterization of a Dictyostelium myosin II heavy-chain phosphatase that promotes filament assembly. Eur J Biochem 264(2):582–590. doi:10.1046/j.1432-1327.1999.00670.x

    PubMed  CAS  Google Scholar 

  389. Alblas J, Ulfman L, Hordijk P, Koenderman L (2001) Activation of RhoA and ROCK Are Essential for Detachment of Migrating Leukocytes. Mol Biol Cell 12(7):2137–2145. doi:10.1091/mbc.12.7.2137

    PubMed  CAS  PubMed Central  Google Scholar 

  390. Niggli V (1999) Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. FEBS Letters 445 (1):69-72. doi:http://dx.doi.org/10.1016/S0014-5793(99)00098-8

  391. Adachi T, Stafford S, Kayaba H, Chihara J, Alam R (2003) Myosin light chain kinase mediates eosinophil chemotaxis in a mitogen-activated protein kinase–dependent manner. Journal of Allergy and Clinical Immunology 111 (1):113-116. doi:http://dx.doi.org/10.1067/mai.2003.27

  392. Perrin BJ, Ervasti JM (2010) The actin gene family: function follows isoform. Cytoskeleton 67(10):630–634. doi:10.1002/cm.20475

    PubMed  CAS  PubMed Central  Google Scholar 

  393. Howard TH, Watts RG (1994) Actin polymerization and leukocyte function. Curr Opin Hematol 1(1):61–68

    PubMed  CAS  Google Scholar 

  394. Ku CJ, Wang Y, Weiner OD, Altschuler SJ, Wu LF (2012) Network crosstalk dynamically changes during neutrophil polarization. Cell 149(5):1073–1083. doi:10.1016/j.cell.2012.03.044

    PubMed  CAS  PubMed Central  Google Scholar 

  395. Winterhoff M, Junemann A, Nordholz B, Linkner J, Schleicher M, Faix J (2013) The Diaphanous-related formin dDia1 is required for highly directional phototaxis and formation of properly sized fruiting bodies in Dictyostelium. Eur J Cell Biol. doi:10.1016/j.ejcb.2013.11.002

    Google Scholar 

  396. Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN (1998) G Protein Signaling Events Are Activated at the Leading Edge of Chemotactic Cells. Cell 95 (1):81-91. doi:http://dx.doi.org/10.1016/S0092-8674(00)81784-5

  397. Iijima M, Devreotes P (2002) Tumor Suppressor PTEN Mediates Sensing of Chemoattractant Gradients. Cell 109 (5):599-610. doi:http://dx.doi.org/10.1016/S0092-8674(02)00745-6

  398. Hynes RO (2002) Integrins: Bidirectional, Allosteric Signaling Machines. Cell 110 (6):673-687. doi:http://dx.doi.org/10.1016/S0092-8674(02)00971-6

  399. Tsujioka M, Yoshida K, Nagasaki A, Yonemura S, Müller-Taubenberger A, Uyeda TQP (2008) Overlapping Functions of the Two Talin Homologues in Dictyostelium. Eukaryot Cell 7(5):906–916. doi:10.1128/ec.00464-07

    PubMed  CAS  PubMed Central  Google Scholar 

  400. Cornillon S, Gebbie L, Benghezal M, Nair P, Keller S, Wehrle-Haller B, Charette SJ, Bruckert F, Letourneur F, Cosson P (2006) An adhesion molecule in free-living Dictyostelium amoebae with integrin [beta] features. EMBO Rep 7 (6):617-621. doi:http://www.nature.com/embor/journal/v7/n6/suppinfo/7400701_S1.html

  401. Loomis WF, Fuller D, Gutierrez E, Groisman A, Rappel W-J (2012) Innate Non-Specific Cell Substratum Adhesion. PLoS ONE 7(8):e42033. doi:10.1371/journal.pone.0042033

    PubMed  CAS  PubMed Central  Google Scholar 

  402. Cornillon S, Froquet R, Cosson P (2008) Involvement of Sib Proteins in the Regulation of Cellular Adhesion in Dictyostelium discoideum. Eukaryot Cell 7(9):1600–1605. doi:10.1128/ec.00155-08

    PubMed  CAS  PubMed Central  Google Scholar 

  403. Fey P, Stephens S, Titus MA, Chisholm RL (2002) SadA, a novel adhesion receptor in Dictyostelium. J Cell Biol 159(6):1109–1119. doi:10.1083/jcb.200206067

    PubMed  CAS  PubMed Central  Google Scholar 

  404. Cornillon S, Pech E, Benghezal M, Ravanel K, Gaynor E, Letourneur F, Bruckert F, Cosson P (2000) Phg1p is a nine-transmembrane protein superfamily member involved in dictyostelium adhesion and phagocytosis. J Biol Chem 275(44):34287–34292. doi:10.1074/jbc.M006725200

    PubMed  CAS  Google Scholar 

  405. Bukahrova T, Weijer G, Bosgraaf L, Dormann D, van Haastert PJ, Weijer CJ (2005) Paxillin is required for cell-substrate adhesion, cell sorting and slug migration during Dictyostelium development. J Cell Sci 118(18):4295–4310. doi:10.1242/jcs.02557

    PubMed  CAS  Google Scholar 

  406. Patel H, König I, Tsujioka M, Frame MC, Anderson KI, Brunton VG (2008) The multi-FERM-domain-containing protein FrmA is required for turnover of paxillin-adhesion sites during cell migration of Dictyostelium. J Cell Sci 121(8):1159–1164. doi:10.1242/jcs.021725

    PubMed  CAS  Google Scholar 

  407. Sampaio NG, Yu W, Cox D, Wyckoff J, Condeelis J, Stanley ER, Pixley FJ (2011) Phosphorylation of CSF-1R Y721 mediates its association with PI3K to regulate macrophage motility and enhancement of tumor cell invasion. J Cell Sci 124(Pt 12):2021–2031. doi:10.1242/jcs.075309

    PubMed  CAS  PubMed Central  Google Scholar 

  408. Burns AR, Bowden RA, Abe Y, Walker DC, Simon SI, Entman ML, Smith CW (1999) P-selectin mediates neutrophil adhesion to endothelial cell borders. J Leukoc Biol 65(3):299–306

    PubMed  CAS  Google Scholar 

  409. Stadtmann A, Germena G, Block H, Boras M, Rossaint J, Sundd P, Lefort C, Fisher CI, Buscher K, Gelschefarth B, Urzainqui A, Gerke V, Ley K, Zarbock A (2013) The PSGL-1-L-selectin signaling complex regulates neutrophil adhesion under flow. J Exp Med 210(11):2171–2180. doi:10.1084/jem.20130664

    PubMed  CAS  PubMed Central  Google Scholar 

  410. Ulbrich H, Eriksson EE, Lindbom L (2003) Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci 24(12):640–647. doi:10.1016/j.tips.2003.10.004

    PubMed  CAS  Google Scholar 

  411. Heit B, Colarusso P, Kubes P (2005) Fundamentally different roles for LFA-1, Mac-1 and α4-integrin in neutrophil chemotaxis. J Cell Sci 118(22):5205–5220. doi:10.1242/jcs.02632

    PubMed  CAS  Google Scholar 

  412. Hogg N, Laschinger M, Giles K, McDowall A (2003) T-cell integrins: more than just sticking points. J Cell Sci 116(23):4695–4705. doi:10.1242/jcs.00876

    PubMed  CAS  Google Scholar 

  413. Lomakina EB, Waugh RE (2009) Adhesion between human neutrophils and immobilized endothelial ligand vascular cell adhesion molecule 1: divalent ion effects. Biophys J 96(1):276–284. doi:10.1016/j.bpj.2008.10.001

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Cancer Society fellowship to TL, and National Institutes of Health grants GM34933 and GM28007 to PND.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter N. Devreotes.

Additional information

Y. Artemenko, T. J. Lampert contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemenko, Y., Lampert, T.J. & Devreotes, P.N. Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell. Mol. Life Sci. 71, 3711–3747 (2014). https://doi.org/10.1007/s00018-014-1638-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1638-8

Keywords

Navigation