Skip to main content
Log in

Circadian clocks and energy metabolism

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Circadian clocks orchestrate behavioral and physiological processes in a time-of-day dependent manner. The network of clock-controlled genes is intimately interconnected with metabolic regulatory circuits. Circadian clocks rhythmically regulate the expression and activity of key metabolic players, which in turn feed back on the circadian machinery on the transcriptional and post-transcriptional level. Mutations of clock genes are often associated with metabolic defects, especially in lipid and glucose metabolism. Accumulating data suggest that the reciprocal coordination of circadian and metabolic pathways is crucial for cellular homeostasis and the health of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu Y, Tsinoremas NF, Johnson CH et al (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9(12):1469–1478

    CAS  PubMed  Google Scholar 

  2. Woelfle MA, Johnson CH (2006) No promoter left behind: global circadian gene expression in cyanobacteria. J Biol Rhythms 21(6):419–431

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Mitsui AKS, Takahashi A, Ikemoto H, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323:720–722

    CAS  Google Scholar 

  4. Liu Y, Tsinoremas NF, Golden SS, Kondo T, Johnson CH (1996) Circadian expression of genes involved in the purine biosynthetic pathway of the cyanobacterium Synechococcus sp. strain PCC 7942. Mol Microbiol 20(5):1071–1081

    CAS  PubMed  Google Scholar 

  5. Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14(16):1481–1486

    CAS  PubMed  Google Scholar 

  6. Dodd AN, Salathia N, Hall A et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309(5734):630–633

    CAS  PubMed  Google Scholar 

  7. Storch KF, Lipan O, Leykin I et al (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417(6884):78–83

    CAS  PubMed  Google Scholar 

  8. Zhang EE, Liu Y, Dentin R et al (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16(10):1152–1156

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Panda S, Antoch MP, Miller BH et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320

    CAS  PubMed  Google Scholar 

  10. Claudel T, Cretenet G, Saumet A, Gachon F (2007) Crosstalk between xenobiotics metabolism and circadian clock. FEBS Lett 581(19):3626–3633

    CAS  PubMed  Google Scholar 

  11. Le Martelot G, Claudel T, Gatfield D et al (2009) REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 7(9):e1000181

    PubMed Central  PubMed  Google Scholar 

  12. Grimaldi B, Bellet MM, Katada S et al (2010) PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab 12(5):509–520

    CAS  PubMed  Google Scholar 

  13. Bugge A, Feng D, Everett LJ et al (2012) Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function. Genes Dev 26(7):657–667

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Masri S, Patel VR, Eckel-Mahan KL et al (2013) Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci USA 110(9):3339–3344

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Reick M, Garcia JA, Dudley C, McKnight SL (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293(5529):506–509

    CAS  PubMed  Google Scholar 

  16. Bunger MK, Wilsbacher LD, Moran SM et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Gekakis N, Staknis D, Nguyen HB et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280(5369):1564–1569

    CAS  PubMed  Google Scholar 

  18. Hogenesch JB, Gu YZ, Jain S, Bradfield CA (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 95(10):5474–5479

    CAS  PubMed Central  PubMed  Google Scholar 

  19. King DP, Zhao Y, Sangoram AM et al (1997) Positional cloning of the mouse circadian clock gene. Cell 89(4):641–653

    CAS  PubMed Central  PubMed  Google Scholar 

  20. DeBruyne JP, Weaver DR, Reppert SM (2007) Peripheral circadian oscillators require CLOCK. Curr Biol 17(14):R538–R539

    CAS  PubMed  Google Scholar 

  21. Griffin EA Jr, Staknis D, Weitz CJ (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286(5440):768–771

    CAS  PubMed  Google Scholar 

  22. Kume K, Zylka MJ, Sriram S et al (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98(2):193–205

    CAS  PubMed  Google Scholar 

  23. van der Horst GT, Muijtjens M, Kobayashi K et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398(6728):627–630

    PubMed  Google Scholar 

  24. Zheng B, Albrecht U, Kaasik K et al (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105(5):683–694

    CAS  PubMed  Google Scholar 

  25. Preitner N, Damiola F, Lopez-Molina L et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260

    CAS  PubMed  Google Scholar 

  26. Ueda HR, Hayashi S, Chen W et al (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37(2):187–192

    CAS  PubMed  Google Scholar 

  27. Cho H, Zhao X, Hatori M et al (2012) Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 485(7396):123–127

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Sato TK, Panda S, Miraglia LJ et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43(4):527–537

    CAS  PubMed  Google Scholar 

  29. Canaple L, Rambaud J, Dkhissi-Benyahya O et al (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 20(8):1715–1727

    CAS  PubMed  Google Scholar 

  30. Lemberger T, Saladin R, Vazquez M et al (1996) Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271(3):1764–1769

    CAS  PubMed  Google Scholar 

  31. Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20(5):391–403

    CAS  PubMed  Google Scholar 

  32. Takeda Y, Jothi R, Birault V, Jetten AM (2012) RORgamma directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res 40(17):8519–8535

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Boergesen M, Pedersen TA, Gross B et al (2012) Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites. Mol Cell Biol 32(4):852–867

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447(7143):477–481

    CAS  PubMed  Google Scholar 

  35. Koike N, Yoo SH, Huang HC et al (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Correa A, Lewis ZA, Greene AV, March IJ, Gomer RH, Bell-Pedersen D (2003) Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci USA 100(23):13597–13602

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Harmer SL, Hogenesch JB, Straume M et al (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290(5499):2110–2113

    CAS  PubMed  Google Scholar 

  38. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA (2012) The human circadian metabolome. Proc Natl Acad Sci USA 109(7):2625–2629

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA 109(14):5541–5546

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F (2011) Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9(2):e1000595

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Feng D, Liu T, Sun Z et al (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Edwards PA, Muroya H, Gould RG (1972) In vivo demonstration of the circadian thythm of cholesterol biosynthesis in the liver and intestine of the rat. J Lipid Res 13(3):396–401

    CAS  PubMed  Google Scholar 

  43. Shapiro DJ, Rodwell VW (1969) Diurnal variation and cholesterol regulation of hepatic HMG-CoA reductase activity. Biochem Biophys Res Commun 37(5):867–872

    CAS  PubMed  Google Scholar 

  44. Dong XY, Tang SQ, Chen JD (2012) Dual functions of Insig proteins in cholesterol homeostasis. Lipids Health Dis 11:173

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Magana MM, Osborne TF (1996) Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem 271(51):32689–32694

    CAS  PubMed  Google Scholar 

  46. Vallett SM, Sanchez HB, Rosenfeld JM, Osborne TF (1996) A direct role for sterol regulatory element binding protein in activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene. J Biol Chem 271(21):12247–12253

    CAS  PubMed  Google Scholar 

  47. Hua X, Yokoyama C, Wu J et al (1993) SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci USA 90(24):11603–11607

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Sakakura Y, Shimano H, Sone H et al (2001) Sterol regulatory element-binding proteins induce an entire pathway of cholesterol synthesis. Biochem Biophys Res Commun 286(1):176–183

    CAS  PubMed  Google Scholar 

  49. Reed BD, Charos AE, Szekely AM, Weissman SM, Snyder M (2008) Genome-wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel functional roles and combinatorial regulation of distinct classes of genes. PLoS Genet 4(7):e1000133

    PubMed Central  PubMed  Google Scholar 

  50. Seo YK, Jeon TI, Chong HK, Biesinger J, Xie X, Osborne TF (2011) Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell Metab 13(4):367–375

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ (2000) Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102(3):315–323

    CAS  PubMed  Google Scholar 

  52. Yang T, Espenshade PJ, Wright ME et al (2002) Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110(4):489–500

    CAS  PubMed  Google Scholar 

  53. Yabe D, Brown MS, Goldstein JL (2002) Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci USA 99(20):12753–12758

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Hughes ME, DiTacchio L, Hayes KR et al (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5(4):e1000442

    PubMed Central  PubMed  Google Scholar 

  55. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24(4):345–357

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Lamia KA, Papp SJ, Yu RT et al (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480(7378):552–556

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kida K, Nishio T, Yokozawa T, Nagai K, Matsuda H, Nakagawa H (1980) The circadian change of gluconeogenesis in the liver in vivo in fed rats. J Biochem 88(4):1009–1013

    CAS  PubMed  Google Scholar 

  58. Jitrapakdee S (2011) Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol 44(1):33–45

    PubMed  Google Scholar 

  59. Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA 106(50):21453–21458

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Witchel SF, DeFranco DB (2006) Mechanisms of disease: regulation of glucocorticoid and receptor levels–impact on the metabolic syndrome. Nat Clin Pract Endocrinol Metab 2(11):621–631

    CAS  PubMed  Google Scholar 

  61. Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839

    CAS  PubMed  Google Scholar 

  62. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294(5548):1866–1870

    CAS  PubMed  Google Scholar 

  63. Yang X, Downes M, Yu RT et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126(4):801–810

    CAS  PubMed  Google Scholar 

  64. Fredeen AL, Hennessey TL, Field CB (1991) Biochemical correlates of the circadian rhythm in photosynthesis in Phaseolus vulgaris. Plant Physiol 97(1):415–419

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Gould PD, Diaz P, Hogben C et al (2009) Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J 58(5):893–901

    CAS  PubMed  Google Scholar 

  66. Hartwell J (2005) The co-ordination of central plant metabolism by the circadian clock. Biochem Soc Trans 33(Pt 5):945–948

    CAS  PubMed  Google Scholar 

  67. Haydon MJ, Bell LJ, Webb AA (2011) Interactions between plant circadian clocks and solute transport. J Exp Bot 62(7):2333–2348

    CAS  PubMed  Google Scholar 

  68. Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9(8):R130

    PubMed Central  PubMed  Google Scholar 

  69. Noordally ZB, Ishii K, Atkins KA et al (2013) Circadian control of chloroplast transcription by a nuclear-encoded timing signal. Science 339(6125):1316–1319

    CAS  PubMed  Google Scholar 

  70. Feige JN, Auwerx J (2008) Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr Opin Cell Biol 20(3):303–309

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238

    CAS  PubMed  Google Scholar 

  72. Zhong L, D’Urso A, Toiber D et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140(2):280–293

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Cohen HY, Miller C, Bitterman KJ et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392

    CAS  PubMed  Google Scholar 

  74. Hirschey MD, Shimazu T, Goetzman E et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285):121–125

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Kanfi Y, Naiman S, Amir G et al (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221

    CAS  PubMed  Google Scholar 

  76. Liu Y, Dentin R, Chen D et al (2008) A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456(7219):269–273

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Zhong L, Mostoslavsky R (2011) Fine tuning our cellular factories: sirtuins in mitochondrial biology. Cell Metab 13(6):621–626

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Someya S, Yu W, Hallows WC et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Jing E, Emanuelli B, Hirschey MD et al (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA 108(35):14608–14613

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Asher G, Gatfield D, Stratmann M et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317–328

    CAS  PubMed  Google Scholar 

  81. Nakahata Y, Kaluzova M, Grimaldi B et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134(2):329–340

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324(5927):654–657

    CAS  PubMed  Google Scholar 

  83. Houtkooper RH, Canto C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31(2):194–223

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279(49):50754–50763

    CAS  PubMed  Google Scholar 

  85. Ramsey KM, Yoshino J, Brace CS et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324(5927):651–654

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    CAS  PubMed  Google Scholar 

  87. Hardie DG, Carling D, Gamblin SJ (2011) AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 36(9):470–477

    CAS  PubMed  Google Scholar 

  88. Woods A, Johnstone SR, Dickerson K et al (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13(22):2004–2008

    CAS  PubMed  Google Scholar 

  89. Shaw RJ, Kosmatka M, Bardeesy N et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101(10):3329–3335

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18(4):556–566

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Suzuki A, Okamoto S, Lee S, Saito K, Shiuchi T, Minokoshi Y (2007) Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein kinase. Mol Cell Biol 27(12):4317–4327

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Lamia KA, Sachdeva UM, DiTacchio L et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326(5951):437–440

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Li Y, Xu S, Mihaylova MM et al (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Clarke PR, Hardie DG (1990) Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J 9(8):2439–2446

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Sato R, Goldstein JL, Brown MS (1993) Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc Natl Acad Sci USA 90(20):9261–9265

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Carlson CA, Kim KH (1973) Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 248(1):378–380

    CAS  PubMed  Google Scholar 

  98. Menet JS, Rodriguez J, Abruzzi KC, Rosbash M (2012) Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Elife 1:e00011

    PubMed Central  PubMed  Google Scholar 

  99. Le Martelot G, Canella D, Symul L et al (2012) Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10(11):e1001442

    PubMed Central  PubMed  Google Scholar 

  100. Vollmers C, Schmitz RJ, Nathanson J, Yeo G, Ecker JR, Panda S (2012) Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab 16(6):833–845

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5(2):e34

    PubMed Central  PubMed  Google Scholar 

  102. Gachon F (2007) Physiological function of PARbZip circadian clock-controlled transcription factors. Ann Med 39(8):562–571

    CAS  PubMed  Google Scholar 

  103. Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38(3):369–374

    CAS  PubMed  Google Scholar 

  104. Gachon F, Olela FF, Schaad O, Descombes P, Schibler U (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4(1):25–36

    CAS  PubMed  Google Scholar 

  105. Gachon F, Fonjallaz P, Damiola F et al (2004) The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev 18(12):1397–1412

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Qatanani M, Moore DD (2005) CAR, the continuously advancing receptor, in drug metabolism and disease. Curr Drug Metab 6(4):329–339

    CAS  PubMed  Google Scholar 

  107. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961

    CAS  PubMed Central  PubMed  Google Scholar 

  108. McKenna NJ, Cooney AJ, DeMayo FJ et al (2009) Minireview: evolution of NURSA, the nuclear receptor signaling atlas. Mol Endocrinol 23(6):740–746

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Sonoda J, Pei L, Evans RM (2008) Nuclear receptors: decoding metabolic disease. FEBS Lett 582(1):2–9

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250

    CAS  PubMed  Google Scholar 

  111. Zechel C (2005) The germ cell nuclear factor (GCNF). Mol Reprod Dev 72(4):550–556

    CAS  PubMed  Google Scholar 

  112. Ahmadian M, Suh JM, Hah N et al (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566

    CAS  PubMed  Google Scholar 

  113. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10(4):355–361

    CAS  PubMed  Google Scholar 

  114. Poulsen L, Siersbaek M, Mandrup S (2012) PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 23(6):631–639

    PubMed  Google Scholar 

  115. Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142(10):4195–4202

    CAS  PubMed  Google Scholar 

  116. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103(11):1489–1498

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA 90(6):2160–2164

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 96(13):7473–7478

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Bray MS, Young ME (2011) Regulation of fatty acid metabolism by cell autonomous circadian clocks: time to fatten up on information? J Biol Chem 286(14):11883–11889

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Kroetz DL, Yook P, Costet P, Bianchi P, Pineau T (1998) Peroxisome proliferator-activated receptor alpha controls the hepatic CYP4A induction adaptive response to starvation and diabetes. J Biol Chem 273(47):31581–31589

    CAS  PubMed  Google Scholar 

  121. Muller DN, Schmidt C, Barbosa-Sicard E et al (2007) Mouse Cyp4a isoforms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. Biochem J 403(1):109–118

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276(5313):763–769

    CAS  PubMed  Google Scholar 

  123. Baker CL, Loros JJ, Dunlap JC (2012) The circadian clock of Neurospora crassa. FEMS Microbiol Rev 36(1):95–110

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297(5582):815–819

    CAS  PubMed  Google Scholar 

  125. Smith KM, Sancar G, Dekhang R et al (2010) Transcription factors in light and circadian clock signaling networks revealed by genome-wide mapping of direct targets for Neurospora WHITE COLLAR COMPLEX. Eukaryot Cell 9(10):1549–1556

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28(8):1029–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Vitalini MW, de Paula RM, Park WD, Bell-Pedersen D (2006) The rhythms of life: circadian output pathways in Neurospora. J Biol Rhythms 21(6):432–444

    CAS  PubMed  Google Scholar 

  128. Sancar G, Sancar C, Brugger B et al (2011) A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora. Mol Cell 44(5):687–697

    CAS  PubMed  Google Scholar 

  129. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291(5503):490–493

    CAS  PubMed  Google Scholar 

  130. Xu K, DiAngelo JR, Hughes ME, Hogenesch JB, Sehgal A (2011) The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab 13(6):639–654

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142(6):943–953

    CAS  PubMed  Google Scholar 

  132. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Yuan Q, Metterville D, Briscoe AD, Reppert SM (2007) Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 24(4):948–955

    CAS  PubMed  Google Scholar 

  134. Jordan SD, Lamia KA (2012) AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol 366(2):163–169

    PubMed Central  PubMed  Google Scholar 

  135. Eide EJ, Woolf MF, Kang H et al (2005) Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25(7):2795–2807

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Lee HM, Chen R, Kim H, Etchegaray JP, Weaver DR, Lee C (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci USA 108(39):16451–16456

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Um JH, Yang S, Yamazaki S et al (2007) Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem 282(29):20794–20798

    CAS  PubMed  Google Scholar 

  138. Bellet MM, Nakahata Y, Boudjelal M et al (2013) Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci USA 110(9):3333–3338

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Nogueiras R, Habegger KM, Chaudhary N et al (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92(3):1479–1514

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Villalba JM, Alcain FJ (2012) Sirtuin activators and inhibitors. Biofactors 38(5):349–359

    CAS  PubMed Central  PubMed  Google Scholar 

  141. De Vos M, Schreiber V, Dantzer F (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 84(2):137–146

    PubMed  Google Scholar 

  142. Mangerich A, Burkle A (2012) Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev 2012:321653

    PubMed Central  PubMed  Google Scholar 

  143. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432

    PubMed Central  PubMed  Google Scholar 

  144. Panda S, Poirier GG, Kay SA (2002) tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the arabidopsis circadian oscillator. Dev Cell 3(1):51–61

    CAS  PubMed  Google Scholar 

  145. Hanover JA, Krause MW, Love DC (2012) Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 13(5):312–321

    CAS  PubMed  Google Scholar 

  146. Yang X, Ongusaha PP, Miles PD et al (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451(7181):964–969

    CAS  PubMed  Google Scholar 

  147. Ruan HB, Han X, Li MD et al (2012) O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability. Cell Metab 16(2):226–237

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Anthonisen EH, Berven L, Holm S, Nygard M, Nebb HI, Gronning-Wang LM (2010) Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose. J Biol Chem 285(3):1607–1615

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Durgan DJ, Pat BM, Laczy B et al (2011) O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J Biol Chem 286(52):44606–44619

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Kaasik K, Kivimae S, Allen JJ et al (2013) Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17(2):291–302

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Li MD, Ruan HB, Hughes ME et al (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17(2):303–310

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Toh KL, Jones CR, He Y et al (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291(5506):1040–1043

    CAS  PubMed  Google Scholar 

  153. Kim EY, Jeong EH, Park S, Jeong HJ, Edery I, Cho JW (2012) A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev 26(5):490–502

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Ueda HR, Chen W, Adachi A et al (2002) A transcription factor response element for gene expression during circadian night. Nature 418(6897):534–539

    CAS  PubMed  Google Scholar 

  155. Shirai H, Oishi K, Kudo T, Shibata S, Ishida N (2007) PPARalpha is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders. Biochem Biophys Res Commun 357(3):679–682

    CAS  PubMed  Google Scholar 

  156. Schupp M, Lazar MA (2010) Endogenous ligands for nuclear receptors: digging deeper. J Biol Chem 285(52):40409–40415

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Wahli W, Michalik L (2012) PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab 23(7):351–363

    CAS  PubMed  Google Scholar 

  158. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582(1):46–53

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Hirota T, Kon N, Itagaki T, Hoshina N, Okano T, Fukada Y (2010) Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 15(2):111–121

    CAS  PubMed  Google Scholar 

  160. Sancar G, Sancar C, Brunner M (2012) Metabolic compensation of the Neurospora clock by a glucose-dependent feedback of the circadian repressor CSP1 on the core oscillator. Genes Dev 26(21):2435–2442

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 105(39):15172–15177

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54(1):120–124

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466(7306):627–631

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 20(14):1868–1873

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Rudic RD, McNamara P, Curtis AM et al (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2(11):e377

    PubMed Central  PubMed  Google Scholar 

  166. Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308(5724):1043–1045

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Barclay JL, Shostak A, Leliavski A et al (2013) High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice. Am J Physiol Endocrinol Metab 304(10):E1053–E1063

    CAS  PubMed  Google Scholar 

  168. Solt LA, Wang Y, Banerjee S et al (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485(7396):62–68

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Raspe E, Duez H, Mansen A et al (2002) Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription. J Lipid Res 43(12):2172–2179

    CAS  PubMed  Google Scholar 

  170. Woldt E, Sebti Y, Solt LA et al (2013) Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 19(8):1039–1046

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Woon PY, Kaisaki PJ, Braganca J et al (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA 104(36):14412–14417

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Gomez-Abellan P, Hernandez-Morante JJ, Lujan JA, Madrid JA, Garaulet M (2008) Clock genes are implicated in the human metabolic syndrome. Int J Obes (Lond) 32(1):121–128

    CAS  Google Scholar 

  173. Garcia-Rios A, Perez-Martinez P, Delgado-Lista J et al (2012) A Period 2 genetic variant interacts with plasma SFA to modify plasma lipid concentrations in adults with metabolic syndrome. J Nutr 142(7):1213–1218

    CAS  PubMed  Google Scholar 

  174. Englund A, Kovanen L, Saarikoski ST et al (2009) NPAS2 and PER2 are linked to risk factors of the metabolic syndrome. J Circadian Rhythms 7:5

    PubMed Central  PubMed  Google Scholar 

  175. Scott EM, Carter AM, Grant PJ (2008) Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond) 32(4):658–662

    CAS  Google Scholar 

  176. Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22(10):939–943

    CAS  PubMed  Google Scholar 

  177. Suwazono Y, Dochi M, Sakata K et al (2008) A longitudinal study on the effect of shift work on weight gain in male Japanese workers. Obesity (Silver Spring) 16(8):1887–1893

    Google Scholar 

  178. Di Lorenzo L, De Pergola G, Zocchetti C et al (2003) Effect of shift work on body mass index: results of a study performed in 319 glucose-tolerant men working in a Southern Italian industry. Int J Obes Relat Metab Disord 27(11):1353–1358

    PubMed  Google Scholar 

  179. Pan A, Schernhammer ES, Sun Q, Hu FB (2011) Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med 8(12):e1001141

    PubMed Central  PubMed  Google Scholar 

  180. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106(11):4453–4458

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Salgado-Delgado R, Angeles-Castellanos M, Buijs MR, Escobar C (2008) Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience 154(3):922–931

    CAS  PubMed  Google Scholar 

  182. Salgado-Delgado RC, Saderi N, Basualdo Mdel C, Guerrero-Vargas NN, Escobar C, Buijs RM (2013) Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats. PLoS ONE 8(4):e60052

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Hatori M, Vollmers C, Zarrinpar A et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15(6):848–860

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Mamontova A, Seguret-Mace S, Esposito B et al (1998) Severe atherosclerosis and hypoalphalipoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORalpha. Circulation 98(24):2738–2743

    CAS  PubMed  Google Scholar 

  186. Lau P, Fitzsimmons RL, Raichur S, Wang SC, Lechtken A, Muscat GE (2008) The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity. J Biol Chem 283(26):18411–18421

    CAS  PubMed  Google Scholar 

  187. Lin J, Wu PH, Tarr PT et al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119(1):121–135

    CAS  PubMed  Google Scholar 

  188. Leone TC, Lehman JJ, Finck BN et al (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3(4):e101

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gencer Sancar.

Appendix

Appendix

Box 1

Metabolic events and the circadian clock work in synchrony. Consecutive events in the “active phase” and “inactive phase” are both drivers and outputs of the circadian clock and of metabolism. The active phase is associated mainly with locomotion, feeding and catabolic reactions, whereas the inactive phase is associated with sleep, fasting and anabolic reactions. At night, circadian clocks set the metabolism to a state where energy expenditure is expected to be low for diurnal animals including humans. Challenges, such as eating or exercise at nighttime, are not anticipated by the circadian clock. Hence, the unprepared metabolism has to respond instantly to such perturbations, which desynchronizes metabolism and the circadian clock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancar, G., Brunner, M. Circadian clocks and energy metabolism. Cell. Mol. Life Sci. 71, 2667–2680 (2014). https://doi.org/10.1007/s00018-014-1574-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1574-7

Keywords

Navigation