Skip to main content
Log in

A stepwise model of polyreactivity of the T cell antigen-receptor (TCR): its impact on the self–nonself discrimination and on related observations (receptor editing, anergy, dual receptor cells)

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The existence of antigen-receptors, BCR, and T cell antigen-receptors, that are “polyreactive”, necessitates a rethinking of its effect on two problems faced by the “adaptive” immune system: the self (S)–nonself (NS) discrimination and the determination of effector class. Here, we will concentrate on the impact of polyreactivity on the S–NS discrimination. The anti-S cells interacting with S (i.e., responding to Signal 1) are on the pathway to inactivation. Before irreversibility sets in, these cells can be activated by a second signal (Signal 2) from an effector T-helper (eTh). As these polyreactive anti-S cells express anti-NS specificities, they can be activated by recognition of NS-epitopes in the host’s normal immunogenic load with the potential to result in autoimmunity. This problem is delineated using a discrete structural model, the corollaries of which are: (1) a two-step pathway for the purging of anti-S cells (i.e., the S–NS discrimination), and (2) defensible contexts within which to view the phenomena of receptor editing, anergy, and dual receptor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richards FF, Konigsberg WH, Rosenstein RW, Varga JM (1975) On the specificity of antibodies. Science 187:130–137

    Article  CAS  PubMed  Google Scholar 

  2. Inman JK (1974) Multispecificity of the antibody combining region and antibody diversity. In: Sercarz E, Williamson AR, Fox CF (eds) The immune system. Academic, New York

    Google Scholar 

  3. Monzavi-Karbassi B, Cunto-Amesty G, Luo P, Kieber-Emmons T (2002) Peptide mimotopes as surrogate antigens of carbohydrates in vaccine discovery. Trends Biotechnol 20:207–214

    Article  CAS  PubMed  Google Scholar 

  4. Meloen RH, Puijk WC, Slootstra JW (2000) Mimotopes: realization of an unlikely concept. J Mol Recognit 13:352–359

    Article  CAS  PubMed  Google Scholar 

  5. Nemazee D (1996) Antigen receptor “capacity” and the sensitivity of self-tolerance. Immunol Today 17:25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Whitaker L, Renton AM (1993) On the plausibility of the clonal expansion theory of the immune system in terms of the combinatorial possibilities of amino-acids in antigen and self-tolerance. J Theor Biol 164:531–536

    Article  CAS  PubMed  Google Scholar 

  7. Louzoun Y, Weigert M (2003) Dynamical analysis of a degenerate primary and secondary humoral immune response. Bull Math Biol 65:535–545

    Article  PubMed  Google Scholar 

  8. Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19:395–404

    Article  CAS  PubMed  Google Scholar 

  9. Percus JK, Percus OE, Perelson AS (1993) Predicting the size of the T cell receptor and antibody combining region from consideration of efficient self-nonself discrimination. Proc Natl Acad Sci USA 90:1691–1695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sercarz EE, Maverakis E (2004) Recognition and function in a degenerate immune system. Mol Immunol 40:1003–1008

    Article  CAS  PubMed  Google Scholar 

  11. Sercarz EE, Cohen IR (Eds) (2004) Degeneracy of T cell recognition and its relationship to molecular mimicry. Mol Immunol 40:983–1137

    Google Scholar 

  12. Kosmrlj A, Abhishek KJ, Huseby ES, Kardar M, Chakraborty AK (2008) How the thymus designs antigen-specific and self-tolerant T cell receptor sequences. Proc Natl Acad Sci USA 105:16671–16676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wing M (1995) The molecular basis for a polyspecific antibody. Clin Exp Immunol 99:313–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Erijman A, Aizner Y, Shifman J (2011) Multispecific recognition: mechanism, evolution, and design. Biochemistry 50:602–611

    Article  CAS  PubMed  Google Scholar 

  15. Huseby ES, Crawford F, White J, Kappler J, Marrack P (2003) Negative selection imparts peptide specificity to the mature T cell repertoire. Proc Natl Acad Sci USA 100:11565–11570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Huseby ES, White J, Crawford F, Vass T, Becker D, Pinilla C, Marrack P, Kappler JW (2005) How the T cell repertoire becomes peptide and MHC specific. Cell 122:247–260

    Article  CAS  PubMed  Google Scholar 

  17. Huseby ES, Kappler JW, Marrack P (2008) Thymic selection stifles TCR reactivity with the main chain structure of MHC and forces interactions with the peptide side chains. Mol Immunol 45:599–606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wucherpfennig KW, Allen PM, Celada F, Cohen IR, De Boer RJ, Garcia KC, Goldstein B, Greenspan R, Hafler D, Hodgkin PD, Huseby ES, Krakauer DC, Nemazee D, Perelson AS, Pinilla C, Strong RK, Sercarz EE (2007) Polyspecificity of T cell and B cell receptor recognition. Semin Immunol 19:216–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cohn M (2005) Degeneracy, mimicry and crossreactivity in immune recognition. Mol Immunol 42:651–655

    Article  CAS  PubMed  Google Scholar 

  20. Cohn M (2008) An in depth analysis of the concept of “polyspecificity” assumed to characterize TCR/BCR recognition. Immunol Res 40:128–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cohn M, Langman RE (1990) The protecton: the evolutionarily selected unit of humoral immunity. Immunol Rev 115:1–131

    Google Scholar 

  22. Cohn M (1997) A new concept of immune specificity emerges from a consideration of the self-nonself discrimination. Cell Immunol 181:103–108

    Article  CAS  PubMed  Google Scholar 

  23. Langman RE (2000) The specificity of immunological reactions. Mol Immunol 37:555–561

    Article  CAS  PubMed  Google Scholar 

  24. Mariuzza R (2006) Multiple paths to multispecificity. Immunity 24:359–368

    Article  CAS  PubMed  Google Scholar 

  25. Cohn M (2010) The evolutionary context for a self-nonself discrimination. Cell Mol Life Sci 67:2851–2862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Langman RE, Mata JJ, Cohn M (2003) A computerized model for the self-nonself discrimination at the level of the T-helper (Th genesis) II. The behavior of the system upon encounter with nonself antigens. Int Immun 15:593–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cohn M (2007) Conceptualizing the self-nonself discrimination by the vertebrate immune system. In: Timmis J, Flower D (eds) In silico immunology. Springer, New York

    Google Scholar 

  28. Cohn M (2012) What is so special about thinking; after all we all do it! Exp Mol Pathol 93:354–364

    Article  CAS  PubMed  Google Scholar 

  29. Cohn M, Langman RE, Mata J (2002) A computerized model of the self-nonself discrimination at the level of the T-helper (Th genesis). I. The origin of “primer” effector T-helpers. Int Immunol 14:1105–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Langman RE, Cohn M (1987) The E-T (elephant-tadpole) paradox necessitates the concept of a unit of B-cell function: the protecton. Mol Immunol 24:675–697

    Article  CAS  PubMed  Google Scholar 

  31. Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A (1993) Expression of two T cell receptor α chains: dual receptor T cells. Science 262:422–424

    Article  CAS  PubMed  Google Scholar 

  32. Morris GP, Allen PM (2009) Cutting edge: highly alloreactive dual TCR T cells play a dominant role in graft-versus-host disease. J Immunol 182:6639–6643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ji Q, Perchellet A, Goverman JM (2010) Viral infection triggers central nervous system autoimmunity via activation of CD8 T cell expressing dual TCRs. Nat Immunol 11:628–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kekäläinen E, Hänninen A, Maksimow M, Arstila TP (2010) T cells expressing two different T cell receptors form a heterogeneous population containing autoreactive clones. Mol Immunol 48:211–218

    Article  PubMed  Google Scholar 

  35. Singh NJ, Schwartz RH (2006) Primer: mechanisms of immunologic tolerance. Nat Clin Pract 2:44–52

    Article  CAS  Google Scholar 

  36. Hale JS, Fink PJ (2010) T-cell receptor revision: friend or foe? Immunology 129:467–473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. McGargill M, Derbinski J, Hogquist K (2000) Receptor editing in developing T cells. Nat Immunol 1:336–341

    Article  CAS  PubMed  Google Scholar 

  38. Gay D, Saunders T, Camper S, Weigert M (1993) Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med 177:199–1008

    Article  Google Scholar 

  39. Tiegs SL, Russel DM, Nemazee D (1993) Receptor editing in self-reactive bone marrow B cells. J Exp Med 177:1009–1020

    Article  CAS  PubMed  Google Scholar 

  40. Cohn M (2011) On the logic of restrictive recognition of peptide by the T-cell antigen receptor. Immunol Res 50:49–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Matzinger P, Bevan MJ (1977) Hypothesis. Why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol 29:1–5

    Article  CAS  PubMed  Google Scholar 

  42. Morris GP, Ni PP, Allen PM (2011) Alloreactivity is limited by the endogenous peptide repertoire. Proc Natl Acad Sci USA 108:3695–3700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Langman RE, Cohn M (1999) The standard model of T-cell receptor function: a critical reassessment. Scand J Immunol 49:570–577

    Article  CAS  PubMed  Google Scholar 

  44. Langman RE, Cohn M (2002) Haplotype exclusion: the solution to a problem in natural selection. Semin Immunol 14:153–162

    Article  CAS  PubMed  Google Scholar 

  45. Chappert P, Schwartz RH (2010) Induction of T cell anergy: integration of environmental cues and infectious tolerance. Curr Opin Immunol 22:552–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Quách TD, Manjarrez-Orduño N, Adlowitz DG, Silver L, Yang H, Wei C, Milner ECB, Sanz I (2011) Anergic responses characterize a large fraction of human autoreactive naive B cells expressing low levels of surface IgM. J Immunol 186:4640–4648

    Article  PubMed Central  PubMed  Google Scholar 

  47. Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, Cambier JC (2006) Identification of Anergic B cells within a wild-type repertoire. Immunity 25:953–962

    Article  CAS  PubMed  Google Scholar 

  48. Cohn M (2004) Whither T-suppressors: if they didn’t exist would we have to invent them? Cell Immunol 227:81–92

    Article  CAS  PubMed  Google Scholar 

  49. Cohn M (2008) What roles do regulatory T-cells play in the control of the adaptive immune response? Int Immunol 20:1107–1118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Attardi G, Cohn M, Horibata K, Lennox ES (1959) Symposium on the biology of cells modified by viruses or antigens. II. On the analysis of antibody synthesis at the cellular level. J Bact 23:213–223

    CAS  Google Scholar 

  51. Attardi G, Cohn M, Horibata K, Lennox ES (1964) Antibody formation by rabbit lymph node cells. I. Single cell responses to several antigens. J Immunol 92:334–345

    Google Scholar 

  52. Attardi G, Cohn M, Horibata K, Lennox ES (1964) Antibody formation by rabbit lymph node cells. II. Further observations on the behavior of single antibody-producing cells with respect to their synthetic capacity and morphology. J Immunol 92:346–355

    CAS  PubMed  Google Scholar 

  53. Attardi G, Cohn M, Horibata K, Lennox ES (1964) Antibody formation by rabbit lymph node cells. IV. The detailed methods for measuring antibody synthesis by individual cells, the kinetics of antibody formation by rabbits and the properties of cell suspensions. J Immunol 92:372–390

    CAS  PubMed  Google Scholar 

  54. Attardi G, Cohn M, Horibata K, Lennox ES (1964) Antibody formation by rabbit lymph node cells. V. Cellular heterogeneity in the production of antibody to T5. J Immunol 93:94–95

    CAS  PubMed  Google Scholar 

  55. Attardi G, Cohn M, Horibata K, Lennox ES (1964) Antibody formation by rabbit lymph node cells. III. The controls for microdrop and micropipet experiments. J Immunol 92:356–371

    CAS  PubMed  Google Scholar 

  56. Cohn M (1994) The wisdom of hindsight. Annu Rev Immunol 12:1–62

    Article  CAS  PubMed  Google Scholar 

  57. Cohn M (1994) In defense of uncertainty. J NIH Res 6:21–23

    Google Scholar 

  58. Melchers F (2004) The death of a dogma? Nat Immunol 5:1199–1201

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin Cohn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohn, M. A stepwise model of polyreactivity of the T cell antigen-receptor (TCR): its impact on the self–nonself discrimination and on related observations (receptor editing, anergy, dual receptor cells). Cell. Mol. Life Sci. 71, 2033–2045 (2014). https://doi.org/10.1007/s00018-013-1540-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1540-9

Keywords

Navigation