Skip to main content
Log in

Cell density-induced changes in lipid composition and intracellular trafficking

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cell density is one of the extrinsic factors to which cells adapt their physiology when grown in culture. However, little is known about the molecular changes which occur during cell growth and how cellular responses are then modulated. In many cases, inhibitors, drugs or growth factors used for in vitro studies change the rate of cell proliferation, resulting in different cell densities in control and treated samples. Therefore, for a comprehensive data analysis, it is essential to understand the implications of cell density on the molecular level. In this study, we have investigated how lipid composition changes during cell growth, and the consequences it has for transport of Shiga toxin. By quantifying 308 individual lipid species from 17 different lipid classes, we have found that the levels and species distribution of several lipids change during cell growth, with the major changes observed for diacylglycerols, phosphatidic acids, cholesterol esters, and lysophosphatidylethanolamines. In addition, there is a reduced binding and retrograde transport of Shiga toxin in high density cells which lead to reduced intoxication by the toxin. In conclusion, our data provide novel information on how lipid composition changes during cell growth in culture, and how these changes can modulate intracellular trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Meli L, Jordan ET, Clark DS, Linhardt RJ, Dordick JS (2012) Influence of a three-dimensional, microarray environment on human cell culture in drug screening systems. Biomaterials 33:9087–9096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kaye SA, Louise CB, Boyd B, Lingwood CA, Obrig TG (1993) Shiga toxin-associated hemolytic uremic syndrome: interleukin-1 beta enhancement of Shiga toxin cytotoxicity toward human vascular endothelial cells in vitro. Infect Immun 61:3886–3891

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Snijder B, Sacher R, Ramo P, Damm EM, Liberali P, Pelkmans L (2009) Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461:520–523

    Article  CAS  PubMed  Google Scholar 

  4. Obrig TG, Del Vecchio PJ, Brown JE, Moran TP, Rowland BM, Judge TK, Rothman SW (1988) Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect Immun 56:2373–2378

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Sandvig K (1978) Cell density affects the binding of the toxic lectin abrin to HeLa cells in monolayer cultures. FEBS Lett 89:233–236

    Article  CAS  PubMed  Google Scholar 

  6. Sandvig K, Torgersen ML, Engedal N, Skotland T, Iversen TG (2010) Protein toxins from plants and bacteria: probes for intracellular transport and tools in medicine. FEBS Lett 584:2626–2634

    Article  CAS  PubMed  Google Scholar 

  7. Bergan J, Dyve Lingelem AB, Simm R, Skotland T, Sandvig K (2012) Shiga toxins. Toxicon 60:1085–1107

    Article  CAS  PubMed  Google Scholar 

  8. Jacewicz M, Clausen H, Nudelman E, Donohue-Rolfe A, Keusch GT (1986) Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J Exp Med 163:1391–1404

    Article  CAS  PubMed  Google Scholar 

  9. Lindberg AA, Brown JE, Stromberg N, Westling-Ryd M, Schultz JE, Karlsson KA (1987) Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 262:1779–1785

    CAS  PubMed  Google Scholar 

  10. Lingwood CA, Law H, Richardson S, Petric M, Brunton JL, De GS, Karmali M (1987) Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J Biol Chem 262:8834–8839

    CAS  PubMed  Google Scholar 

  11. Desselle A, Chaumette T, Gaugler MH, Cochonneau D, Fleurence J, Dubois N, Hulin P, Aubry J, Birkle S, Paris F (2012) Anti-gb3 monoclonal antibody inhibits angiogenesis and tumor development. PLoS One 7:e45423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kijimoto S, Hakomori S (1971) Enhanced glycolipid: á-galactosyltransferase activity in contact-inhibited hamster cells, and loss of this response in polyoma transformants. Biochem Biophys Res Commun 44:557–563

    Article  CAS  PubMed  Google Scholar 

  13. Vukelic Z, Kalanj-Bognar S (2001) Cell density-dependent changes of glycosphingolipid biosynthesis in cultured human skin fibroblasts. Glycoconj J 18:429–437

    Article  CAS  PubMed  Google Scholar 

  14. Hakomori S (1970) Cell density-dependent changes of glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells. Proc Natl Acad Sci USA 67:1741–1747

    Article  CAS  PubMed  Google Scholar 

  15. Kiarash A, Boyd B, Lingwood CA (1994) Glycosphingolipid receptor function is modified by fatty acid content. Verotoxin 1 and verotoxin 2c preferentially recognize different globotriaosyl ceramide fatty acid homologues. J Biol Chem 269:11138–11146

    CAS  PubMed  Google Scholar 

  16. Pellizzari A, Pang H, Lingwood CA (1992) Binding of verocytotoxin 1 to its receptor is influenced by differences in receptor fatty acid content. Biochemistry 31:1363–1370

    Article  CAS  PubMed  Google Scholar 

  17. Lingwood CA, Binnington B, Manis A, Branch DR (2010) Globotriaosyl ceramide receptor function—where membrane structure and pathology intersect. FEBS Lett 584:1879–1886

    Article  CAS  PubMed  Google Scholar 

  18. Raa H, Grimmer S, Schwudke D, Bergan J, Walchli S, Skotland T, Shevchenko A, Sandvig K (2009) Glycosphingolipid requirements for endosome-to-Golgi transport of Shiga toxin. Traffic 10:868–882

    Article  CAS  PubMed  Google Scholar 

  19. Tam P, Mahfoud R, Nutikka A, Khine AA, Binnington B, Paroutis P, Lingwood C (2008) Differential intracellular transport and binding of verotoxin 1 and verotoxin 2 to globotriaosylceramide-containing lipid assemblies. J Cell Physiol 216:750–763

    Article  CAS  PubMed  Google Scholar 

  20. Khan F, Proulx F, Lingwood CA (2009) Detergent-resistant globotriaosyl ceramide may define verotoxin/glomeruli-restricted hemolytic uremic syndrome pathology. Kidney Int 75:1209–1216

    Article  PubMed  Google Scholar 

  21. Mahfoud R, Manis A, Binnington B, Ackerley C, Lingwood CA (2010) A major fraction of glycosphingolipids in model and cellular cholesterol-containing membranes is undetectable by their binding proteins. J Biol Chem 285:36049–36059

    Article  CAS  PubMed  Google Scholar 

  22. Lingwood D, Binnington B, Rog T, Vattulainen I, Grzybek M, Coskun U, Lingwood CA, Simons K (2011) Cholesterol modulates glycolipid conformation and receptor activity. Nat Chem Biol 7:260–262

    Article  CAS  PubMed  Google Scholar 

  23. Yahi N, Aulas A, Fantini J (2010) How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer’s beta amyloid peptide (Abeta1-40). PLoS One 5:e9079

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sandvig K, Garred O, Prydz K, Kozlov JV, Hansen SH, van Deurs B (1992) Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358: 510–512

    Article  CAS  PubMed  Google Scholar 

  25. Sandvig K, Ryd M, Garred O, Schweda E, Holm PK, van Deurs B (1994) Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP. J Cell Biol 126:53–64

    Article  CAS  PubMed  Google Scholar 

  26. Jacewicz MS, Mobassaleh M, Gross SK, Balasubramanian KA, Daniel PF, Raghavan S, McCluer RH, Keusch GT (1994) Pathogenesis of Shigella diarrhea: XVII. A mammalian cell membrane glycolipid, Gb3, is required but not sufficient to confer sensitivity to Shiga toxin. J Infect Dis 169:538–546

    Article  CAS  PubMed  Google Scholar 

  27. Falguieres T, Mallard F, Baron C, Hanau D, Lingwood C, Goud B, Salamero J, Johannes L (2001) Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol Biol Cell 12:2453–2468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mayinger P (2012) Phosphoinositides and vesicular membrane traffic. Biochim Biophys Acta 1821:1104–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fernandez-Ulibarri I, Vilella M, Lazaro-Dieguez F, Sarri E, Martinez SE, Jimenez N, Claro E, Merida I, Burger KN, Egea G (2007) Diacylglycerol is required for the formation of COPI vesicles in the Golgi-to-ER transport pathway. Mol Biol Cell 18:3250–3263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Baron CL, Malhotra V (2002) Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295:325–328

    Article  CAS  PubMed  Google Scholar 

  31. Shemesh T, Luini A, Malhotra V, Burger KN, Kozlov MM (2003) Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys J 85:3813–3827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Gutierrez-Martinez E, Fernandez-Ulibarri I, Lazaro-Dieguez F, Johannes L, Pyne S, Sarri E, Egea G (2013) Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci. doi:10.1242/jcs.117705

    PubMed  Google Scholar 

  33. Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K (2012) Flexibility of a eukaryotic lipidome—insights from yeast lipidomics. PLoS ONE 7:e35063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ekroos K, Chernushevich IV, Simons K, Shevchenko A (2002) Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal Chem 74:941–949

    Article  CAS  PubMed  Google Scholar 

  35. Ejsing CS, Duchoslav E, Sampaio J, Simons K, Bonner R, Thiele C, Ekroos K, Shevchenko A (2006) Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78:6202–6214

    Article  CAS  PubMed  Google Scholar 

  36. Jung HR, Sylvanne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K (2011) High throughput quantitative molecular lipidomics. Biochim Biophys Acta 1811:925–934

    Article  CAS  PubMed  Google Scholar 

  37. Stahlman M, Ejsing CS, Tarasov K, Perman J, Boren J, Ekroos K (2009) High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:2664–2672

    Article  CAS  PubMed  Google Scholar 

  38. Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, Shevchenko A (2003) Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J Lipid Res 44:2181–2192

    Article  CAS  PubMed  Google Scholar 

  39. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta 1761:121–128

    Article  CAS  PubMed  Google Scholar 

  40. Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207–224

    Article  CAS  PubMed  Google Scholar 

  41. Wen SX, Teel LD, Judge NA, O’Brien AD (2006) Genetic toxoids of Shiga toxin types 1 and 2 protect mice against homologous but not heterologous toxin challenge. Vaccine 24:1142–1148

    Article  CAS  PubMed  Google Scholar 

  42. Obrig TG, Del Vecchio PJ, Karmali MA, Petric M, Moran TP, Judge TK (1987) Pathogenesis of haemolytic uraemic syndrome. Lancet 2:687

    Article  CAS  PubMed  Google Scholar 

  43. Pudymaitis A, Lingwood CA (1992) Susceptibility to verotoxin as a function of the cell cycle. J Cell Physiol 150:632–639

    Article  CAS  PubMed  Google Scholar 

  44. Majoul I, Schmidt T, Pomasanova M, Boutkevich E, Kozlov Y, Soling HD (2002) Differential expression of receptors for Shiga and Cholera toxin is regulated by the cell cycle. J Cell Sci 115:817–826

    CAS  PubMed  Google Scholar 

  45. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Keusch JJ, Manzella SM, Nyame KA, Cummings RD, Baenziger JU (2000) Cloning of Gb3 synthase, the key enzyme in globo-series glycosphingolipid synthesis, predicts a family of alpha 1, 4-glycosyltransferases conserved in plants, insects, and mammals. J Biol Chem 275:25315–25321

    Article  CAS  PubMed  Google Scholar 

  47. Kojima Y, Fukumoto S, Furukawa K, Okajima T, Wiels J, Yokoyama K, Suzuki Y, Urano T, Ohta M, Furukawa K (2000) Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J Biol Chem 275:15152–15156

    Article  CAS  PubMed  Google Scholar 

  48. Steffensen R, Carlier K, Wiels J, Levery SB, Stroud M, Cedergren B, Nilsson SB, Bennett EP, Jersild C, Clausen H (2000) Cloning and expression of the histo-blood group Pk UDP-galactose: Ga1beta-4G1cbeta1-cer alpha1, 4-galactosyltransferase. Molecular genetic basis of the p phenotype. J Biol Chem 275:16723–16729

    Article  CAS  PubMed  Google Scholar 

  49. Bujny MV, Popoff V, Johannes L, Cullen PJ (2007) The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 120:2010–2021

    Article  CAS  PubMed  Google Scholar 

  50. Popoff V, Mardones GA, Tenza D, Rojas R, Lamaze C, Bonifacino JS, Raposo G, Johannes L (2007) The retromer complex and clathrin define an early endosomal retrograde exit site. J Cell Sci 120:2022–2031

    Article  CAS  PubMed  Google Scholar 

  51. Utskarpen A, Slagsvold HH, Dyve AB, Skanland SS, Sandvig K (2007) SNX1 and SNX2 mediate retrograde transport of Shiga toxin. Biochem Biophys Res Commun 358:566–570

    Article  CAS  PubMed  Google Scholar 

  52. Garred O, van Deurs B, Sandvig K (1995) Furin-induced cleavage and activation of Shiga toxin. J Biol Chem 270:10817–10821

    Article  CAS  PubMed  Google Scholar 

  53. Chernomordik L, Kozlov MM, Zimmerberg J (1995) Lipids in biological membrane fusion. J Membr Biol 146:1–14

    Article  CAS  PubMed  Google Scholar 

  54. Lee SY, Yang JS, Hong W, Premont RT, Hsu VW (2005) ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J Cell Biol 168:281–290

    Article  CAS  PubMed  Google Scholar 

  55. Hong JX, Lee FJ, Patton WA, Lin CY, Moss J, Vaughan M (1998) Phospholipid- and GTP-dependent activation of cholera toxin and phospholipase D by human ADP-ribosylation factor-like protein 1 (HARL1). J Biol Chem 273:15872–15876

    Article  CAS  PubMed  Google Scholar 

  56. Siddhanta A, Shields D (1998) Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels. J Biol Chem 273:17995–17998

    Article  CAS  PubMed  Google Scholar 

  57. Bassik MC, Kampmann M, Lebbink RJ, Wang S, Hein MY, Poser I, Weibezahn J, Horlbeck MA, Chen S, Mann M, Hyman AA, Leproust EM, McManus MT, Weissman JS (2013) A systematic Mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152:909–922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R (1999) Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1:423–430

    Article  CAS  PubMed  Google Scholar 

  59. Jackson ME, Simpson JC, Girod A, Pepperkok R, Roberts LM, Lord JM (1999) The KDEL retrieval system is exploited by Pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. J Cell Sci 112(Pt 4):467–475

    CAS  PubMed  Google Scholar 

  60. White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147:743–760

    Article  CAS  PubMed  Google Scholar 

  61. Bigay J, Antonny B (2012) Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 23:886–895

    Article  CAS  PubMed  Google Scholar 

  62. Cancino J, Luini A (2013) Signaling circuits on the Golgi complex. Traffic 14:121–134

    Article  CAS  PubMed  Google Scholar 

  63. Hanashima T, Miyake M, Yahiro K, Iwamaru Y, Ando A, Morinaga N, Noda M (2008) Effect of Gb3 in lipid rafts in resistance to Shiga-like toxin of mutant Vero cells. Microb Pathog 45:124–133

    Article  CAS  PubMed  Google Scholar 

  64. Ploegh HL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:435–438

    Article  CAS  PubMed  Google Scholar 

  65. LaPointe P, Wei X, Gariepy J (2005) A role for the protease-sensitive loop region of Shiga-like toxin 1 in the retrotranslocation of its A1 domain from the endoplasmic reticulum lumen. J Biol Chem 280:23310–23318

    Article  CAS  PubMed  Google Scholar 

  66. Moreau D, Kumar P, Wang SC, Chaumet A, Chew SY, Chevalley H, Bard F (2011) Genome-wide RNAi screens identify genes required for Ricin and PE intoxications. Dev Cell 21:231–244

    Article  CAS  PubMed  Google Scholar 

  67. Sandvig K, Tonnessen TI, Olsnes S (1986) Ability of inhibitors of glycosylation and protein synthesis to sensitize cells to abrin, ricin, Shigella toxin, and Pseudomonas toxin. Cancer Res 46:6418–6422

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work performed by the Oslo group has been supported by The Norwegian Council for Science and Humanities, The Norwegian Cancer Society, and Southern and Eastern Norway Regional Authority. The authors thank Anne Grethe Myrann for technical assistance with cell studies, Ellen Skarpen for assistance with microcopy studies, and Sirpa Sutela-Tuominen for assistance with the lipidomic analyzes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Sandvig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 723 kb)

Supplementary material (XLSX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavaliauskiene, S., Nymark, CM., Bergan, J. et al. Cell density-induced changes in lipid composition and intracellular trafficking. Cell. Mol. Life Sci. 71, 1097–1116 (2014). https://doi.org/10.1007/s00018-013-1441-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1441-y

Keywords

Navigation