Skip to main content

Analysis of Cell Growth Kinetics in Suspension and Adherent Types of Cell Lines

  • Chapter
  • First Online:
Animal Cell Culture: Principles and Practice
  • 1035 Accesses

Abstract

Cell growth entails an increase in mass and physical size mostly influenced by physical, biological and chemical environments. As a result, each category of organism has a unique pattern of development premised on its cellular division. Acknowledging the growth kinetics of various cell line serves as the foundation for in vitro experimentation processes in order to achieve effective product efficacy. It is found to be an autocatalytic reaction that indicates the rate of growth which is directly proportional either to cell concentration or the cellular response against the test component. There are various direct and indirect methods for determining cell concentration like cell mass density estimation, viable cell counts and staining. In contrast, indirect methods of measuring cell density are performed by measuring the concentration of proteins, ATP or DNA. Thereby further, the review presented in this chapter gives an insight into the fundamental basics of cell growth kinetics and energetics that serve as the foundation for optimising, analysing and identifying the commercially novel products and their cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abt, V. B. (2018). Model-based tools for optimal experiments in bioprocess engineering. Current Opinion in Chemical Engineering, 22, 244–252.

    Article  Google Scholar 

  • Alhuthali, S. (2021). Osmolality effects on CHO cell growth, cell volume, antibody productivity and glycosylation. International Journal of Molecular, 22(7), 3290.

    CAS  Google Scholar 

  • Almquist, J. (2014). Kinetic models in industrial biotechnology – Improving cell factory performance. Metabolic Engineering, 24, 38.

    Article  CAS  Google Scholar 

  • Altschuler. (2010). Cellular heterogeneity: do differences make a difference? Cell, 141(4), 559–563.

    Article  CAS  Google Scholar 

  • Arigony. (2013). The influence of micronutrients in cell culture: A reflection on viability and genomic stability. BioMed Research International, 2013, 597282–597282.

    Article  Google Scholar 

  • Bertrand, R. L. (2019). Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of Bacteriology, 201(7), e00697–18.

    Google Scholar 

  • Bhatia, S., Naved, T., & Sardana, S. (2019a). Culture media for animal cells. In Introduction to pharmaceutical biotechnology (Vol. 3, pp. 4-1–4-33). IOP Publishing.

    Google Scholar 

  • Bhatia, S., Naved, T., & Sardana, S. (2019b). Introduction to animal tissue culture science. In Introduction to pharmaceutical biotechnology (Vol. 3, pp. 1-1–1-30).

    Google Scholar 

  • Charlebois, D. A., & Balázsi, G. (2019). Modeling cell population dynamics. In Silico Biology, 13(1-2), 21–39.

    Article  Google Scholar 

  • Cheng, L., & Li, L. (2016). Systematic quality control analysis of LINCS data. CPT: Pharmacometrics & Systems Pharmacology, 5(11), 588.

    CAS  Google Scholar 

  • Chu, D., & Barnes, D. J. (2016). The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate. Scientific Reports, 6(1), 25191.

    Article  CAS  Google Scholar 

  • Ferguson. (2015). Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Seminars in cancer biology, 35(Suppl), S5–S24.

    Article  Google Scholar 

  • Fleischaker, R. J., & Sinskey, A. J. (1981). Oxygen demand and supply in cell culture. European Journal of Applied Microbiology and Biotechnology, 12(4), 193–197.

    Article  Google Scholar 

  • Geraghty. (2014). Guidelines for the use of cell lines in biomedical research. British Journal of Cancer, 111(6), 1021–1046.

    Article  Google Scholar 

  • Gigout, A., Buschmann, M., & Jolicoeur, M. (2008). The fate of Pluronic F-68 in chondrocytes and CHO cells. Biotechnology and Bioengineering, 100, 975–987.

    Article  CAS  Google Scholar 

  • González-Alonso. (2000). Heat production in human skeletal muscle at the onset of intense dynamic exercise. The Journal of Physiology, 524(Pt 2), 603–615.

    Article  Google Scholar 

  • Goutsias, J. (2007). Classical versus stochastic kinetics modeling of biochemical reaction systems. Biophysical Journal, 92(7), 2350–2365. https://doi.org/10.1529/biophysj.106.093781

    Article  CAS  Google Scholar 

  • Hayflick, L. (1979). The cell biology of aging. Journal of Investigative Dermatology, 73(1), 8–14.

    Article  CAS  Google Scholar 

  • Iyer, L. (2009). Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle, 8(11), 1698–1710.

    Article  CAS  Google Scholar 

  • Kaur, G., & Dufour, J. M. (2012). Cell lines: Valuable tools or useless artifacts. Spermatogenesis, 2(1), 1–5.

    Article  Google Scholar 

  • Kovárová-Kovar, K., & Egli, T. (1998). Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed-substrate kinetics. Microbiology and Molecular Biology Reviews, 62(3), 646–666.

    Article  Google Scholar 

  • Krampe, B., & Al-Rubeai, M. (2010). Cell death in mammalian cell culture: Molecular mechanisms and cell line engineering strategies. Cytotechnology, 62(3), 175–188.

    Article  Google Scholar 

  • Lee, K., Boccazzi, P., Sinskey, A., & Ram, R. (2011). Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture. Lab on a Chip, 11, 1730–1739.

    Article  CAS  Google Scholar 

  • Li, F. (2010). Cell culture processes for monoclonal antibody production. mAbs, 2(5), 466–479.

    Article  Google Scholar 

  • Lim, S. F. (2006). RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metabolic Engineering, 8(6), 509–522.

    Article  CAS  Google Scholar 

  • Liu, S. (2017). Chapter 11 – How cells grow. In S. Liu (Ed.), Bioprocess engineering (2nd ed., pp. 629–697). Elsevier.

    Chapter  Google Scholar 

  • Loenarz, C., & Schofield, C. J. (2008). Expanding chemical biology of 2-oxoglutarate oxygenases. Nature Chemical Biology, 4(3), 152–156.

    Article  CAS  Google Scholar 

  • Lu, T. (2007). Phenotypic variability of growing cellular populations. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 18982–18987.

    Article  CAS  Google Scholar 

  • Mansoori, B. (2017). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 7(3), 339–348.

    Article  CAS  Google Scholar 

  • Michl, J., Park, K. C., & Swietach, P. (2019). Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Communications Biology, 2(1), 144.

    Article  Google Scholar 

  • Mohseny. (2011). Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Laboratory Investigation, 91(8), 1195–1205.

    Article  Google Scholar 

  • Nassiri, I., & McCall, M. N. (2018). Systematic exploration of cell morphological phenotypes associated with a transcriptomic query. Nucleic Acids Res, 46(19), e116–e116.

    Google Scholar 

  • Palomares, L., & Ramirez, O. (1996). The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology, 22, 225–237.

    Article  CAS  Google Scholar 

  • Philippeos. (2012). Introduction to cell culture. Methods in Molecular Biology, 806, 1–13.

    Article  CAS  Google Scholar 

  • Righelato, R. C., & Elsworth, R. (1970). Industrial applications of continuous culture: Pharmaceutical products and other products and processes**Dr. R. C. Righelato contributed the section on pharmaceutical products to this article. In D. Perlman (Ed.), Advances in applied microbiology (Vol. 13, pp. 399–417). Academic.

    Google Scholar 

  • Rolfe. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of Bacteriology, 194(3), 686–701.

    Article  CAS  Google Scholar 

  • Sakthiselvan, P., Meenambiga, S., & Madhumathi, R. (2019). Kinetic studies on cell growth. Cell Growth, 1–9.

    Google Scholar 

  • Segeritz, C. P., & Vallier, L. (2017). Cell culture: Growing cells as model systems in vitro. In Basic science methods for clinical researchers (pp. 151–172). Academic.

    Google Scholar 

  • Torsvik, A., Stieber, D., Enger, P., Golebiewska, A., Molven, A., Svendsen, A., et al. (2014). U-251 revisited: Genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Medicine, 3(4), 812–824.

    Article  CAS  Google Scholar 

  • Tyson, J. J., & Novak, B. (2014). Control of cell growth, division and death: Information processing in living cells. Interface Focus, 4(3), 20130070.

    Article  Google Scholar 

  • Valihrach, L., Androvic, P., & Kubista, M. (2018). Platforms for single-cell collection and analysis. International Journal of Molecular Sciences, 19(3), 807.

    Google Scholar 

  • Verma, A., Verma, M., & Singh, A. (2020). Animal tissue culture principles and applications. In Animal Biotechnology (pp. 269–293). Academic.

    Google Scholar 

  • Vrabl, P., Schinagl, C. W., Artmann, D. J., Heiss, B., & Burgstaller, W. (2019). Fungal growth in batch culture – What we could benefit if we start looking closer. Frontiers in Microbiology, 10, 2391.

    Google Scholar 

  • Watanabe, I., & Okada, S. (1967). Stationary phase of cultured mammalian cells (L5178Y). The Journal of Cell Biology, 35(2), 285–294.

    Article  CAS  Google Scholar 

  • Wilson, C., Lukowicz, R., Merchant, S., Valquier-Flynn, H., Caballero, J., Sandoval, J., et al. (2017). Quantitative and qualitative assessment methods for biofilm growth: A mini-review. Research & Reviews: Journal of Engineering and Technology, 6(4), 201712.

    Google Scholar 

  • Xu, W., Jiang, X., & Huang, L. (2019). RNA interference technology. Comprehensive Biotechnology, 560–575.

    Google Scholar 

  • Yuan, H.-X., Xiong, Y., & Guan, K.-L. (2013). Nutrient sensing, metabolism, and cell growth control. Molecular Cell, 49(3), 379–387.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shishodia, V., Jindal, D., Sinha, S., Singh, M. (2023). Analysis of Cell Growth Kinetics in Suspension and Adherent Types of Cell Lines. In: Animal Cell Culture: Principles and Practice. Techniques in Life Science and Biomedicine for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-031-19485-6_17

Download citation

Publish with us

Policies and ethics