Skip to main content
Log in

The blockade of the neurotransmitter release apparatus by botulinum neurotoxins

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The high toxicity of the seven serotypes of botulinum neurotoxins (BoNT/A to G), together with their specificity and reversibility, includes them in the list A of potential bioterrorism weapons and, at the same time, among the therapeutics of choice for a variety of human syndromes. They invade nerve terminals and cleave specifically the three proteins which form the heterotrimeric SNAP REceptors (SNARE) complex that mediates neurotransmitter release. The BoNT-induced cleavage of the SNARE proteins explains by itself the paralysing activity of the BoNTs because the truncated proteins cannot form the SNARE complex. However, in the case of BoNT/A, the most widely used toxin in therapy, additional factors come into play as it only removes a few residues from the synaptosomal associate protein of 25 kDa C-terminus and this results in a long duration of action. To explain these facts and other experimental data, we present here a model for the assembly of the neuroexocytosis apparatus in which Synaptotagmin and Complexin first assist the zippering of the SNARE complex, and then stabilize and clamp an octameric radial assembly of the SNARE complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The dipole moments were calculated from the PDB structure 3RL0 using the partial charge distribution of the AMBER99 force field. We considered residues 191–249 of Syntaxin and 8–79 to 139–200 in SNAP25 (corresponding the chains B, C, and D in the PDB structure, respectively). Chains A (VAMP) and g (Complexin) were subsequently included to estimate their contribution to the global dipole moment of the SNARE at different stages.

Abbreviations

BoNT:

Botulinum neurotoxin

NMJ:

Neuromuscular junction

PIP2:

Phosphatidylinositol 4,5 diphosphate

SNAP25:

Synaptosomal associate protein of 25 kDa

SNARE:

SNAP REceptors

SV:

Synaptic vesicle

TeNT:

Tetanus neurotoxin

TM:

Trans membrane domain

VAMP:

Vesicle-associated membrane protein or synaptobrevin

References

  1. Hill KK, Smith TJ (2013) Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 364:1–20

    PubMed  Google Scholar 

  2. Johnson EA, Montecucco C (2008) Botulism. Handb Clin Neurol 91:333–368

    PubMed  Google Scholar 

  3. Caleo M, Schiavo G (2009) Central effects of tetanus and botulinum neurotoxins. Toxicon 54:593–599

    CAS  PubMed  Google Scholar 

  4. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    CAS  PubMed  Google Scholar 

  5. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    CAS  PubMed  Google Scholar 

  6. Sudhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 3:a005637

    Google Scholar 

  7. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207

    CAS  PubMed  Google Scholar 

  8. Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46:86–94

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Centers for Disease Control and Prevention (CDC) Department of Health and Human Services (HHS) (2012) Possession, use, and transfer of select agents and toxins. Fed Regist 77(194):61083–61115

    Google Scholar 

  10. Johnson EA (1999) Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins. Annu Rev Microbiol 53:551–575

    CAS  PubMed  Google Scholar 

  11. Montecucco C, Molgo J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5:274–279

    CAS  PubMed  Google Scholar 

  12. Davletov B, Bajohrs M, Binz T (2005) Beyond BOTOX: advantages and limitations of individual botulinum neurotoxins. Trends Neurosci 28:446–452

    CAS  PubMed  Google Scholar 

  13. Bhidayasiri R, Truong DD (2005) Expanding use of botulinum toxin. J Neurol Sci 235:1–9

    CAS  PubMed  Google Scholar 

  14. Dressler D (2012) Clinical applications of botulinum toxin. Curr Opin Microbiol 15:325–336

    PubMed  Google Scholar 

  15. Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291:1091–1104

    CAS  PubMed  Google Scholar 

  16. Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7:693–699

    CAS  PubMed  Google Scholar 

  17. Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386:233–245

    CAS  PubMed  Google Scholar 

  18. Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:1584–1595

    CAS  PubMed  Google Scholar 

  19. Montecucco C, Papini E, Schiavo G (1994) Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 346:92–98

    CAS  PubMed  Google Scholar 

  20. Montecucco C, Schiavo G (1995) Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 28:423–472

    CAS  PubMed  Google Scholar 

  21. Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617

    CAS  PubMed  Google Scholar 

  22. Montal M (2009) Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Toxicon 54:565–569

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Swaminathan S (2011) Molecular structures and functional relationships in clostridial neurotoxins. FEBS J 278:4467–4485

    CAS  PubMed  Google Scholar 

  24. Schiavo G, Poulain B, Rossetto O, Benfenati F, Tauc L, Montecucco C (1992) Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J 11:3577–3583

    CAS  PubMed  Google Scholar 

  25. Schiavo G, Benfenati F, Poulain B, Rossetto O, de Polverino LP, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    CAS  PubMed  Google Scholar 

  26. Niemann H, Blasi J, Jahn R (1994) Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 4:179–185

    CAS  PubMed  Google Scholar 

  27. Humeau Y, Doussau F, Grant NJ, Poulain B (2000) How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82:427–446

    CAS  PubMed  Google Scholar 

  28. Kalb SR, Baudys J, Webb RP, Wright P, Smith TJ, Smith LA, Fernandez R, Raphael BH, Maslanka SE, Pirkle JL, Barr JR (2012) Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5. FEBS Lett 586:109–115

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    CAS  PubMed  Google Scholar 

  30. Hayashi T, McMahon H, Yamasaki S, Binz T, Hata Y, Sudhof TC, Niemann H (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13:5051–5061

    CAS  PubMed  Google Scholar 

  31. Pellegrini LL, O’Connor V, Betz H (1994) Fusion complex formation protects synaptobrevin against proteolysis by tetanus toxin light chain. FEBS Lett 353:319–323

    CAS  PubMed  Google Scholar 

  32. Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270:10566–10570

    CAS  PubMed  Google Scholar 

  33. Vaidyanathan VV, Yoshino K, Jahnz M, Dorries C, Bade S, Nauenburg S, Niemann H, Binz T (1999) Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J Neurochem 72:327–337

    CAS  PubMed  Google Scholar 

  34. Verderio C, Pozzi D, Pravettoni E, Inverardi F, Schenk U, Coco S, Proux-Gillardeaux V, Galli T, Rossetto O, Frassoni C, Matteoli M (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41:599–610

    CAS  PubMed  Google Scholar 

  35. Wang D, Zhang Z, Dong M, Sun S, Chapman ER, Jackson MB (2011) Syntaxin requirement for Ca2+ -triggered exocytosis in neurons and endocrine cells demonstrated with an engineered neurotoxin. Biochemistry 50:2711–2713

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Chen S, Barbieri JT (2009) Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci USA 106:9180–9184

    CAS  PubMed  Google Scholar 

  37. Vitale G, Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248:706–711

    CAS  PubMed  Google Scholar 

  38. Ahnert-Hilger G, Munster-Wandowski A, Holtje M (2013) Synaptic vesicle proteins: targets and routes for botulinum neurotoxins. Curr Top Microbiol Immunol 364:159–177

    PubMed  Google Scholar 

  39. Karalewitz AP, Kroken AR, Fu Z, Baldwin MR, Kim JJ, Barbieri JT (2010) Identification of a unique ganglioside binding loop within botulinum neurotoxins C and D-SA. Biochemistry 49:8117–8126

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Strotmeier J, Gu S, Jutzi S, Mahrhold S, Zhou J, Pich A, Eichner T, Bigalke H, Rummel A, Jin R, Binz T (2011) The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites. Mol Microbiol 81:143–156

    CAS  PubMed  Google Scholar 

  41. Pirazzini M, Rossetto O, Bolognese P, Shone CC, Montecucco C (2011) Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell Microbiol 13:1731–1743

    CAS  PubMed  Google Scholar 

  42. Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744:120–144

    CAS  PubMed  Google Scholar 

  43. Rossi V, Picco R, Vacca M, D’Esposito M, D’Urso M, Galli T, Filippini F (2004) VAMP subfamilies identified by specific R-SNARE motifs. Biol Cell 96:251–256

    CAS  PubMed  Google Scholar 

  44. Hua Z, Leal-Ortiz S, Foss SM, Waites CL, Garner CC, Voglmaier SM, Edwards RH (2011) v-SNARE composition distinguishes synaptic vesicle pools. Neuron 71:474–487

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Ramirez DM, Khvotchev M, Trauterman B, Kavalali ET (2012) Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73:121–134

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Raingo J, Khvotchev M, Liu P, Darios F, Li YC, Ramirez DM, Adachi M, Lemieux P, Toth K, Davletov B, Kavalali ET (2012) VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15:738–745

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Ramirez DM, Kavalali ET (2012) The role of non-canonical SNAREs in synaptic vesicle recycling. Cell Logist 2:20–27

    PubMed Central  PubMed  Google Scholar 

  48. Patarnello T, Bargelloni L, Rossetto O, Schiavo G, Montecucco C (1993) Neurotransmission and secretion. Nature 364:581–582

    CAS  PubMed  Google Scholar 

  49. Rossetto O, Schiavo G, Montecucco C, Poulain B, Deloye F, Lozzi L, Shone CC (1994) SNARE motif and neurotoxins. Nature 372:415–416

    CAS  PubMed  Google Scholar 

  50. Cornille F, Martin L, Lenoir C, Cussac D, Roques BP, Fournie-Zaluski MC (1997) Cooperative exosite-dependent cleavage of synaptobrevin by tetanus toxin light chain. J Biol Chem 272:3459–3464

    CAS  PubMed  Google Scholar 

  51. Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432:925–929

    CAS  PubMed  Google Scholar 

  52. Jin R, Sikorra S, Stegmann CM, Pich A, Binz T, Brunger AT (2007) Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity. Biochemistry 46:10685–10693

    CAS  PubMed  Google Scholar 

  53. Brunger AT, Rummel A (2009) Receptor and substrate interactions of clostridial neurotoxins. Toxicon 54:550–560

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Binz T, Sikorra S, Mahrhold S (2010) Clostridial neurotoxins: mechanism of SNARE cleavage and outlook on potential substrate specificity reengineering. Toxins (Basel) 2:665–682

    CAS  Google Scholar 

  55. Foran P, Shone CC, Dolly JO (1994) Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry 33:15365–15374

    CAS  PubMed  Google Scholar 

  56. Schmidt JJ, Bostian KA (1995) Proteolysis of synthetic peptides by type A botulinum neurotoxin. J Protein Chem 14:703–708

    CAS  PubMed  Google Scholar 

  57. Pellizzari R, Rossetto O, Lozzi L, Giovedi’ S, Johnson E, Shone CC, Montecucco C (1996) Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J Biol Chem 271:20353–20358

    CAS  PubMed  Google Scholar 

  58. Pellizzari R, Mason S, Shone CC, Montecucco C (1997) The interaction of synaptic vesicle-associated membrane protein/synaptobrevin with botulinum neurotoxins D and F. FEBS Lett 409:339–342

    CAS  PubMed  Google Scholar 

  59. Wictome M, Rossetto O, Montecucco C, Shone CC (1996) Substrate residues N-terminal to the cleavage site of botulinum type B neurotoxin play a role in determining the specificity of its endopeptidase activity. FEBS Lett 386:133–136

    CAS  PubMed  Google Scholar 

  60. Washbourne P, Pellizzari R, Baldini G, Wilson MC, Montecucco C (1997) Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis. FEBS Lett 418:1–5

    CAS  PubMed  Google Scholar 

  61. Chen S, Barbieri JT (2006) Unique substrate recognition by botulinum neurotoxins serotypes A and E. J Biol Chem 281:10906–10911

    CAS  PubMed  Google Scholar 

  62. Sikorra S, Henke T, Galli T, Binz T (2008) Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins. J Biol Chem 283:21145–21152

    CAS  PubMed  Google Scholar 

  63. Agarwal R, Binz T, Swaminathan S (2005) Structural analysis of botulinum neurotoxin serotype F light chain: implications on substrate binding and inhibitor design. Biochemistry 44:11758–11765

    CAS  PubMed  Google Scholar 

  64. Breidenbach MA, Brunger AT (2005) 2.3 A crystal structure of tetanus neurotoxin light chain. Biochemistry 44:7450–7457

    CAS  PubMed  Google Scholar 

  65. Arndt JW, Yu W, Bi F, Stevens RC (2005) Crystal structure of botulinum neurotoxin type G light chain: serotype divergence in substrate recognition. Biochemistry 44:9574–9580

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Arndt JW, Chai Q, Christian T, Stevens RC (2006) Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: repercussions for VAMP-2 substrate specificity. Biochemistry 45:3255–3262

    CAS  PubMed  Google Scholar 

  67. Segelke B, Knapp M, Kadkhodayan S, Balhorn R, Rupp B (2004) Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: evidence for noncanonical zinc protease activity. Proc Natl Acad Sci USA 101:6888–6893

    CAS  PubMed  Google Scholar 

  68. Agarwal R, Schmidt JJ, Stafford RG, Swaminathan S (2009) Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F. Nat Struct Mol Biol 16:789–794

    CAS  PubMed  Google Scholar 

  69. Rao KN, Kumaran D, Binz T, Swaminathan S (2005) Structural analysis of the catalytic domain of tetanus neurotoxin. Toxicon 45:929–939

    CAS  PubMed  Google Scholar 

  70. Fang H, Luo W, Henkel J, Barbieri J, Green N (2006) A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate. Proc Natl Acad Sci USA 103:6958–6963

    CAS  PubMed  Google Scholar 

  71. Silvaggi NR, Boldt GE, Hixon MS, Kennedy JP, Tzipori S, Janda KD, Allen KN (2007) Structures of Clostridium botulinum Neurotoxin Serotype A Light Chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem Biol 14:533–542

    CAS  PubMed  Google Scholar 

  72. Binz T, Bade S, Rummel A, Kollewe A, Alves J (2002) Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. Biochemistry 41:1717–1723

    CAS  PubMed  Google Scholar 

  73. Tonello F, Pellizzari R, Pasqualato S, Grandi G, Peggion E, Montecucco C (1999) Recombinant and truncated tetanus neurotoxin light chain: cloning, expression, purification, and proteolytic activity. Protein Expr Purif 15:221–227

    CAS  PubMed  Google Scholar 

  74. Chen S, Karalewitz AP, Barbieri JT (2012) Insights into the different catalytic activities of Clostridium neurotoxins. Biochemistry 51:3941–3947

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Chen S, Barbieri JT (2007) Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. J Biol Chem 282:25540–25547

    CAS  PubMed  Google Scholar 

  76. Chen S, Hall C, Barbieri JT (2008) Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. J Biol Chem 283:21153–21159

    CAS  PubMed  Google Scholar 

  77. Henkel JS, Jacobson M, Tepp W, Pier C, Johnson EA, Barbieri JT (2009) Catalytic properties of botulinum neurotoxin subtypes A3 and A4. Biochemistry 48:2522–2528

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Chen S, Wan HY (2011) Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F. Biochem J 433:277–284

    CAS  PubMed  Google Scholar 

  79. Caccin P, Rossetto O, Rigoni M, Johnson E, Schiavo G, Montecucco C (2003) VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes. FEBS Lett 542:132–136

    CAS  PubMed  Google Scholar 

  80. Fernandez-Salas E, Steward LE, Ho H, Garay PE, Sun SW, Gilmore MA, Ordas JV, Wang J, Francis J, Aoki KR (2004) Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc Natl Acad Sci USA 101:3208–3213

    CAS  PubMed  Google Scholar 

  81. Blasi J, Chapman ER, Yamasaki S, Binz T, Niemann H, Jahn R (1993) Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 12:4821–4828

    CAS  PubMed  Google Scholar 

  82. Erdal E, Bartels F, Binscheck T, Erdmann G, Frevert J, Kistner A, Weller U, Wever J, Bigalke H (1995) Processing of tetanus and botulinum A neurotoxins in isolated chromaffin cells. Naunyn Schmiedebergs Arch Pharmacol 351:67–78

    CAS  PubMed  Google Scholar 

  83. Boroff DA, CJ del, Evoy WH, Steinhardt RA (1974) Observations on the action of type A botulinum toxin on frog neuromuscular junctions. J Physiol 240:227–253

    CAS  PubMed  Google Scholar 

  84. Rawlings ND, Salvesen GS (2012) Handbook of proteolytic enzymes. Academic, Oxford

    Google Scholar 

  85. http://merops.sanger.ac.uk

  86. Rigoni M, Caccin P, Johnson EA, Montecucco C, Rossetto O (2001) Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. Biochem Biophys Res Commun 288:1231–1237

    CAS  PubMed  Google Scholar 

  87. Rossetto O, Caccin P, Rigoni M, Tonello F, Bortoletto N, Stevens RC, Montecucco C (2001) Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity. Toxicon 39:1151–1159

    CAS  PubMed  Google Scholar 

  88. Tonello F, Montecucco C (2009) The anthrax lethal factor and its MAPK kinase-specific metalloprotease activity. Mol Aspects Med 30:431–438

    CAS  PubMed  Google Scholar 

  89. Matthews BW (1988) Structural basis of the action of thermolysin and related zinc peptidases. Acc Chem Res 21:333–340

    CAS  Google Scholar 

  90. Li L, Binz T, Niemann H, Singh BR (2000) Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry 39:2399–2405

    CAS  PubMed  Google Scholar 

  91. Agarwal R, Eswaramoorthy S, Kumaran D, Binz T, Swaminathan S (2004) Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212–> Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry 43:6637–6644

    CAS  PubMed  Google Scholar 

  92. Eswaramoorthy S, Kumaran D, Keller J, Swaminathan S (2004) Role of metals in the biological activity of Clostridium botulinum neurotoxins. Biochemistry 43:2209–2216

    CAS  PubMed  Google Scholar 

  93. Silvaggi NR, Wilson D, Tzipori S, Allen KN (2008) Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex. Biochemistry 47:5736–5745

    CAS  PubMed  Google Scholar 

  94. Tonello F, Schiavo G, Montecucco C (1997) Metal substitution of tetanus neurotoxin. Biochem J 322(Pt 2):507–510

    CAS  PubMed  Google Scholar 

  95. Zakharova MY, Kuznetsov NA, Dubiley SA, Kozyr AV, Fedorova OS, Chudakov DM, Knorre DG, Shemyakin IG, Gabibov AG, Kolesnikov AV (2009) Substrate recognition of anthrax lethal factor examined by combinatorial and pre-steady-state kinetic approaches. J Biol Chem 284:17902–17913

    CAS  PubMed  Google Scholar 

  96. Holmquist B, Vallee BL (1974) Metal substitutions and inhibition of thermolysin: spectra of the cobalt enzyme. J Biol Chem 249:4601–4607

    CAS  PubMed  Google Scholar 

  97. Mezaki T, Kaji R, Kohara N, Fujii H, Katayama M, Shimizu T, Kimura J, Brin MF (1995) Comparison of therapeutic efficacies of type A and F botulinum toxins for blepharospasm: a double-blind, controlled study. Neurology 45:506–508

    CAS  PubMed  Google Scholar 

  98. Eleopra R, Tugnoli V, Rossetto O, Montecucco C, De GD (1997) Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett 224:91–94

    CAS  PubMed  Google Scholar 

  99. Sloop RR, Cole BA, Escutin RO (1997) Human response to botulinum toxin injection: type B compared with type A. Neurology 49:189–194

    CAS  PubMed  Google Scholar 

  100. Chen R, Karp BI, Hallett M (1998) Botulinum toxin type F for treatment of dystonia: long-term experience. Neurology 51:1494–1496

    CAS  PubMed  Google Scholar 

  101. Eleopra R, Tugnoli V, De Grandis D, Montecucco C (1998) Botulinum toxin serotype C treatment in subjets affected by focal dystonia and resistan to botulinum toxin serotype A. Neurology 50:A72

    Google Scholar 

  102. Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C (1998) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256:135–138

    CAS  PubMed  Google Scholar 

  103. Brin MF, Lew MF, Adler CH, Comella CL, Factor SA, Jankovic J, O’Brien C, Murray JJ, Wallace JD, Willmer-Hulme A, Koller M (1999) Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-resistant cervical dystonia. Neurology 53:1431–1438

    CAS  PubMed  Google Scholar 

  104. De Paiva A, Meunier FA, Molgo J, Aoki KR, Dolly JO (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci USA 96:3200–3205

    PubMed  Google Scholar 

  105. Jurasinski CV, Lieth E, Dang Do AN, Schengrund CL (2001) Correlation of cleavage of SNAP-25 with muscle function in a rat model of Botulinum neurotoxin type A induced paralysis. Toxicon 39:1309–1315

    CAS  PubMed  Google Scholar 

  106. Meunier FA, Schiavo G, Molgo J (2002) Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris 96:105–113

    CAS  PubMed  Google Scholar 

  107. Billante CR, Zealear DL, Billante M, Reyes JH, Sant’Anna G, Rodriguez R, Stone RE Jr (2002) Comparison of neuromuscular blockade and recovery with botulinum toxins A and F. Muscle Nerve 26:395–403

    CAS  PubMed  Google Scholar 

  108. Meunier FA, Lisk G, Sesardic D, Dolly JO (2003) Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol Cell Neurosci 22:454–466

    CAS  PubMed  Google Scholar 

  109. Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C, Dressler D (2006) Clinical use of non-A botulinum toxins: botulinum toxin type C and botulinum toxin type F. Neurotox Res 9:127–131

    CAS  PubMed  Google Scholar 

  110. Adler M, Keller JE, Sheridan RE, Deshpande SS (2001) Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle. Toxicon 39:233–243

    CAS  PubMed  Google Scholar 

  111. Keller JE, Neale EA, Oyler G, Adler M (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett 456:137–142

    CAS  PubMed  Google Scholar 

  112. Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, Smith L, Aoki KR, Dolly JO (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem 278:1363–1371

    CAS  PubMed  Google Scholar 

  113. Keller JE (2006) Recovery from botulinum neurotoxin poisoning in vivo. Neuroscience 139:629–637

    CAS  PubMed  Google Scholar 

  114. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    CAS  PubMed  Google Scholar 

  115. Shoemaker CB, Oyler GA (2013) Persistence of botulinum neurotoxin inactivation of nerve function. Curr Top Microbiol Immunol 364:179–196

    PubMed Central  PubMed  Google Scholar 

  116. Wang J, Zurawski TH, Bodeker MO, Meng J, Boddul S, Aoki KR, Dolly JO (2012) Longer-acting and highly potent chimaeric inhibitors of excessive exocytosis created with domains from botulinum neurotoxin A and B. Biochem J 444:59–67

    CAS  PubMed  Google Scholar 

  117. Criado M, Gil A, Viniegra S, Gutierrez LM (1999) A single amino acid near the C terminus of the synaptosomeassociated protein of 25 kDa (SNAP-25) is essential for exocytosis in chromaffin cells. Proc Natl Acad Sci USA 96:7256–7261

    CAS  PubMed  Google Scholar 

  118. Otto H, Hanson PI, Chapman ER, Blasi J, Jahn R (1995) Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex. Biochem Biophys Res Commun 212:945–952

    CAS  PubMed  Google Scholar 

  119. Bajohrs M, Rickman C, Binz T, Davletov B (2004) A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep 5:1090–1095

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Rickman C, Meunier FA, Binz T, Davletov B (2004) High affinity interaction of syntaxin and SNAP-25 on the plasma membrane is abolished by botulinum toxin E. J Biol Chem 279:644–651

    CAS  PubMed  Google Scholar 

  121. Raciborska DA, Trimble WS, Charlton MP (1998) Presynaptic protein interactions in vivo: evidence from botulinum A, C, D and E action at frog neuromuscular junction. Eur J Neurosci 10:2617–2628

    CAS  PubMed  Google Scholar 

  122. Raciborska DA, Charlton MP (1999) Retention of cleaved synaptosome-associated protein of 25 kDa (SNAP-25) in neuromuscular junctions: a new hypothesis to explain persistence of botulinum A poisoning. Can J Physiol Pharmacol 77:679–688

    CAS  PubMed  Google Scholar 

  123. Kalandakanond S, Coffield JA (2001) Cleavage of SNAP-25 by botulinum toxin type A requires receptor-mediated endocytosis, pH-dependent translocation, and zinc. J Pharmacol Exp Ther 296:980–986

    Google Scholar 

  124. Huang X, Wheeler MB, Kang YH, Sheu L, Lukacs GL, Trimble WS, Gaisano HY (1998) Truncated SNAP-25 (1–197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol Endocrinol 12:1060–1070

    CAS  PubMed  Google Scholar 

  125. Sakaba T, Stein A, Jahn R, Neher E (2005) Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science 309:491–494

    CAS  PubMed  Google Scholar 

  126. Keller JE, Neale EA (2001) The role of the synaptic protein snap-25 in the potency of botulinum neurotoxin type A. J Biol Chem 276:13476–13482

    CAS  PubMed  Google Scholar 

  127. Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43:526–532

    CAS  PubMed  Google Scholar 

  128. Montecucco C, Schiavo G, Pantano S (2005) SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem Sci 30:367–372

    CAS  PubMed  Google Scholar 

  129. Rickman C, Hu K, Carroll J, Davletov B (2005) Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem J 388:75–79

    CAS  PubMed  Google Scholar 

  130. Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477

    PubMed Central  PubMed  Google Scholar 

  131. Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556

    CAS  PubMed  Google Scholar 

  132. Sorensen JB (2009) Conflicting views on the membrane fusion machinery and the fusion pore. Annu Rev Cell Dev Biol 25:513–537

    PubMed  Google Scholar 

  133. Ma C, Su L, Seven AB, Xu Y, Rizo J (2013) Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339:421–425

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Chapman ER, An S, Barton N, Jahn R (1994) SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J Biol Chem 269:27427–27432

    CAS  PubMed  Google Scholar 

  135. Lin RC, Scheller RH (1997) Structural organization of the synaptic exocytosis core complex. Neuron 19:1087–1094

    CAS  PubMed  Google Scholar 

  136. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353

    CAS  PubMed  Google Scholar 

  137. Fuson KL, Montes M, Robert JJ, Sutton RB (2007) Structure of human synaptotagmin 1 C2AB in the absence of Ca2+ reveals a novel domain association. Biochemistry 46:13041–13048

    CAS  PubMed  Google Scholar 

  138. Reist NE, Buchanan J, Li J, DiAntonio A, Buxton EM, Schwarz TL (1998) Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J Neurosci 18:7662–7673

    CAS  PubMed  Google Scholar 

  139. de Wit H, Walter AM, Milosevic I, Gulyas-Kovacs A, Riedel D, Sorensen JB, Verhage M (2009) Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138:935–946

    PubMed  Google Scholar 

  140. Sudhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4:a011353

    PubMed  Google Scholar 

  141. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    PubMed  Google Scholar 

  142. Chasserot-Golaz S, Coorssen JR, Meunier FA, Vitale N (2010) Lipid dynamics in exocytosis. Cell Mol Neurobiol 30:1335–1342

    CAS  PubMed  Google Scholar 

  143. Vrljic M, Strop P, Ernst JA, Sutton RB, Chu S, Brunger AT (2010) Molecular mechanism of the synaptotagmin-SNARE interaction in Ca2+ -triggered vesicle fusion. Nat Struct Mol Biol 17:325–331

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Lai AL, Huang H, Herrick DZ, Epp N, Cafiso DS (2011) Synaptotagmin 1 and SNAREs form a complex that is structurally heterogeneous. J Mol Biol 405:696–706

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Kuo W, Herrick DZ, Ellena JF, Cafiso DS (2009) The calcium-dependent and calcium-independent membrane binding of synaptotagmin 1: two modes of C2B binding. J Mol Biol 387:284–294

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR (2010) Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol 17:318–324

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Masumoto T, Suzuki K, Ohmori I, Michiue H, Tomizawa K, Fujimura A, Nishiki T, Matsui H (2012) Ca(2+)-independent syntaxin binding to the C(2)B effector region of synaptotagmin. Mol Cell Neurosci 49:1–8

    CAS  PubMed  Google Scholar 

  148. Dai H, Shen N, Arac D, Rizo J (2007) A quaternary SNARE-synaptotagmin-Ca2+ -phospholipid complex in neurotransmitter release. J Mol Biol 367:848–863

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Zhang X, Kim-Miller MJ, Fukuda M, Kowalchyk JA, Martin TF (2002) Ca2+ -dependent synaptotagmin binding to SNAP-25 is essential for Ca2+ -triggered exocytosis. Neuron 34:599–611

    CAS  PubMed  Google Scholar 

  150. Rickman C, Jimenez JL, Graham ME, Archer DA, Soloviev M, Burgoyne RD, Davletov B (2006) Conserved prefusion protein assembly in regulated exocytosis. Mol Biol Cell 17:283–294

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Kim JY, Choi BK, Choi MG, Kim SA, Lai Y, Shin YK, Lee NK (2012) Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs. EMBO J 31:2144–2155

    CAS  PubMed  Google Scholar 

  152. Giraudo CG, Garcia-Diaz A, Eng WS, Chen Y, Hendrickson WA, Melia TJ, Rothman JE (2009) Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323:512–516

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313:676–680

    CAS  PubMed  Google Scholar 

  154. Yoon TY, Lu X, Diao J, Lee SM, Ha T, Shin YK (2008) Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat Struct Mol Biol 15:707–713

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Malsam J, Seiler F, Schollmeier Y, Rusu P, Krause JM, Sollner TH (2009) The carboxy-terminal domain of complexin I stimulates liposome fusion. Proc Natl Acad Sci USA 106:2001–2006

    CAS  PubMed  Google Scholar 

  156. Maximov A, Tang J, Yang X, Pang ZP, Sudhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516–521

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Xue M, Reim K, Chen X, Chao HT, Deng H, Rizo J, Brose N, Rosenmund C (2007) Distinct domains of complexin I differentially regulate neurotransmitter release. Nat Struct Mol Biol 14:949–958

    CAS  PubMed  Google Scholar 

  158. Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK (1998) The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol 5:765–769

    CAS  PubMed  Google Scholar 

  159. Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896

    CAS  PubMed  Google Scholar 

  161. Sudhof TC (2012) The presynaptic active zone. Neuron 75:11–25

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A, Farsi Z, Walla PJ, Raunser S, Jahn R (2012) Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336:1581–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Kummel D, Krishnakumar SS, Radoff DT, Li F, Giraudo CG, Pincet F, Rothman JE, Reinisch KM (2011) Complexin cross-links prefusion SNAREs into a zigzag array. Nat Struct Mol Biol 18:927–933

    PubMed Central  PubMed  Google Scholar 

  164. Krishnakumar SS, Radoff DT, Kummel D, Giraudo CG, Li F, Khandan L, Baguley SW, Coleman J, Reinisch KM, Pincet F, Rothman JE (2011) A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat Struct Mol Biol 18:934–940

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Malsam J, Parisotto D, Bharat TA, Scheutzow A, Krause JM, Briggs JA, Sollner TH (2012) Complexin arrests a pool of docked vesicles for fast Ca2+ -dependent release. EMBO J 31:3270–3281

    CAS  PubMed  Google Scholar 

  166. Li F, Pincet F, Perez E, Giraudo CG, Tareste D, Rothman JE (2011) Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state. Nat Struct Mol Biol 18:941–946

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Huntwork S, Littleton JT (2007) A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci 10:1235–1237

    CAS  PubMed  Google Scholar 

  168. Hobson RJ, Liu Q, Watanabe S, Jorgensen EM (2011) Complexin maintains vesicles in the primed state in C. elegans. Curr Biol 21:106–113

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Xue M, Stradomska A, Chen H, Brose N, Zhang W, Rosenmund C, Reim K (2008) Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. Proc Natl Acad Sci USA 105:7875–7880

    CAS  PubMed  Google Scholar 

  170. Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Sudhof TC, Rizo J (2002) Three-dimensional structure of the complexin/SNARE complex. Neuron 33:397–409

    CAS  PubMed  Google Scholar 

  171. Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    CAS  PubMed  Google Scholar 

  173. Sudhof TC, Malenka RC (2008) Understanding synapses: past, present, and future. Neuron 60:469–476

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Kasai H, Takahashi N, Tokumaru H (2012) Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev 92:1915–1964

    CAS  PubMed  Google Scholar 

  175. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Sudhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–1187

    CAS  PubMed  Google Scholar 

  176. Breckenridge LJ, Almers W (1987) Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328:814–817

    CAS  PubMed  Google Scholar 

  177. Lindau M, Almers W (1995) Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr Opin Cell Biol 7:509–517

    CAS  PubMed  Google Scholar 

  178. Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Zorec R (2007) Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 27:4737–4746

    Google Scholar 

  179. Mohrmann R, Sorensen JB (2012) SNARE requirements en route to exocytosis: from many to few. J Mol Neurosci 48:387–394

    CAS  PubMed  Google Scholar 

  180. van den Bogaart G, Holt MG, Bunt G, Riedel D, Wouters FS, Jahn R (2010) One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol 17:358–364

    PubMed Central  PubMed  Google Scholar 

  181. Hua Y, Scheller RH (2001) Three SNARE complexes cooperate to mediate membrane fusion. Proc Natl Acad Sci USA 98:8065–8070

    CAS  PubMed  Google Scholar 

  182. Mohrmann R, de Wit H, Verhage M, Neher E, Sorensen JB (2010) Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330:502–505

    CAS  PubMed  Google Scholar 

  183. Lu X, Zhang Y, Shin YK (2008) Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 15:700–706

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Shi L, Shen QT, Kiel A, Wang J, Wang HW, Melia TJ, Rothman JE, Pincet F (2012) SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Karatekin E, Di GJ, Iborra C, Coleman J, O’Shaughnessy B, Seagar M, Rothman JE (2010) A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proc Natl Acad Sci USA 107:3517–3521

    CAS  PubMed  Google Scholar 

  186. Domanska MK, Kiessling V, Stein A, Fasshauer D, Tamm LK (2009) Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion. J Biol Chem 284:32158–32166

    CAS  PubMed  Google Scholar 

  187. Diao J, Ishitsuka Y, Lee H, Joo C, Su Z, Syed S, Shin YK, Yoon TY, Ha T (2012) A single vesicle–vesicle fusion assay for in vitro studies of SNAREs and accessory proteins. Nat Protoc 7:921–934

    CAS  PubMed  Google Scholar 

  188. Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:673–676

    CAS  PubMed  Google Scholar 

  189. Fasshauer D, Margittai M (2004) A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J Biol Chem 279:7613–7621

    CAS  PubMed  Google Scholar 

  190. van den Bogaart G, Meyenberg K, Risselada HJ, Amin H, Willig KI, Hubrich BE, Dier M, Hell SW, Grubmuller H, Diederichsen U, Jahn R (2011) Membrane protein sequestering by ionic protein-lipid interactions. Nature 479:552–555

    PubMed Central  PubMed  Google Scholar 

  191. Sorensen JB, Wiederhold K, Muller EM, Milosevic I, Nagy G, De Groot BL, Grubmuller H, Fasshauer D (2006) Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25:955–966

    CAS  PubMed  Google Scholar 

  192. Knowles MK, Barg S, Wan L, Midorikawa M, Chen X, Almers W (2010) Single secretory granules of live cells recruit syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in large copy numbers. Proc Natl Acad Sci USA 107:20810–20815

    CAS  PubMed  Google Scholar 

  193. Cypionka A, Stein A, Hernandez JM, Hippchen H, Jahn R, Walla PJ (2009) Discrimination between docking and fusion of liposomes reconstituted with neuronal SNARE-proteins using FCS. Proc Natl Acad Sci USA 106:18575–18580

    CAS  PubMed  Google Scholar 

  194. Hol WG, van Duijnen PT, Berendsen HJ (1978) The alpha-helix dipole and the properties of proteins. Nature 273:443–446

    CAS  PubMed  Google Scholar 

  195. Lovejoy B, Choe S, Cascio D, McRorie DK, DeGrado WF, Eisenberg D (1993) Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science 259:1288–1293

    CAS  PubMed  Google Scholar 

  196. Gilson MK, Honig B (1989) Destabilization of an alpha-helix-bundle protein by helix dipoles. Proc Natl Acad Sci USA 86:1524–1528

    CAS  PubMed  Google Scholar 

  197. Herrera FE, Pantano S (2012) Structure and dynamics of nano-sized raft-like domains on the plasma membrane. J Chem Phys 136:015103

    PubMed  Google Scholar 

  198. Darre L, Tek A, Baaden M, Pantano S (2012) Mixing atomistic and coarse grain solvation models for MD simulations: let WT4 handle the bulk. J Chem Theory Comput 8:3880–3894

    CAS  Google Scholar 

  199. Denker A, Krohnert K, Buckers J, Neher E, Rizzoli SO (2011) The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling. Proc Natl Acad Sci USA 108:17183–17188

    CAS  PubMed  Google Scholar 

  200. Wragg RT, Snead D, Dong Y, Ramlall TF, Menon I, Bai J, Eliezer D, Dittman JS (2013) Synaptic vesicles position complexin to block spontaneous fusion. Neuron 77:323–334

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Seiler F, Malsam J, Krause JM, Sollner TH (2009) A role of complexin-lipid interactions in membrane fusion. FEBS Lett 583:2343–2348

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Kesavan J, Borisovska M, Bruns D (2007) v-SNARE actions during Ca(2+)-triggered exocytosis. Cell 131:351–363

    CAS  PubMed  Google Scholar 

  203. Megighian A, Zordan M, Pantano S, Scorzeto M, Rigoni M, Zanini D, Rossetto O, Montecucco C (2013) Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction. J Cell Sci. doi:10.1242/jcs.123802

  204. Megighian A, Scorzeto M, Zanini D, Pantano S, Rigoni M, Benna C, Rossetto O, Montecucco C, Zordan M (2010) Arg206 of SNAP-25 is essential for neuroexocytosis at the Drosophila melanogaster neuromuscular junction. J Cell Sci 123:3276–3283

    CAS  PubMed  Google Scholar 

  205. Fernandez-Busnadiego R, Zuber B, Maurer UE, Cyrklaff M, Baumeister W, Lucic V (2010) Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J Cell Biol 188:145–156

    CAS  PubMed  Google Scholar 

  206. Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893

    CAS  PubMed  Google Scholar 

  207. Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15:266–274

    CAS  PubMed  Google Scholar 

  208. Neher E (2006) A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse. Pflugers Arch 453:261–268

    CAS  PubMed  Google Scholar 

  209. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409:479–484

    CAS  PubMed  Google Scholar 

  210. O’Sullivan GA, Mohammed N, Foran PG, Lawrence GW, Oliver DJ (1999) Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25. Identification of the minimal essential C-terminal residues. J Biol Chem 274:36897–36904

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergio Pantano or Cesare Montecucco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantano, S., Montecucco, C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell. Mol. Life Sci. 71, 793–811 (2014). https://doi.org/10.1007/s00018-013-1380-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1380-7

Keywords

Navigation