Skip to main content

Antidotes to Botulinum Neurotoxin

  • Reference work entry
  • First Online:
Biological Toxins and Bioterrorism

Part of the book series: Toxinology ((TOXI))

Abstract

Botulinum neurotoxins (BoNTs) are the most potent neurotoxins and are potential biothreat agents. All seven serotypes of BoNTs (/A through/G) consist of a 100 kDa heavy chain (Hc) and a 50 kDa light chain (Lc) linked by a single disulfide bond. BoNT Hc binds to its receptors on the neural membrane and sets the stage for endocytosis at the motor nerve terminals (MNTs). Within early endosomes BoNT undergoes pH-dependent separation of the Hc and Lc. The Hc translocates the Lc into the cytosol where BoNTs proteolyze selective SNARE complex proteins resulting in the attenuation of acetylcholine (ACh) release at MNT. This results in a flaccid, long-lasting neuroparalysis of the skeletal muscles. The persistence of BoNT/A, the principal serotype, Lc protease at the MNT accounts for the long-lasting paralysis and the difficulty to develop therapeutics against BoNT/A. The ease of production and dissemination of the neurotoxin makes it as a viable biothreat agent. The quest for antidotes to treat botulism is an ongoing process. Efforts to develop antidotes against BoNTs have also advanced our knowledge about endoexocytic mechanisms that mediate BoNT signaling at the MNT. This review describes the antidotes that have prophylactic and therapeutic potential to counteract BoNTs in cellular and neuromuscular model systems by neutralizing the toxin in the blood, preventing the binding/internalization of the toxin, inhibiting the translocation of the Lc from early endosomes to cytosol, disrupting the catalytic activity of the Lc endoprotease, and/or restoring neurotransmission by increasing presynaptic Ca2+-triggered exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler M, Capacio B, Deshpande SS. Antagonism of botulinum toxin A-mediated muscle paralysis by 3, 4-diaminopyridine delivered via osmotic minipumps. Toxicon. 2000;38:1381–8.

    CAS  PubMed  Google Scholar 

  • Adler M, Deshpande SS, Apland JP, Murray B, Borrell A. Reversal of BoNT/A-mediated inhibition of muscle paralysis by 3,4-diaminopyridine and roscovitine in mouse phrenic nerve-hemidiaphragm preparations. Neurochem Int. 2012;61:866–73.

    CAS  PubMed  Google Scholar 

  • Agarwal R, Swaminathan S. SNAP-25 substrate peptide (residues 180–183) binds to but bypasses cleavage by catalytically active Clostridium botulinum neurotoxin E. J Biol Chem. 2008;283:25944–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001;285:1059–70.

    CAS  PubMed  Google Scholar 

  • Arnon SS, Schechter R, Maslanka SE, Jewell NP, Hatheway CL. Human botulism immune globulin for the treatment of infant botulism. N Engl J Med. 2006;354:462–71.

    CAS  PubMed  Google Scholar 

  • Bakry N, Kamata Y, Simpson LL. Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin. J Pharmacol Exp Ther. 1991;258:830–6.

    CAS  PubMed  Google Scholar 

  • Baldwin MR, Tepp WH, Przedpelski A, Pier CL, Bradshaw M, Johnson EA, Barbieri JT. Subunit vaccine against the seven serotypes of botulism. Infect Immun. 2008;76:1314–8.

    CAS  PubMed  Google Scholar 

  • Baskaran P, Lehmann TE, Topchiy E, Thirunavukkarasu N, Cai S, Singh BR, Deshpande S, Thyagarajan B. Effects of enzymatically inactive recombinant botulinum neurotoxin type A at the mouse neuromuscular junctions. Toxicon. 2013;72:71–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno JG, Richarte AM, Carrillo MP, Edge A. An aptamer beacon responsive to botulinum toxins. Biosens Bioelectron. 2012;31:240–3.

    CAS  PubMed  Google Scholar 

  • Chang TW, Blank M, Janardhanan P, Singh BR, Mello C, Blind M, Cai S. In vitro selection of RNA aptamers that inhibit the activity of type A botulinum neurotoxin. Biochem Biophys Res Commun. 2010;396:854–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chappie JS, Dyda F. Building a fission machine – structural insights into dynamin assembly and activation. J Cell Sci. 2013;126:2773–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande SS, Sheridan RE, Adler M. A study of zinc-dependent metalloendopeptidase inhibitors as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon. 1995;33:551–7.

    CAS  PubMed  Google Scholar 

  • Dolly JO, Black J, Williams RS, Melling J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature. 1984;307:457–60.

    CAS  PubMed  Google Scholar 

  • Edupuganti OP, Ovsepian SV, Wang J, Zurawski TH, Schmidt JJ, Smith L, Lawrence GW, Dolly JO. Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. Febs J. 2012;279:2555–67.

    CAS  PubMed  Google Scholar 

  • Eubanks LM, Hixon MS, Jin W, Hong S, Clancy CM, Tepp WH, Baldwin MR, Malizio CJ, Goodnough MC, Barbieri JT, Johnson EA, Boger DL, Dickerson TJ, Janda KD. An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proc Natl Acad Sci U S A. 2007;104:2602–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbri A, Travaglione S, Falzano L, Fiorentini C. Bacterial protein toxins: current and potential clinical use. Curr Med Chem. 2008;15:1116–25.

    CAS  PubMed  Google Scholar 

  • Fagan RP, Neil KP, Sasich R, Luquez C, Asaad H, Maslanka S, Khalil W. Initial recovery and rebound of type f intestinal colonization botulism after administration of investigational heptavalent botulinum antitoxin. Clin Infect Dis. 2011;53:e125–8.

    CAS  PubMed  Google Scholar 

  • Fischer A, Nakai Y, Eubanks LM, Clancy CM, Tepp WH, Pellett S, Dickerson TJ, Johnson EA, Janda KD, Montal M. Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci U S A. 2009;106:1330–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harper CB, Martin S, Nguyen TH, Daniels SJ, Lavidis NA, Popoff MR, Hadzic G, Mariana A, Chau N, McCluskey A, Robinson PJ, Meunier FA. Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. J Biol Chem. 2011;286:35966–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hart MK, Saviolakis GA, Welkos SL, House RV. Advanced development of the rF1V and rBV A/B vaccines: progress and challenges. Adv Prev Med. 2012;2012:731604.

    PubMed  Google Scholar 

  • Harvey AL, Marshall IG. The facilitatory actions of aminopyridines and tetraethylammonium on neuromuscular transmission and muscle contractility in avian muscle. Naunyn Schmiedebergs Arch Pharmacol. 1977;299:53–60.

    CAS  PubMed  Google Scholar 

  • Haucke. Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans. 2005;33(Pt 6):1285–9.

    Google Scholar 

  • Jahn R. Neuroscience. A neuronal receptor for botulinum toxin. Science. 2006;312:540–1.

    CAS  PubMed  Google Scholar 

  • Keller JE. Recovery from botulinum neurotoxin poisoning in vivo. Neuroscience. 2006;139:629–37.

    CAS  PubMed  Google Scholar 

  • Kuo CL, Oyler GA, Shoemaker CB. Accelerated neuronal cell recovery from Botulinum neurotoxin intoxication by targeted ubiquitination. PLoS One. 2011;6:e20352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maksymowych AB, Simpson LL. Structural features of the botulinum neurotoxin molecule that govern binding and transcytosis across polarized human intestinal epithelial cells. J Pharmacol Exp Ther. 2004;310:633–41.

    CAS  PubMed  Google Scholar 

  • Mayers CN, Holley JL, Brooks T. Antitoxin therapy for botulinum intoxication. Rev Med Microbiol. 2001;12:29–37.

    Google Scholar 

  • Mayorov AV, Willis B, Di Mola A, Adler D, Borgia J, Jackson O, Wang J, Luo Y, Tang L, Knapp RJ, Natarajan C, Goodnough MC, Zilberberg N, Simpson LL, Janda KD. Symptomatic relief of botulinum neurotoxin/a intoxication with aminopyridines: a new twist on an old molecule. ACS Chem Biol. 2010;5:1183–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Wang J, Lawrence GW, Dolly JO. Molecular components required for resting and stimulated endocytosis of botulinum neurotoxins by glutamatergic and peptidergic neurons. Faseb J. 2013;27:3167–80.

    CAS  PubMed  Google Scholar 

  • Molgo J, Thesleff S. Studies on the mode of action of botulinum toxin type A at the frog neuromuscular junction. Brain Res. 1984;297:309–16.

    CAS  PubMed  Google Scholar 

  • Molgo J, Lundh H, Thesleff S. Potency of 3,4-diaminopyridine and 4-aminopyridine on mammalian neuromuscular transmission and the effect of pH changes. Eur J Pharmacol. 1980;61:25–34.

    CAS  PubMed  Google Scholar 

  • Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol. 1994;13:1–8.

    CAS  PubMed  Google Scholar 

  • Montecucco C, Papini E, Schiavo G, Padovan E, Rossetto O. Ion channel and membrane translocation of diphtheria toxin. FEMS Microbiol Immunol. 1992;5:101–11.

    CAS  PubMed  Google Scholar 

  • Morbiato L, Carli L, Johnson EA, Montecucco C, Molgo J, Rossetto O. Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C. Eur J Neurosci. 2007;25:2697–704.

    PubMed  Google Scholar 

  • Mustafa W, Al-Saleem FH, Nasser Z, Olson RM, Mattis JA, Simpson LL, Schnell MJ. Immunization of mice with the non-toxic HC50 domain of botulinum neurotoxin presented by rabies virus particles induces a strong immune response affording protection against high-dose botulinum neurotoxin challenge. Vaccine. 2011;29:4638–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai Y, Pellett S, Tepp WH, Johnson EA, Janda KD. Toosendanin: synthesis of the AB-ring and investigations of its anti-botulinum properties (part II). Bioorg Med Chem. 2010;18:1280–7.

    CAS  PubMed  Google Scholar 

  • Petro KA, Dyer MA, Yowler BC, Schengrund CL. Disruption of lipid rafts enhances activity of botulinum neurotoxin serotype A. Toxicon. 2006;48:1035–45.

    CAS  PubMed  Google Scholar 

  • Potian JG, Patel V, McArdle JJ, Thyagarajan B. The inveterate botulinum neurotoxin A ushers in exo-endocytic crypts. Botulinum J. 2010a;1:418–30.

    Google Scholar 

  • Potian JG, Thyagarajan B, Hognason K, Labeda FJ, Schmidt JJ, Adler M, McArdle JJ. Investigation of ‘CRATKML’ derived peptides as antidotes for the in vivo and in vitro paralytic effect of botulinum neurotoxin A. Botulinum J. 2010b;1:407–17.

    Google Scholar 

  • Ravichandran E, Al-Saleem FH, Ancharski DM, Elias MD, Singh AK, Shamim M, Gong Y, Simpson LL. Trivalent vaccine against botulinum toxin serotypes A, B, and E that can be administered by the mucosal route. Infect Immun. 2007;75:3043–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray P, Singh BR, Ray R, Zhang P, Li D, Keller JE, Adler M. A targeted therapeutic rescues botulinum toxin-A poisoned neurons. Nat Preced. 2008 (hdl:10101/npre.2008.2149.1).

    Google Scholar 

  • Rusnak JM, Smith LA. Botulinum neurotoxin vaccines: past history and recent developments. Hum Vaccin. 2009;5:794–805.

    CAS  PubMed  Google Scholar 

  • Schmidt JJ, Stafford RG. High affinity competitive inhibitor of type A botulinum neurotoxin metalloprotease activity. FEBS Lett. 2002;532:423–6.

    CAS  PubMed  Google Scholar 

  • Schmidt JJ, Stafford RG, Bostian KA. Type A botulinum neurotoxin proteolytic activity: development of competitive inhibitors and implications for substrate specificity at the S1’ binding subsite. FEBS Lett. 1998;435:61–4.

    CAS  PubMed  Google Scholar 

  • Sheridan RE, Deshpande SS. Interactions between heavy metal chelators and botulinum neurotoxins at the mouse neuromuscular junction. Toxicon. 1995;33:539–49.

    CAS  PubMed  Google Scholar 

  • Shi YL, Wang ZF. Cure of experimental botulism and antibotulismic effect of toosendanin. Acta Pharmacol Sin. 2004;25:839–48.

    CAS  PubMed  Google Scholar 

  • Shi YL, Wang WP. Biological effects of toosendanin, an active ingredient of herbal vermifuge in Chinese traditional medicine. Sheng Li Xue Bao. 2006;58:397–406.

    CAS  PubMed  Google Scholar 

  • Shih YL, Hsu K. Anti-botulismic effect of toosendanin and its facilitatory action on miniature end-plate potentials. Jpn J Physiol. 1983;33:677–80.

    CAS  PubMed  Google Scholar 

  • Siegel LS. Human immune response to botulinum pentavalent (ABCDE) toxoid determined by a neutralization test and by an enzyme-linked immunosorbent assay. J Clin Microbiol. 1988;26:2351–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silhar P, Silvaggi NR, Pellett S, Capkova K, Johnson EA, Allen KN, Janda KD. Evaluation of adamantane hydroxamates as botulinum neurotoxin inhibitors: synthesis, crystallography, modeling, kinetic and cellular based studies. Bioorg Med Chem. 2013;21:1344–8.

    CAS  PubMed  Google Scholar 

  • Simpson LL. The action of botulinal toxin. Rev Infect Dis. 1979;1:656–62.

    CAS  PubMed  Google Scholar 

  • Simpson LL. Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther. 1980;212(1):16–21.

    Google Scholar 

  • Simpson LL. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J Pharmacol Exp Ther. 1983;225:546–52.

    CAS  PubMed  Google Scholar 

  • Simpson LL. A preclinical evaluation of aminopyridines as putative therapeutic agents in the treatment of botulism. Infect Immun. 1986;52:858–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson LL. Use of pharmacologic antagonists to deduce commonalities of biologic activity among clostridial neurotoxins. J Pharmacol Exp Ther. 1988;245:867–72.

    CAS  PubMed  Google Scholar 

  • Simpson LL. Identification of the major steps in botulinum toxin action. Annu Rev Pharmacol Toxicol. 2004;44:167–93.

    CAS  PubMed  Google Scholar 

  • Souayah N, Karim H, Kamin SS, McArdle J, Marcus S. Severe botulism after focal injection of botulinum toxin. Neurology. 2006;67:1855–6.

    CAS  PubMed  Google Scholar 

  • Swaminathan S, Eswaramoorthy S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol. 2000;7:693–9.

    CAS  PubMed  Google Scholar 

  • Tacket CO, Shandera WX, Mann JM, Hargrett NT, Blake PA. Equine antitoxin use and other factors that predict outcome in type A foodborne botulism. Am J Med. 1984;76:794–8.

    CAS  PubMed  Google Scholar 

  • Thyagarajan B, Krivitskaya N, Potian JG, Hognason K, Garcia CC, McArdle JJ. Capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of botulinum neurotoxin a. J Pharmacol Exp Ther. 2009;331:361–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thyagarajan B, Potian JG, Garcia CC, Hognason K, Capkova K, Moe ST, Jacobson AR, Janda KD, McArdle JJ. Effects of hydroxamate metalloendoprotease inhibitors on botulinum neurotoxin A poisoned mouse neuromuscular junctions. Neuropharmacology. 2010;58:1189–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tok JB, Fischer NO. Single microbead SELEX for efficient ssDNA aptamer generation against botulinum neurotoxin. Chem Commun (Camb). 2008;16:1883–5.

    Google Scholar 

  • Tsai YC, Maditz R, Kuo CL, Fishman PS, Shoemaker CB, Oyler GA, Weissman AM. Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Natl Acad Sci U S A. 2010;107:16554–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Lunteren E, Moyer M. Effects of DAP on diaphragm force and fatigue, including fatigue due to neurotransmission failure. J Appl Physiol. 1996;81:2214–20.

    PubMed  Google Scholar 

  • van Lunteren E, Moyer M, Dick TE. Modulation of diaphragm action potentials by K(+) channel blockers. Respir Physiol. 2001;124:217–30.

    PubMed  Google Scholar 

  • Willis B, Eubanks LM, Dickerson TJ, Janda KD. The strange case of the botulinum neurotoxin: using chemistry and biology to modulate the most deadly poison. Angew Chem Int Ed Engl. 2008;47:8360–79.

    CAS  PubMed  Google Scholar 

  • Zakhari JS, Kinoyama I, Hixon MS, Di Mola A, Globisch D, Janda KD. Formulating a new basis for the treatment against botulinum neurotoxin intoxication: 3,4-Diaminopyridine prodrug design and characterization. Bioorg Med Chem. 2011;19:6203–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JY, Wang ZF, Ren XM, Tang MZ, Shi YL. Antagonism of botulinum toxin type A-induced cleavage of SNAP-25 in rat cerebral synaptosome by toosendanin. FEBS Lett. 2003;555:375–9.

    CAS  PubMed  Google Scholar 

  • Zuniga JE, Hammill JT, Drory O, Nuss JE, Burnett JC, Gussio R, Wipf P, Bavari S, Brunger AT. Iterative structure-based peptide-like inhibitor design against the botulinum neurotoxin serotype A. PLoS One. 2010;5:e11378.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baskaran Thyagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thyagarajan, B. (2015). Antidotes to Botulinum Neurotoxin. In: Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R. (eds) Biological Toxins and Bioterrorism. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5869-8_4

Download citation

Publish with us

Policies and ethics