Skip to main content

Advertisement

Log in

Impaired nuclear translocation of glucocorticoid receptors: novel findings from psoriatic epidermal keratinocytes

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Psoriasis is a chronic proliferative skin disease and is usually treated with topical glucocorticoids, which act through the glucocorticoid receptor (GR), a component of the physiological systems essential for immune responses, differentiation, and homeostasis. To investigate the possible role of GR in the pathogenesis of psoriasis, normal and psoriatic lesional skin were recruited. Firstly, the immunolocalization of GR in the skin and cultured epidermal keratinocytes were determined by immunofluorescence. In normal skin and cultured human epidermal keratinocytes, intracellular GR is localized in the nuclei, while in psoriatic skin and cultured keratinocytes, GR is in the cytoplasm. Next, we investigated possible factors associated with the cytoplasmic distribution. We found that VEGF and IFN-γ led to impaired nuclear translocation of GR through p53 and microtubule-inhibitor, vincristine, and inhibited nuclear uptake of GR in normal keratinocytes. In addition to dexamethasone, interleukin (IL)-13 was also able to transfer GR into nuclei of psoriatic keratinocytes. Furthermore, discontinuation of dexamethasone induced cytoplasmic retention of GR in normal keratinocytes. In contrast, energy depletion of normal epidermal keratinocytes did not change the nuclear distribution of GR. To confirm our findings in vivo, an imiquimod-induced psoriasis-like skin mouse model was included. IL-13 ameliorated (but vincristine exacerbated) the skin lesions on the mouse. Taken together, our findings define that impaired nuclear translocation of GR is associated with VEGF, IFN-γ, p53, and microtubule. Therapeutic strategies designed to accumulate GR in the nucleus, such as IL-13, may be beneficial for the therapy of psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GR:

Glucocorticoid receptor

IL:

Interleukin

GRE:

Glucocorticoid response elements

Dex:

Dexamethasone

GSK:

Glycogen synthase kinase

VEGF:

Vascular endothelial growth factor

IFN-γ:

Interferon-γ

ACTH:

Adrenocorticotropic hormone

HGF:

Hepatocyte growth factor

TGF:

Transforming growth factor

IMQ:

Imiquimod

References

  1. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med 353:1711–1723

    Article  PubMed  CAS  Google Scholar 

  2. Witchel SF, DeFranco DB (2006) Mechanisms of disease: regulation of glucocorticoid and receptor levels—impact on the metabolic syndrome. Nat Clin Pract Endocrinol Metab 2:621–631

    Article  PubMed  CAS  Google Scholar 

  3. Webster JI, Tonelli L, Sternberg EM (2002) Neuroendocrine regulation of immunity. Annu Rev Immunol 20:125–163

    Article  PubMed  CAS  Google Scholar 

  4. Budunova IV, Kowalczyk D, Perez P, Yao YJ, Jorcano JL, Slaga TJ (2003) Glucocorticoid receptor functions as a potent suppressor of mouse skin carcinogenesis. Oncogene 22:3279–3287

    Article  PubMed  CAS  Google Scholar 

  5. Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445:866–873

    Article  PubMed  CAS  Google Scholar 

  6. Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509

    Article  PubMed  CAS  Google Scholar 

  7. Schon MP, Boehncke WH (2005) Psoriasis. N Engl J Med 352:1899–1912

    Article  PubMed  CAS  Google Scholar 

  8. Sevilla LM, Latorre V, Sanchis A, Perez P (2012) Epidermal inactivation of the glucocorticoid receptor triggers skin barrier defects and cutaneous inflammation. J Invest Dermatol. doi:10.1038/jid.2012.281

    Google Scholar 

  9. Perez P (2011) Glucocorticoid receptors, epidermal homeostasis and hair follicle differentiation. Dermatoendocrinol 3:166–174

    PubMed  CAS  Google Scholar 

  10. Yemelyanov A, Czwornog J, Chebotaev D, Karseladze A, Kulevitch E, Yang X, Budunova I (2007) Tumor suppressor activity of glucocorticoid receptor in the prostate. Oncogene 26:1885–1896

    Article  PubMed  CAS  Google Scholar 

  11. Bamberger CM, Bamberger AM, de Castro M, Chrousos GP (1995) Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 95:2435–2441

    Article  PubMed  CAS  Google Scholar 

  12. Galigniana MD, Housley PR, DeFranco DB, Pratt WB (1999) Inhibition of glucocorticoid receptor nucleocytoplasmic shuttling by okadaic acid requires intact cytoskeleton. J Biol Chem 274:16222–16227

    Article  PubMed  CAS  Google Scholar 

  13. Zhou J, Cidlowski JA (2005) The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 70:407–417

    Article  PubMed  CAS  Google Scholar 

  14. DeFranco DB, Qi M, Borror KC, Garabedian MJ, Brautigan DL (1991) Protein phosphatase types 1 and/or 2A regulate nucleocytoplasmic shuttling of glucocorticoid receptors. Mol Endocrinol 5:1215–1228

    Article  PubMed  CAS  Google Scholar 

  15. Madan AP, DeFranco DB (1993) Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proc Natl Acad Sci USA 90:3588–3592

    Article  PubMed  CAS  Google Scholar 

  16. Beato M, Herrlich P, Schutz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857

    Article  PubMed  CAS  Google Scholar 

  17. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  PubMed  CAS  Google Scholar 

  18. Chrousos GP, Kino T (2005) Intracellular glucocorticoid signaling: a formerly simple system turns stochastic. Sci STKE 2005:pe48

  19. Man XY, Yang XH, Cai SQ, Bu ZY, Zheng M (2008) Overexpression of vascular endothelial growth factor (VEGF) receptors on keratinocytes in psoriasis: regulated by calcium independent of VEGF. J Cell Mol Med 12:649–660

    Article  PubMed  CAS  Google Scholar 

  20. Man XY, Yang XH, Cai SQ, Yao YG, Zheng M (2006) Immunolocalization and expression of vascular endothelial growth factor receptors (VEGFRs) and neuropilins (NRPs) on keratinocytes in human epidermis. Mol Med 12:127–136

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki K, Bose P, Leong-Quong RY, Fujita DJ, Riabowol K (2010) REAP: a two-minute cell fractionation method. BMC Res Notes 3:294

    Article  PubMed  Google Scholar 

  22. Hilscherova K, Jones PD, Gracia T, Newsted JL, Zhang X, Sanderson JT, Yu RM, Wu RS, Giesy JP (2004) Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR. Toxicol Sci 81:78–89

    Article  PubMed  CAS  Google Scholar 

  23. Thiboutot D, Jabara S, McAllister JM, Sivarajah A, Gilliland K, Cong Z, Clawson G (2003) Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J Invest Dermatol 120:905–914

    Article  PubMed  CAS  Google Scholar 

  24. Detmar M, Brown LF, Claffey KP, Yeo KT, Kocher O, Jackman RW, Berse B, Dvorak HF (1994) Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 180:1141–1146

    Article  PubMed  CAS  Google Scholar 

  25. Bhushan M, McLaughlin B, Weiss JB, Griffiths CE (1999) Levels of endothelial cell stimulating angiogenesis factor and vascular endothelial growth factor are elevated in psoriasis. Br J Dermatol 141:1054–1060

    Article  PubMed  CAS  Google Scholar 

  26. Detmar M, Brown LF, Schon MP, Elicker BM, Velasco P, Richard L, Fukumura D, Monsky W, Claffey KP, Jain RK (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111:1–6

    Article  PubMed  CAS  Google Scholar 

  27. Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS (2003) Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 102:161–168

    Article  PubMed  CAS  Google Scholar 

  28. Detmar M (2004) Evidence for vascular endothelial growth factor (VEGF) as a modifier gene in psoriasis. J Invest Dermatol 122:xiv–xv

    Google Scholar 

  29. Young HS, Summers AM, Bhushan M, Brenchley PE, Griffiths CE (2004) Single-nucleotide polymorphisms of vascular endothelial growth factor in psoriasis of early onset. J Invest Dermatol 122:209–215

    Article  PubMed  CAS  Google Scholar 

  30. Abdallah MA, Abdel-Hamid MF, Kotb AM, Mabrouk EA (2009) Serum interferon-gamma is a psoriasis severity and prognostic marker. Cutis 84:163–168

    PubMed  Google Scholar 

  31. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  PubMed  CAS  Google Scholar 

  32. Otero MJ, Carrasco L (1984) Action of oligomycin on cultured mammalian cells. Permeabilization to translation inhibitors. Mol Cell Biochem 61:183–191

    PubMed  CAS  Google Scholar 

  33. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP, Lubberts E (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182:5836–5845

    Article  PubMed  Google Scholar 

  34. Jordan MA, Himes RH, Wilson L (1985) Comparison of the effects of vinblastine, vincristine, vindesine, and vinepidine on microtubule dynamics and cell proliferation in vitro. Cancer Res 45:2741–2747

    PubMed  CAS  Google Scholar 

  35. Spokoini R, Kfir-Erenfeld S, Yefenof E, Sionov RV (2010) Glycogen synthase kinase-3 plays a central role in mediating glucocorticoid-induced apoptosis. Mol Endocrinol 24:1136–1150

    Article  PubMed  CAS  Google Scholar 

  36. Beurel E, Michalek SM, Jope RS (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31:24–31

    Article  PubMed  CAS  Google Scholar 

  37. Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A (2003) Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 278:32227–32235

    Article  PubMed  CAS  Google Scholar 

  38. Roberson ED, Bowcock AM (2010) Psoriasis genetics: breaking the barrier. Trends Genet 26:415–423

    Article  PubMed  CAS  Google Scholar 

  39. Bonifati C, Mussi A, Carducci M, Pittarello A, D’Auria L, Venuti A, Bagnato A, Salani D, Fazio M, Ameglio F (1998) Endothelin-1 levels are increased in sera and lesional skin extracts of psoriatic patients and correlate with disease severity. Acta Derm Venereol 78:22–26

    Article  PubMed  CAS  Google Scholar 

  40. Sato C, Tsuboi R, Shi CM, Rubin JS, Ogawa H (1995) Comparative study of hepatocyte growth factor/scatter factor and keratinocyte growth factor effects on human keratinocytes. J Invest Dermatol 104:958–963

    Article  PubMed  CAS  Google Scholar 

  41. Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, Xu JH, Zhu QX, Zhou HS, Ellinghaus E, Zhang FR, Pu XM, Yang XQ, Zhang JZ, Xu AE, Wu RN, Xu LM, Peng L, Helms CA, Ren YQ, Zhang C, Zhang SM, Nair RP, Wang HY, Lin GS, Stuart PE, Fan X, Chen G, Tejasvi T, Li P, Zhu J, Li ZM, Ge HM, Weichenthal M, Ye WZ, Shen SK, Yang BQ, Sun YY, Li SS, Lin Y, Jiang JH, Li CT, Chen RX, Cheng J, Jiang X, Zhang P, Song WM, Tang J, Zhang HQ, Sun L, Cui J, Zhang LJ, Tang B, Huang F, Qin Q, Pei XP, Zhou AM, Shao LM, Liu JL, Zhang FY, Du WD, Franke A, Bowcock AM, Elder JT, Liu JJ, Yang S, Zhang XJ (2010) Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet 42:1005–1009

    Article  PubMed  CAS  Google Scholar 

  42. King WJ, Greene GL (1984) Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature 307:745–747

    Article  PubMed  CAS  Google Scholar 

  43. Welshons WV, Krummel BM, Gorski J (1985) Nuclear localization of unoccupied receptors for glucocorticoids, estrogens, and progesterone in GH3 cells. Endocrinology 117:2140–2147

    Article  PubMed  CAS  Google Scholar 

  44. Kemppainen JA, Lane MV, Sar M, Wilson EM (1992) Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones. J Biol Chem 267:968–974

    PubMed  CAS  Google Scholar 

  45. Dauvois S, White R, Parker MG (1993) The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J Cell Sci 106:1377–1388

    PubMed  CAS  Google Scholar 

  46. Perrot-Applanat M, Logeat F, Groyer-Picard MT, Milgrom E (1985) Immunocytochemical study of mammalian progesterone receptor using monoclonal antibodies. Endocrinology 116:1473–1484

    Article  PubMed  CAS  Google Scholar 

  47. Serres M, Viac J, Schmitt D (1996) Glucocorticoid receptor localization in human epidermal cells. Arch Dermatol Res 288:140–146

    Article  PubMed  CAS  Google Scholar 

  48. Chandler VL, Maler BA, Yamamoto KR (1983) DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33:489–499

    Article  PubMed  CAS  Google Scholar 

  49. Davies E, MacKenzie SM (2003) Extra-adrenal production of corticosteroids. Clin Exp Pharmacol Physiol 30:437–445

    Article  PubMed  CAS  Google Scholar 

  50. Noti M, Sidler D, Brunner T (2009) Extra-adrenal glucocorticoid synthesis in the intestinal epithelium: more than a drop in the ocean? Semin Immunopathol 31:237–248

    Article  PubMed  CAS  Google Scholar 

  51. Noti M, Corazza N, Mueller C, Berger B, Brunner T (2010) TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med 207:1057–1066

    Article  PubMed  CAS  Google Scholar 

  52. Mueller M, Atanasov A, Cima I, Corazza N, Schoonjans K, Brunner T (2007) Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines. Endocrinology 148:1445–1453

    Article  PubMed  CAS  Google Scholar 

  53. Nickoloff BJ, Xin H, Nestle FO, Qin JZ (2007) The cytokine and chemokine network in psoriasis. Clin Dermatol 25:568–573

    Article  PubMed  Google Scholar 

  54. Bowcock AM, Krueger JG (2005) Getting under the skin: the immunogenetics of psoriasis. Nat Rev Immunol 5:699–711

    Article  PubMed  CAS  Google Scholar 

  55. Schonthaler HB, Huggenberger R, Wculek SK, Detmar M, Wagner EF (2009) Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proc Natl Acad Sci USA 106:21264–21269

    Article  PubMed  CAS  Google Scholar 

  56. Lehman TA, Modali R, Boukamp P, Stanek J, Bennett WP, Welsh JA, Metcalf RA, Stampfer MR, Fusenig N, Rogan EM et al (1993) p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14:833–839

    Article  PubMed  CAS  Google Scholar 

  57. Harrell JM, Murphy PJ, Morishima Y, Chen H, Mansfield JF, Galigniana MD, Pratt WB (2004) Evidence for glucocorticoid receptor transport on microtubules by dynein. J Biol Chem 279:54647–54654

    Article  PubMed  CAS  Google Scholar 

  58. Galigniana MD, Scruggs JL, Herrington J, Welsh MJ, Carter-Su C, Housley PR, Pratt WB (1998) Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton. Mol Endocrinol 12:1903–1913

    Article  PubMed  CAS  Google Scholar 

  59. Szapary D, Barber T, Dwyer NK, Blanchette-Mackie EJ, Simons SS Jr (1994) Microtubules are not required for glucocorticoid receptor-mediated gene induction. J Steroid Biochem Mol Biol 51:143–148

    Article  PubMed  CAS  Google Scholar 

  60. Vorgias CE, Perides GA, Traub P, Sekeris CE (1988) Colchicine, colcemide and cytochalasin B do not affect translocation of the glucocorticoid hormone-receptor in rat thymocytes or Ehrlich ascites cells. Biosci Rep 8:193–197

    Article  PubMed  CAS  Google Scholar 

  61. Reimer R, Helmbold H, Szalay B, Hagel C, Hohenberg H, Deppert W, Bohn W (2009) Nestin modulates glucocorticoid receptor function by cytoplasmic anchoring. PLoS ONE 4:e6084

    Article  PubMed  Google Scholar 

  62. Glass CK, Saijo K (2010) Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 10:365–376

    Article  PubMed  CAS  Google Scholar 

  63. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta 1114:147–162

    PubMed  CAS  Google Scholar 

  64. Ginger RS, Dalton EC, Ryves WJ, Fukuzawa M, Williams JG, Harwood AJ (2000) Glycogen synthase kinase-3 enhances nuclear export of a dictyostelium STAT protein. EMBO J 19:5483–5491

    Article  PubMed  CAS  Google Scholar 

  65. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275:1930–1934

    Article  PubMed  CAS  Google Scholar 

  66. Rogatsky I, Waase CL, Garabedian MJ (1998) Phosphorylation and inhibition of rat glucocorticoid receptor transcriptional activation by glycogen synthase kinase-3 (GSK-3). Species-specific differences between human and rat glucocorticoid receptor signaling as revealed through GSK-3 phosphorylation. J Biol Chem 273:14315–14321

    Article  PubMed  CAS  Google Scholar 

  67. Nickoloff BJ (2007) Cracking the cytokine code in psoriasis. Nat Med 13:242–244

    Article  PubMed  CAS  Google Scholar 

  68. Blumberg H, Dinh H, Dean C Jr, Trueblood ES, Bailey K, Shows D, Bhagavathula N, Aslam MN, Varani J, Towne JE, Sims JE (2010) IL-1RL2 and its ligands contribute to the cytokine network in psoriasis. J Immunol 185:4354–4362

    Article  PubMed  CAS  Google Scholar 

  69. Nickoloff BJ (1991) The cytokine network in psoriasis. Arch Dermatol 127:871–884

    Article  PubMed  CAS  Google Scholar 

  70. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng BJ, Ruether A, Schreiber S, Weichenthal M, Gladman D, Rahman P, Schrodi SJ, Prahalad S, Guthery SL, Fischer J, Liao W, Kwok PY, Menter A, Lathrop GM, Wise CA, Begovich AB, Voorhees JJ, Elder JT, Krueger GG, Bowcock AM, Abecasis GR (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41:199–204

    Article  PubMed  CAS  Google Scholar 

  71. Spadaro A, Rinaldi T, Riccieri V, Valesini G, Taccari E (2002) Interleukin 13 in synovial fluid and serum of patients with psoriatic arthritis. Ann Rheum Dis 61:174–176

    Article  PubMed  CAS  Google Scholar 

  72. Cancino-Diaz JC, Reyes-Maldonado E, Banuelos-Panuco CA, Jimenez-Zamudio L, Garcia-Latorre E, Leon-Dorantes G, Blancas-Gonzalez F, Paredes-Cabrera G, Cancino-Diaz ME (2002) Interleukin-13 receptor in psoriatic keratinocytes: overexpression of the mRNA and underexpression of the protein. J Invest Dermatol 119:1114–1120

    Article  PubMed  CAS  Google Scholar 

  73. Fitch E, Harper E, Skorcheva I, Kurtz SE, Blauvelt A (2007) Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines. Curr Rheumatol Rep 9:461–467

    Article  PubMed  CAS  Google Scholar 

  74. Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suarez-Farinas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA, Krueger JG (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 204:3183–3194

    Article  PubMed  CAS  Google Scholar 

  75. Guiochon-Mantel A, Lescop P, Christin-Maitre S, Loosfelt H, Perrot-Applanat M, Milgrom E (1991) Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J 10:3851–3859

    PubMed  CAS  Google Scholar 

  76. Sheu HM, Lee JY, Chai CY, Kuo KW (1997) Depletion of stratum corneum intercellular lipid lamellae and barrier function abnormalities after long-term topical corticosteroids. Br J Dermatol 136:884–890

    Article  PubMed  CAS  Google Scholar 

  77. du Vivier A, Phillips H, Hehir M (1982) Applications of glucocorticosteroids. The effects of twice-daily vs once-every-other-day applications on mouse epidermal cell DNA synthesis. Arch Dermatol 118:305–308

    Article  PubMed  Google Scholar 

  78. Carey W, Glazer S, Gottlieb AB, Lebwohl M, Leonardi C, Menter A, Papp K, Rundle AC, Toth D (2006) Relapse, rebound, and psoriasis adverse events: an advisory group report. J Am Acad Dermatol 54:S171–181

    Article  PubMed  Google Scholar 

  79. Davies L, Karthikeyan N, Lynch JT, Sial EA, Gkourtsa A, Demonacos C, Krstic-Demonacos M (2008) Cross talk of signaling pathways in the regulation of the glucocorticoid receptor function. Mole Endocrinol 22:1331–1344

    Article  CAS  Google Scholar 

  80. Vandevyver S, Dejager L, Van Bogaert T, Kleyman A, Liu Y, Tuckermann J, Libert C (2012) Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation. J Clin Invest 122:2130–2140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contributions of Yuelan Cao, Xianqi Zhang, Xinyan Huang, and Xianjie Wu to the development of this article. This research was supported by grants from the National Natural Science Foundation of China (81171496, 81171497, 30972643).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zheng.

Additional information

X.-Y. Man, W. Li, J.-Q. Chen, and J. Zhou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man, XY., Li, W., Chen, JQ. et al. Impaired nuclear translocation of glucocorticoid receptors: novel findings from psoriatic epidermal keratinocytes. Cell. Mol. Life Sci. 70, 2205–2220 (2013). https://doi.org/10.1007/s00018-012-1255-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1255-3

Keywords

Navigation