Skip to main content
Log in

Extra-adrenal glucocorticoid synthesis in the intestinal epithelium: more than a drop in the ocean?

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Glucocorticoids (GC) are lipophilic hormones commonly used as therapeutics in acute and chronic inflammatory disorders such as inflammatory bowel disease due to their attributed anti-inflammatory and immunosuppressive actions. Although the adrenal glands are the major source of endogenous GC, there is increasing evidence for the production of extra-adrenal GC in the brain, thymus, skin, vasculature, and the intestine. However, the physiological relevance of extra-adrenal-produced GC remains still ambiguous. Therefore, this review attracts attention to discuss possible biological benefits of extra-adrenal-synthesized GC, especially focusing on the impact of locally synthesized GC in the regulation of intestinal immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takahashi I, Kiyono H (1999) Gut as the largest immunologic tissue. JPEN J Parenter Enteral Nutr 23:S7–S12. doi:10.1177/014860719902300107

    Article  CAS  PubMed  Google Scholar 

  2. Boirivant M, Amendola A, Butera A (2008) Intestinal microflora and immunoregulation. Mucosal Immunol 1(Suppl 1):S47–S49. doi:10.1038/mi.2008.52

    Article  CAS  PubMed  Google Scholar 

  3. McGuckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G (2009) Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 15:100–113. doi:10.1002/ibd.20539

    Article  PubMed  Google Scholar 

  4. Lee J, Gonzales-Navajas JM, Raz E (2008) The “polarizing-tolerizing” mechanism of intestinal epithelium: its relevance to colonic homeostasis. Semin Immunopathol 30:3–9. doi:10.1007/s00281-007-0099-7

    Article  PubMed  Google Scholar 

  5. Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–446. doi:10.1038/nri2335

    Article  CAS  PubMed  Google Scholar 

  6. Magalhaes JG, Tattoli I, Girardin SE (2007) The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens. Semin Immunol 19:106–115. doi:10.1016/j.smim.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  7. Macpherson AJ (2006) IgA adaptation to the presence of commensal bacteria in the intestine. Curr Top Microbiol Immunol 308:117–136. doi:10.1007/3-540-30657-9_5

    Article  CAS  PubMed  Google Scholar 

  8. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411–420. doi:10.1038/nri2316

    Article  CAS  PubMed  Google Scholar 

  9. Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26:326–333. doi:10.1016/j.it.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  10. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–23

    Article  CAS  PubMed  Google Scholar 

  11. Salzman NH, Underwood MA, Bevins CL (2007) Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol 19:70–83. doi:10.1016/j.smim.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  12. Izcue A, Coombes JL, Powrie F (2006) Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 212:256–271. doi:10.1111/j.0105-2896.2006.00423.x

    Article  CAS  PubMed  Google Scholar 

  13. Becker C, Fantini MC, Neurath MF (2006) TGF-beta as a T cell regulator in colitis and colon cancer. Cytokine Growth Factor Rev 17:97–106. doi:10.1016/j.cytogfr.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  14. Powrie F, Correa-Oliveira R, Mauze S, Coffman RL (1994) Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 179:589–600. doi:10.1084/jem.179.2.589

    Article  CAS  PubMed  Google Scholar 

  15. Powrie F, Leach MW (1995) Genetic and spontaneous models of inflammatory bowel disease in rodents: evidence for abnormalities in mucosal immune regulation. Ther Immunol 2:115–123

    CAS  PubMed  Google Scholar 

  16. Cima I, Corazza N, Dick B, Fuhrer A, Herren S, Jakob S, Ayuni E, Mueller C, Brunner T (2004) Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J Exp Med 200:1635–1646. doi:10.1084/jem.20031958

    Article  CAS  PubMed  Google Scholar 

  17. Cancedda C, Filaci G, Puppo F, Ghio M, Contini P, Indiveri F (2002) Immune homeostasis requires several biologic factors including glucocorticoid hormones. Ann N Y Acad Sci 966:49–63

    Article  CAS  PubMed  Google Scholar 

  18. Wajchenberg BL, Prestes Cesar F, Okada H, Torres de Toledo e Souza I, Lerario AC, Borghi VC, Malerbi DA, Giurna Filho A, Liberman B, Gianella D (1984) Glucocorticoids, glucose metabolism and hypothalamic–pituitary–adrenal axis. Adv Exp Med Biol 171:25–44

    CAS  PubMed  Google Scholar 

  19. Berglund M, Thomas JA, Hornquist EH, Hultgren OH (2008) Toll-like receptor cross-hyporesponsiveness is functional in interleukin-1-receptor-associated kinase-1 (IRAK-1)-deficient macrophages: differential role played by IRAK-1 in regulation of tumour necrosis factor and interleukin-10 production. Scand J Immunol 67:473–479. doi:10.1111/j.1365-3083.2008.02096.x

    Article  CAS  PubMed  Google Scholar 

  20. Beato M, Herrlich P, Schutz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857. doi:10.1016/0092-8674(95)90201-5

    Article  CAS  PubMed  Google Scholar 

  21. Kunicka JE, Talle MA, Denhardt GH, Brown M, Prince LA, Goldstein G (1993) Immunosuppression by glucocorticoids: inhibition of production of multiple lymphokines by in vivo administration of dexamethasone. Cell Immunol 149:39–49. doi:10.1006/cimm.1993.1134

    Article  CAS  PubMed  Google Scholar 

  22. Almawi WY, Beyhum HN, Rahme AA, Rieder MJ (1996) Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol 60:563–572

    CAS  PubMed  Google Scholar 

  23. Unlap T, Jope RS (1995) Inhibition of NFkB DNA binding activity by glucocorticoids in rat brain. Neurosci Lett 198:41–44. doi:10.1016/0304-3940(95)11963-W

    Article  CAS  PubMed  Google Scholar 

  24. Schaaf MJ, Cidlowski JA (2002) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83:37–48. doi:10.1016/S0960-0760(02)00263-7

    Article  CAS  PubMed  Google Scholar 

  25. De Bosscher K, Vanden Berghe W, Haegeman G (2000) Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol 109:16–22. doi:10.1016/S0165-5728(00)00297-6

    Article  PubMed  Google Scholar 

  26. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS Jr (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 15:943–953

    CAS  PubMed  Google Scholar 

  27. Karin M (1998) New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable? Cell 93:487–490. doi:10.1016/S0092-8674(00)81177-0

    Article  CAS  PubMed  Google Scholar 

  28. Amsterdam A, Tajima K, Sasson R (2002) Cell-specific regulation of apoptosis by glucocorticoids: implication to their anti-inflammatory action. Biochem Pharmacol 64:843–850. doi:10.1016/S0006-2952(02)01147-4

    Article  CAS  PubMed  Google Scholar 

  29. Amsterdam A, Sasson R (2002) The anti-inflammatory action of glucocorticoids is mediated by cell type specific regulation of apoptosis. Mol Cell Endocrinol 189:1–9. doi:10.1016/S0303-7207(01)00722-5

    Article  CAS  PubMed  Google Scholar 

  30. Iglesias-Serret D, de Frias M, Santidrian AF, Coll-Mulet L, Cosialls AM, Barragan M, Domingo A, Gil J, Pons G (2007) Regulation of the proapoptotic BH3-only protein BIM by glucocorticoids, survival signals and proteasome in chronic lymphocytic leukemia cells. Leukemia 21:281–287. doi:10.1038/sj.leu.2404483

    Article  CAS  PubMed  Google Scholar 

  31. Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L, Adams JM, Strasser A, Villunger A (2005) BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106:4131–4138. doi:10.1182/blood-2005-04-1595

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Malone MH, He H, McColl KS, Distelhorst CW (2003) Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem 278:23861–23867. doi:10.1074/jbc.M301843200

    Article  CAS  PubMed  Google Scholar 

  33. Cupps TR, Fauci AS (1982) Corticosteroid-mediated immunoregulation in man. Immunol Rev 65:133–155. doi:10.1111/j.1600-065X.1982.tb00431.x

    Article  CAS  PubMed  Google Scholar 

  34. Perretti M, D'Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9:62–70. doi:10.1038/nri2470

    Article  CAS  PubMed  Google Scholar 

  35. Kaufman DB, Shapiro R, Lucey MR, Cherikh WS, Bustami RT, Dyke DB (2004) Immunosuppression: practice and trends. Am J Transplant 4(Suppl 9):38–53. doi:10.1111/j.1600-6135.2004.00397.x

    Article  PubMed  Google Scholar 

  36. Di Munno O, Delle Sedie A (2008) Effects of glucocorticoid treatment on focal and systemic bone loss in rheumatoid arthritis. J Endocrinol Invest 31:43–47

    PubMed  Google Scholar 

  37. Simpson ER (1979) Cholesterol side-chain cleavage, cytochrome P450, and the control of steroidogenesis. Mol Cell Endocrinol 13:213–227. doi:10.1016/0303-7207(79)90082-0

    Article  CAS  PubMed  Google Scholar 

  38. Bornstein SR, Ehrhart-Bornstein M (2000) Basic and clinical aspects of intraadrenal regulation of steroidogenesis. Z Rheumatol 59 Suppl 2: II:12–17

    Google Scholar 

  39. Wang W, Zhang C, Marimuthu A, Krupka HI, Tabrizizad M, Shelloe R, Mehra U, Eng K, Nguyen H, Settachatgul C, Powell B, Milburn MV, West BL (2005) The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1. Proc Natl Acad Sci U S A 102:7505–7510. doi:10.1073/pnas.0409482102

    Article  CAS  PubMed  Google Scholar 

  40. Arlt W, Stewart PM (2005) Adrenal corticosteroid biosynthesis, metabolism, and action. Endocrinol Metab Clin North Am 34:293–313. doi:10.1016/j.ecl.2005.01.002 viii

    Article  CAS  PubMed  Google Scholar 

  41. Buckingham JC (2006) Glucocorticoids: exemplars of multi-tasking. Br J Pharmacol 147(Suppl 1):S258–S268. doi:10.1038/sj.bjp. 0706456

    Article  CAS  PubMed  Google Scholar 

  42. Meeking S (2007) Treatment of acute adrenal insufficiency. Clin Tech Small Anim Pract 22:36–39. doi:10.1053/j.ctsap. 2007.02.006

    Article  PubMed  Google Scholar 

  43. Gonzalo JA, Gonzalez-Garcia A, Martinez C, Kroemer G (1993) Glucocorticoid-mediated control of the activation and clonal deletion of peripheral T cells in vivo. J Exp Med 177:1239–1246. doi:10.1084/jem.177.5.1239

    Article  CAS  PubMed  Google Scholar 

  44. Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25:947–970. doi:10.1210/er.2003-0030

    Article  CAS  PubMed  Google Scholar 

  45. Annane D (2005) Glucocorticoids in the treatment of severe sepsis and septic shock. Curr Opin Crit Care 11:449–453. doi:10.1097/01.ccx.0000176691.95562.43

    Article  PubMed  Google Scholar 

  46. Vacchio MS, Ashwell JD (1997) Thymus-derived glucocorticoids regulate antigen-specific positive selection. J Exp Med 185:2033–2038. doi:10.1084/jem.185.11.2033

    Article  CAS  PubMed  Google Scholar 

  47. Vacchio MS, Lee JY, Ashwell JD (1999) Thymus-derived glucocorticoids set the thresholds for thymocyte selection by inhibiting TCR-mediated thymocyte activation. J Immunol 163:1327–1333

    CAS  PubMed  Google Scholar 

  48. Lechner O, Wiegers GJ, Oliveira-Dos-Santos AJ, Dietrich H, Recheis H, Waterman M, Boyd R, Wick G (2000) Glucocorticoid production in the murine thymus. Eur J Immunol 30:337–346. doi:10.1002/1521-4141(200002)30:2<337::AID-IMMU337>3.0.CO;2-L

    Article  Google Scholar 

  49. Pazirandeh A, Xue Y, Rafter I, Sjovall J, Jondal M, Okret S (1999) Paracrine glucocorticoid activity produced by mouse thymic epithelial cells. FASEB J 13:893–901

    CAS  PubMed  Google Scholar 

  50. Davies E, MacKenzie SM (2003) Extra-adrenal production of corticosteroids. Clin Exp Pharmacol Physiol 30:437–445. doi:10.1046/j.1440-1681.2003.03867.x

    Article  CAS  PubMed  Google Scholar 

  51. Keeney DS, Jenkins CM, Waterman MR (1995) Developmentally regulated expression of adrenal 17 alpha-hydroxylase cytochrome P450 in the mouse embryo. Endocrinology 136:4872–4879. doi:10.1210/en.136.11.4872

    Article  Google Scholar 

  52. Brunner T, Arnold D, Wasem C, Herren S, Frutschi C (2001) Regulation of cell death and survival in intestinal intraepithelial lymphocytes. Cell Death Differ 8:706–714. doi:10.1038/sj.cdd.4400854

    Article  CAS  PubMed  Google Scholar 

  53. Atanasov AG, Leiser D, Roesselet C, Noti M, Corazza N, Schoonjans K, Brunner T (2008) Cell cycle-dependent regulation of extra-adrenal glucocorticoid synthesis in murine intestinal epithelial cells. FASEB J 22:4117–4125. doi:10.1096/fj.08-114157

    Article  CAS  PubMed  Google Scholar 

  54. Mueller M, Cima I, Noti M, Fuhrer A, Jakob S, Dubuquoy L, Schoonjans K, Brunner T (2006) The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J Exp Med 203:2057–2062. doi:10.1084/jem.20060357

    Article  CAS  PubMed  Google Scholar 

  55. Mueller M, Atanasov A, Cima I, Corazza N, Schoonjans K, Brunner T (2007) Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines. Endocrinology 148:1445–1453. doi:10.1210/en.2006-0591

    Article  CAS  PubMed  Google Scholar 

  56. Val P, Lefrancois-Martinez AM, Veyssiere G, Martinez A (2003) SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept 1:8. doi:10.1186/1478-1336-1-8

    Article  PubMed  Google Scholar 

  57. Bland ML, Jamieson CA, Akana SF, Bornstein SR, Eisenhofer G, Dallman MF, Ingraham HA (2000) Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response. Proc Natl Acad Sci U S A 97:14488–14493. doi:10.1073/pnas.97.26.14488

    Article  CAS  PubMed  Google Scholar 

  58. Fayard E, Auwerx J, Schoonjans K (2004) LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 14:250–260. doi:10.1016/j.tcb.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  59. Saxena D, Escamilla-Hernandez R, Little-Ihrig L, Zeleznik AJ (2007) Liver receptor homolog-1 and steroidogenic factor-1 have similar actions on rat granulosa cell steroidogenesis. Endocrinology 148:726–734. doi:10.1210/en.2006-0108

    Article  CAS  PubMed  Google Scholar 

  60. Labelle-Dumais C, Jacob-Wagner M, Pare JF, Belanger L, Dufort D (2006) Nuclear receptor NR5A2 is required for proper primitive streak morphogenesis. Dev Dyn 235:3359–3369. doi:10.1002/dvdy.20996

    Article  CAS  PubMed  Google Scholar 

  61. Coste A, Dubuquoy L, Barnouin R, Annicotte JS, Magnier B, Notti M, Corazza N, Antal MC, Metzger D, Desreumaux P, Brunner T, Auwerx J, Schoonjans K (2007) LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc Natl Acad Sci U S A 104:13098–13103. doi:10.1073/pnas.0702440104

    Article  CAS  PubMed  Google Scholar 

  62. Boivin MA, Ye D, Kennedy JC, Al-Sadi R, Shepela C, Ma TY (2007) Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. Am J Physiol Gastrointest Liver Physiol 292:G590–G598. doi:10.1152/ajpgi.00252.2006

    Article  CAS  PubMed  Google Scholar 

  63. Harke N, Leers J, Kietz S, Drenckhahn D, Forster C (2008) Glucocorticoids regulate the human occludin gene through a single imperfect palindromic glucocorticoid response element. Mol Cell Endocrinol 295:39–47. doi:10.1016/j.mce.2008.08.011

    Article  CAS  PubMed  Google Scholar 

  64. Kimura T (1986) Transduction of ACTH signal from plasma membrane to mitochondria in adrenocortical steroidogenesis. Effects of peptide, phospholipid, and calcium. J Steroid Biochem 25:711–716. doi:10.1016/0022-4731(86)90299-2

    Article  CAS  PubMed  Google Scholar 

  65. Watanabe N, Inoue H, Fujii-Kuriyama Y (1994) Regulatory mechanisms of cAMP-dependent and cell-specific expression of human steroidogenic cytochrome P450scc (CYP11A1) gene. Eur J Biochem 222:825–834. doi:10.1111/j.1432-1033.1994.tb18929.x

    Article  CAS  PubMed  Google Scholar 

  66. Rosenberg D, Groussin L, Bertagna X, Bertherat J (2002) cAMP pathway alterations from the cell surface to the nucleus in adrenocortical tumors. Endocr Res 28:765–775. doi:10.1081/ERC-120017071

    Article  CAS  PubMed  Google Scholar 

  67. Burendahl S, Treuter E, Nilsson L (2008) Molecular dynamics simulations of human LRH-1: the impact of ligand binding in a constitutively active nuclear receptor. Biochemistry 47:5205–5215. doi:10.1021/bi7025084

    Article  CAS  PubMed  Google Scholar 

  68. Kim YS, Ryu JH, Han SJ, Choi KH, Nam KB, Jang IH, Lemaitre B, Brey PT, Lee WJ (2000) Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1, 3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J Biol Chem 275:32721–32727. doi:10.1074/jbc.M003934200

    Article  CAS  PubMed  Google Scholar 

  69. Lee YK, Choi YH, Chua S, Park YJ, Moore DD (2006) Phosphorylation of the hinge domain of the nuclear hormone receptor LRH-1 stimulates transactivation. J Biol Chem 281:7850–7855. doi:10.1074/jbc.M509115200

    Article  CAS  PubMed  Google Scholar 

  70. Botrugno OA, Fayard E, Annicotte JS, Haby C, Brennan T, Wendling O, Tanaka T, Kodama T, Thomas W, Auwerx J, Schoonjans K (2004) Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol Cell 15:499–509. doi:10.1016/j.molcel.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  71. Schoonjans K, Dubuquoy L, Mebis J, Fayard E, Wendling O, Haby C, Geboes K, Auwerx J (2005) Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation. Proc Natl Acad Sci U S A 102:2058–2062. doi:10.1073/pnas.0409756102

    Article  CAS  PubMed  Google Scholar 

  72. Rutgeerts P (1998) Medical therapy of inflammatory bowel disease. Digestion 59:453–469. doi:10.1159/000007523

    Article  CAS  PubMed  Google Scholar 

  73. Cerny A, Chisari FV (1999) Pathogenesis of chronic hepatitis C: immunological features of hepatic injury and viral persistence. Hepatology 30:595–601. doi:10.1002/hep. 510300312

    Article  CAS  PubMed  Google Scholar 

  74. Van Assche G, Vermeire S, Rutgeerts P (2008) Optimizing treatment of inflammatory bowel diseases with biologic agents. Curr Gastroenterol Rep 10:591–596. doi:10.1007/s11894-008-0107-7

    Article  PubMed  Google Scholar 

  75. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer zum Buschenfelde KH, Strober W, Kollias G (1997) Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 27:1743–1750. doi:10.1002/eji.1830270722

    Article  CAS  PubMed  Google Scholar 

  76. Naito Y, Takagi T, Handa O, Ishikawa T, Nakagawa S, Yamaguchi T, Yoshida N, Minami M, Kita M, Imanishi J, Yoshikawa T (2003) Enhanced intestinal inflammation induced by dextran sulfate sodium in tumor necrosis factor-alpha deficient mice. J Gastroenterol Hepatol 18:560–569. doi:10.1046/j.1440-1746.2003.03034.x

    Article  CAS  PubMed  Google Scholar 

  77. Ebach DR, Newberry R, Stenson WF (2005) Differential role of tumor necrosis factor receptors in TNBS colitis. Inflamm Bowel Dis 11:533–540. doi:10.1097/01.MIB.0000163698.34592.30

    Article  PubMed  Google Scholar 

  78. Rutgeerts P, Vermeire S, Van Assche G (2009) Biological therapies for inflammatory bowel diseases. Gastroenterology 136:1182–1197. doi:10.1053/j.gastro.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  79. Kassiotis G, Kollias G (2001) Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med 193:427–434. doi:10.1084/jem.193.4.427

    Article  CAS  PubMed  Google Scholar 

  80. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ (1995) Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377:348–351. doi:10.1038/377348a0

    Article  CAS  PubMed  Google Scholar 

  81. Zhou T, Edwards CK III, Yang P, Wang Z, Bluethmann H, Mountz JD (1996) Greatly accelerated lymphadenopathy and autoimmune disease in lpr mice lacking tumor necrosis factor receptor I. J Immunol 156:2661–2665

    CAS  PubMed  Google Scholar 

  82. Matthys P, Billiau A (1997) Cytokines and cachexia. Nutrition 13:763–770. doi:10.1016/S0899-9007(97)00185-8

    Article  CAS  PubMed  Google Scholar 

  83. Clayburgh DR, Barrett TA, Tang Y, Meddings JB, Van Eldik LJ, Watterson DM, Clarke LL, Mrsny RJ, Turner JR (2005) Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest 115:2702–2715. doi:10.1172/JCI24970

    Article  CAS  PubMed  Google Scholar 

  84. Rubin EM, Raptopoulos VD (2005) Images in clinical medicine. The virtual apple core of a colonic carcinoma. N Engl J Med 352:2733. doi:10.1056/NEJMicm040235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation, the Crohn's and Colitis Foundation of America, and Oncosuisse. D.S. is recipient of a fellowship from the Swiss National Science Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Brunner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noti, M., Sidler, D. & Brunner, T. Extra-adrenal glucocorticoid synthesis in the intestinal epithelium: more than a drop in the ocean?. Semin Immunopathol 31, 237–248 (2009). https://doi.org/10.1007/s00281-009-0159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0159-2

Keywords

Navigation