Skip to main content

Advertisement

Log in

CHFR: a key checkpoint component implicated in a wide range of cancers

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

CHFR (Checkpoint with Forkhead-associated and RING finger domains) has been implicated in a checkpoint regulating entry into mitosis. However, the details underlying its roles and regulation are unclear due to conflicting lines of evidence supporting different notions of its functions. We provide here an overview of how CHFR is thought to contribute towards regulating mitotic entry and present possible explanations for contradictory observations published on the functions and regulation of CHFR. Furthermore, we survey key data showing correlations between promoter hypermethylation or down-regulation of CHFR and cancers, with a view on the likely reasons why different extents of correlations have been reported. Lastly, we explore the possibilities of exploiting CHFR promoter hypermethylation status in diagnostics and therapeutics for cancer patients. With keen interest currently focused on the association between hypermethylation of CHFR and cancers, details of how CHFR functions require further study to reveal how its absence might possibly contribute to tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blow JJ, Tanaka TU (2005) The chromosome cycle: coordinating replication and segregation: second in the cycles review series. EMBO Rep 6:1028–1034

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  3. Derks S, Postma C, Moerkerk PT, van den Bosch SM, Carvalho B, Hermsen MA, Giaretti W, Herman JG, Weijenberg MP, de Bruine AP, Meijer GA, van Engeland M (2006) Promoter methylation precedes chromosomal alterations in colorectal cancer development. Cell Oncol 28:247–257

    PubMed  CAS  Google Scholar 

  4. Lavin MF, Kozlov S (2007) ATM activation and DNA damage response. Cell Cycle 6:931–942

    Article  PubMed  CAS  Google Scholar 

  5. Navadgi-Patil VM, Burgers PM (2011) Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase. Biochem Soc Trans 39:600–605

    Article  PubMed  CAS  Google Scholar 

  6. Chin CF, Yeong FM (2009) Safeguarding entry into mitosis: the antephase checkpoint. Mol Cell Biol

  7. Scolnick DM, Halazonetis TD (2000) CHFR defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406:430–435

    Article  PubMed  CAS  Google Scholar 

  8. Summers MK, Bothos J, Halazonetis TD (2005) The CHFR mitotic checkpoint protein delays cell cycle progression by excluding Cyclin B1 from the nucleus. Oncogene 24:2589–2598

    Article  PubMed  CAS  Google Scholar 

  9. Matsusaka T, Pines J (2004) Chfr acts with the p38 stress kinases to block entry to mitosis in mammalian cells. J Cell Biol 166:507–516

    Article  PubMed  CAS  Google Scholar 

  10. Chaturvedi P, Sudakin V, Bobiak ML, Fisher PW, Mattern MR, Jablonski SA, Hurle MR, Zhu Y, Yen TJ, Zhou BB (2002) Chfr regulates a mitotic stress pathway through its RING-finger domain with ubiquitin ligase activity. Cancer Res 62:1797–1801

    PubMed  CAS  Google Scholar 

  11. Bothos J, Summers MK, Venere M, Scolnick DM, Halazonetis TD (2003) The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Oncogene 22:7101–7107

    Article  PubMed  CAS  Google Scholar 

  12. Kang D, Chen J, Wong J, Fang G (2002) The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J Cell Biol 156:249–259

    Article  PubMed  CAS  Google Scholar 

  13. Oh YM, Kwon YE, Kim JM, Bae SJ, Lee BK, Yoo SJ, Chung CH, Deshaies RJ, Seol JH (2009) Chfr is linked to tumour metastasis through the downregulation of HDAC1. Nat Cell Biol 11:295–302

    Article  PubMed  CAS  Google Scholar 

  14. Shtivelman E (2003) Promotion of mitosis by activated protein kinase B after DNA damage involves polo-like kinase 1 and checkpoint protein CHFR. Mol Cancer Res 1:959–969

    PubMed  CAS  Google Scholar 

  15. Kim JS, Park YY, Park SY, Cho H, Kang D, Cho H (2011) The auto-ubiquitylation of CHFR at G2 Phase is required for accumulation of Plk1 and mitotic entry in mammalian cells. J Biol Chem 286:30615–30623

    Google Scholar 

  16. Durocher D, Jackson SP (2002) The FHA domain. FEBS Lett 513:58–66

    Article  PubMed  CAS  Google Scholar 

  17. Burgess A, Labbe JC, Vigneron S, Bonneaud N, Strub JM, Van Dorsselaer A, Lorca T, Castro A (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27:5554–5566

    Article  PubMed  CAS  Google Scholar 

  18. Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6:599–609

    Article  PubMed  CAS  Google Scholar 

  19. O’Farrell PH (2001) Triggering the all-or-nothing switch into mitosis. Trends Cell Biol 11:512–519

    Article  PubMed  Google Scholar 

  20. Lindqvist A, Rodriguez-Bravo V, Medema RH (2009) The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol 185:193–202

    Article  PubMed  CAS  Google Scholar 

  21. Boutros R, Dozier C, Ducommun B (2006) The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18:185–191

    Article  PubMed  CAS  Google Scholar 

  22. van Vugt MA, Medema RH (2005) Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24:2844–2859

    Article  PubMed  Google Scholar 

  23. Vader G, Lens SM (2008) The Aurora kinase family in cell division and cancer. Biochim Biophys Acta 1786:60–72

    PubMed  CAS  Google Scholar 

  24. Lens SM, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10:825–841

    Article  PubMed  CAS  Google Scholar 

  25. Privette LM, Weier JF, Nguyen HN, Yu X, Petty EM (2008) Loss of CHFR in human mammary epithelial cells causes genomic instability by disrupting the mitotic spindle assembly checkpoint. Neoplasia 10:643–652

    PubMed  CAS  Google Scholar 

  26. Yu X, Minter-Dykhouse K, Malureanu L, Zhao WM, Zhang D, Merkle CJ, Ward IM, Saya H, Fang G, van Deursen J, Chen J (2005) Chfr is required for tumor suppression and Aurora A regulation. Nat Genet 37:401–406

    Article  PubMed  CAS  Google Scholar 

  27. Fu Z, Regan K, Zhang L, Muders MH, Thibodeau SN, French A, Wu Y, Kaufmann SH, Lingle WL, Chen J, Tindall DJ (2009) Deficiencies in CHFR and Mlh1 synergistically enhance tumor susceptibility in mice. J Clin Invest 119:2714–2724

    PubMed  CAS  Google Scholar 

  28. Fukuda T, Kondo Y, Nakagama H (2008) The anti-proliferative effects of the CHFR depend on the forkhead associated domain, but not E3 ligase activity mediated by ring finger domain. PLoS One 3:e1776

    Article  PubMed  Google Scholar 

  29. Al-Hakim A, Escribano-Diaz C, Landry MC, O’Donnell L, Panier S, Szilard RK, Durocher D (2010) The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 9:1229–1240

    Article  CAS  Google Scholar 

  30. Wu J, Chen Y, Lu LY, Wu Y, Paulsen MT, Ljungman M, Ferguson DO, Yu X (2011) CHFR and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol 18:761–768

    Article  PubMed  CAS  Google Scholar 

  31. Rea S, Xouri G, Akhtar A (2007) Males absent on the first (MOF): from flies to humans. Oncogene 26:5385–5394

    Article  PubMed  CAS  Google Scholar 

  32. Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, JR Yates, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087

    Article  PubMed  CAS  Google Scholar 

  33. Sun Y, Jiang X, Price BD (2010) Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 9:930–936

    Article  PubMed  CAS  Google Scholar 

  34. Goodarzi AA, Jeggo P, Lobrich M (2010) The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax. DNA Repair (Amst) 9:1273–1282

    Article  CAS  Google Scholar 

  35. Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, West SC (2008) Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451:81–85

    Article  PubMed  CAS  Google Scholar 

  36. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70:789–829

    Article  PubMed  CAS  Google Scholar 

  37. Erson AE, Petty EM (2004) CHFR-associated early G2/M checkpoint defects in breast cancer cells. Mol Carcinog 39:26–33

    Article  PubMed  CAS  Google Scholar 

  38. Ma YL, Zhang P, Wang F, Moyer MP, Yang JJ, Liu ZH, Peng JY, Chen HQ, Zhou YK, Liu WJ, Qin HL (2010) Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b. J Cell Mol Med 15:1941–1954

    Google Scholar 

  39. Nicholson B, Suresh Kumar KG (2011) The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys 60:61–68

    Article  PubMed  CAS  Google Scholar 

  40. Oh YM, Yoo SJ, Seol JH (2007) Deubiquitination of CHFR, a checkpoint protein, by USP7/HAUSP regulates its stability and activity. Biochem Biophys Res Commun 357:615–619

    Article  PubMed  CAS  Google Scholar 

  41. Kwon YE, Kim YS, Oh YM, Seol JH (2009) Nuclear localization of CHFR is crucial for its checkpoint function. Mol Cells 27:359–363

    Article  PubMed  CAS  Google Scholar 

  42. Daniels MJ, Marson A, Venkitaraman AR (2004) PML bodies control the nuclear dynamics and function of the CHFR mitotic checkpoint protein. Nat Struct Mol Biol 11:1114–1121

    Article  PubMed  CAS  Google Scholar 

  43. Castiel A, Danieli MM, David A, Moshkovitz S, Aplan PD, Kirsch IR, Brandeis M, Kramer A, Izraeli S (2011) The Stil protein regulates centrosome integrity and mitosis through suppression of CHFR. J Cell Sci 124:532–539

    Article  PubMed  CAS  Google Scholar 

  44. Campaner S, Kaldis P, Izraeli S, Kirsch IR (2005) Sil phosphorylation in a Pin1 binding domain affects the duration of the spindle checkpoint. Mol Cell Biol 25:6660–6672

    Article  PubMed  CAS  Google Scholar 

  45. Izraeli S, Colaizzo-Anas T, Bertness VL, Mani K, Aplan PD, Kirsch IR (1997) Expression of the SIL gene is correlated with growth induction and cellular proliferation. Cell Growth Differ 8:1171–1179

    PubMed  CAS  Google Scholar 

  46. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  47. Erez A, Perelman M, Hewitt SM, Cojacaru G, Goldberg I, Shahar I, Yaron P, Muler I, Campaner S, Amariglio N, Rechavi G, Kirsch IR, Krupsky M, Kaminski N, Izraeli S (2004) Sil overexpression in lung cancer characterizes tumors with increased mitotic activity. Oncogene 23:5371–5377

    Article  PubMed  CAS  Google Scholar 

  48. Mizuno K, Osada H, Konishi H, Tatematsu Y, Yatabe Y, Mitsudomi T, Fujii Y, Takahashi T (2002) Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 21:2328–2333

    Article  PubMed  CAS  Google Scholar 

  49. Toyota M, Sasaki Y, Satoh A, Ogi K, Kikuchi T, Suzuki H, Mita H, Tanaka N, Itoh F, Issa JP, Jair KW, Schuebel KE, Imai K, Tokino T (2003) Epigenetic inactivation of CHFR in human tumors. Proc Natl Acad Sci USA 100:7818–7823

    Article  PubMed  CAS  Google Scholar 

  50. Kanai Y (2008) Alterations of DNA methylation and clinicopathological diversity of human cancers. Pathol Int 58:544–558

    Article  PubMed  CAS  Google Scholar 

  51. Teodoridis JM, Hardie C, Brown R (2008) CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett 268:177–186

    Article  PubMed  CAS  Google Scholar 

  52. Koga T, Takeshita M, Yano T, Maehara Y, Sueishi K (2011) CHFR hypermethylation and EGFR mutation are mutually exclusive and exhibit contrastive clinical backgrounds and outcomes in non-small cell lung cancer. Int J Cancer 128:1009–1017

    Article  PubMed  CAS  Google Scholar 

  53. Takeshita M, Koga T, Takayama K, Kouso H, Nishimura-Ikeda Y, Yoshino I, Maehara Y, Nakanishi Y, Sueishi K (2008) CHFR expression is preferentially impaired in smoking-related squamous cell carcinoma of the lung, and the diminished expression significantly harms outcomes. Int J Cancer 123:1623–1630

    Article  PubMed  CAS  Google Scholar 

  54. Bertholon J, Wang Q, Falette N, Verny C, Auclair J, Chassot C, Navarro C, Saurin JC, Puisieux A (2003) Chfr inactivation is not associated to chromosomal instability in colon cancers. Oncogene 22:8956–8960

    Article  PubMed  CAS  Google Scholar 

  55. Kawasaki T, Ohnishi M, Nosho K, Suemoto Y, Kirkner GJ, Meyerhardt JA, Fuchs CS, Ogino S (2008) CpG island methylator phenotype-low (CIMP-low) colorectal cancer shows not only few methylated CIMP-high-specific CpG islands, but also low-level methylation at individual loci. Mod Pathol 21:245–255

    Article  PubMed  CAS  Google Scholar 

  56. Brandes JC, van Engeland M, Wouters KA, Weijenberg MP, Herman JG (2005) CHFR promoter hypermethylation in colon cancer correlates with the microsatellite instability phenotype. Carcinogenesis 26:1152–1156

    Article  PubMed  CAS  Google Scholar 

  57. Hibi K, Nakao A (2006) Highly-methylated colorectal cancers show poorly-differentiated phenotype. Anticancer Res 26:4263–4266

    PubMed  CAS  Google Scholar 

  58. Joensuu EI, Abdel-Rahman WM, Ollikainen M, Ruosaari S, Knuutila S, Peltomaki P (2008) Epigenetic signatures of familial cancer are characteristic of tumor type and family category. Cancer Res 68:4597–4605

    Article  PubMed  CAS  Google Scholar 

  59. Morioka Y, Hibi K, Sakai M, Koike M, Fujiwara M, Kodera Y, Ito K, Nakao A (2006) Aberrant methylation of the CHFR gene in digestive tract cancer. Anticancer Res 26:1791–1795

    PubMed  CAS  Google Scholar 

  60. Milne AN, Sitarz R, Carvalho R, Polak MM, Ligtenberg M, Pauwels P, Offerhaus GJ, Weterman MA (2007) Molecular analysis of primary gastric cancer, corresponding xenografts, and 2 novel gastric carcinoma cell lines reveals novel alterations in gastric carcinogenesis. Hum Pathol 38:903–913

    Article  PubMed  CAS  Google Scholar 

  61. Hiraki M, Kitajima Y, Nakafusa Y, Nakamura J, Hashiguchi K, Sumi K, Noshiro H, Miyazaki K (2010) CpG island methylation of BNIP3 predicts resistance against S-1/CPT-11 combined therapy in colorectal cancer patients. Oncol Rep 23:191–197

    PubMed  CAS  Google Scholar 

  62. Homma N, Tamura G, Honda T, Jin Z, Ohmura K, Kawata S, Motoyama T (2005) Hypermethylation of CHFR and hMLH1 in gastric noninvasive and early invasive neoplasias. Virchows Arch 446:120–126

    Article  PubMed  CAS  Google Scholar 

  63. Honda T, Tamura G, Waki T, Kawata S, Nishizuka S, Motoyama T (2004) Promoter hypermethylation of the CHFR gene in neoplastic and non-neoplastic gastric epithelia. Br J Cancer 90:2013–2016

    Article  PubMed  CAS  Google Scholar 

  64. Hu SL, Huang DB, Sun YB, Wu L, Xu WP, Yin S, Chen J, Jiang XD, Shen G (2010) Pathobiologic implications of methylation and expression status of Runx3 and CHFR genes in gastric cancer. Med Oncol 28:477–454

    Google Scholar 

  65. Koga Y, Kitajima Y, Miyoshi A, Sato K, Sato S, Miyazaki K (2006) The significance of aberrant CHFR methylation for clinical response to microtubule inhibitors in gastric cancer. J Gastroenterol 41:133–139

    Article  PubMed  CAS  Google Scholar 

  66. Oki E, Zhao Y, Yoshida R, Masuda T, Ando K, Sugiyama M, Tokunaga E, Morita M, Kakeji Y, Maehara Y (2009) Checkpoint with forkhead-associated and ring finger promoter hypermethylation correlates with microsatellite instability in gastric cancer. World J Gastroenterol 15:2520–2525

    Article  PubMed  CAS  Google Scholar 

  67. Soutto M, Peng D, Razvi M, Ruemmele P, Hartmann A, Roessner A, Schneider-Stock R, El-Rifai W (2010) Epigenetic and genetic silencing of CHFR in esophageal adenocarcinomas. Cancer 116:4033–4042

    Article  PubMed  CAS  Google Scholar 

  68. Knuutila S, Aalto Y, Autio K, Bjorkqvist AM, El-Rifai W, Hemmer S, Huhta T, Kettunen E, Kiuru-Kuhlefelt S, Larramendy ML, Lushnikova T, Monni O, Pere H, Tapper J, Tarkkanen M, Varis A, Wasenius VM, Wolf M, Zhu Y (1999) DNA copy number losses in human neoplasms. Am J Pathol 155:683–694

    Article  PubMed  CAS  Google Scholar 

  69. El-Rifai W, Frierson HFJ, Moskaluk CA, Harper JC, Petroni GR, Bissonette EA, Jones DR, Knuutila S, Powell SM (2001) Genetic differences between adenocarcinomas arising in Barrett’s esophagus and gastric mucosa. Gastroenterology 121:592–598

    Article  PubMed  CAS  Google Scholar 

  70. Harfe BD, Jinks-Robertson S (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34:359–399

    Article  PubMed  CAS  Google Scholar 

  71. Imai K, Yamamoto H (2008) Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 29:673–680

    Article  PubMed  CAS  Google Scholar 

  72. Jacinto FV, Esteller M (2007) Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 22:247–253

    Article  PubMed  CAS  Google Scholar 

  73. Derks S, Postma C, Carvalho B, van den Bosch SM, Moerkerk PT, Herman JG, Weijenberg MP, de Bruine AP, Meijer GA, van Engeland M (2008) Integrated analysis of chromosomal, microsatellite and epigenetic instability in colorectal cancer identifies specific associations between promoter methylation of pivotal tumour suppressor and DNA repair genes and specific chromosomal alterations. Carcinogenesis 29:434–439

    Article  PubMed  CAS  Google Scholar 

  74. Tanaka M, Chang P, Li Y, Li D, Overman M, Maru DM, Sethi S, Phillips J, Bland GL, Abbruzzese JL, Eng C (2011) Association of CHFR promoter methylation with disease recurrence in locally advanced colon cancer. Clin Cancer Res 17:4531–4540

    Article  PubMed  CAS  Google Scholar 

  75. Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol 7:153–162

    Article  PubMed  CAS  Google Scholar 

  76. Pal T, Permuth-Wey J, Sellers TA (2008) A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer 113:733–742

    Article  PubMed  Google Scholar 

  77. Sakai M, Hibi K, Kanazumi N, Nomoto S, Inoue S, Takeda S, Nakao A (2005) Aberrant methylation of the CHFR gene in advanced hepatocellular carcinoma. Hepatogastroenterology 52:1854–1857

    PubMed  CAS  Google Scholar 

  78. Baba S, Hara A, Kato K, Long NK, Hatano Y, Kimura M, Okano Y, Yamada Y, Shibata T (2009) Aberrant promoter hypermethylation of the CHFR gene in oral squamous cell carcinomas. Oncol Rep 22:1173–1179

    Article  PubMed  CAS  Google Scholar 

  79. Henken FE, Wilting SM, Overmeer RM, van Rietschoten JG, Nygren AO, Errami A, Schouten JP, Meijer CJ, Snijders PJ, Steenbergen RD (2007) Sequential gene promoter methylation during HPV-induced cervical carcinogenesis. Br J Cancer 97:1457–1464

    Article  PubMed  CAS  Google Scholar 

  80. Hiraki M, Kitajima Y, Sato S, Mitsuno M, Koga Y, Nakamura J, Hashiguchi K, Noshiro H, Miyazaki K (2010) Aberrant gene methylation in the lymph nodes provides a possible marker for diagnosing micrometastasis in gastric cancer. Ann Surg Oncol 17:1177–1186

    Article  PubMed  Google Scholar 

  81. Yanagita S, Natsugoe S, Uenosono Y, Arigami T, Arima H, Kozono T, Funasako Y, Ehi K, Nakajo A, Ishigami S, Aikou T (2008) Detection of micrometastases in sentinel node navigation surgery for gastric cancer. Surg Oncol 17:203–210

    Article  PubMed  Google Scholar 

  82. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  PubMed  CAS  Google Scholar 

  83. Satoh A, Toyota M, Itoh F, Sasaki Y, Suzuki H, Ogi K, Kikuchi T, Mita H, Yamashita T, Kojima T, Kusano M, Fujita M, Hosokawa M, Endo T, Tokino T, Imai K (2003) Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res 63:8606–8613

    PubMed  CAS  Google Scholar 

  84. Wang X, Yang Y, Xu C, Xiao L, Shen H, Zhang X, Li T, Li X (2011) CHFR suppression by hypermethylation sensitizes endometrial cancer cells to paclitaxel. Int J Gynecol Cancer 21:996–1003

    Article  PubMed  Google Scholar 

  85. Banno K, Yanokura M, Kawaguchi M, Kuwabara Y, Akiyoshi J, Kobayashi Y, Iwata T, Hirasawa A, Fujii T, Susumu N, Tsukazaki K, Aoki D (2007) Epigenetic inactivation of the CHFR gene in cervical cancer contributes to sensitivity to taxanes. Int J Oncol 31:713–720

    PubMed  CAS  Google Scholar 

  86. Yanokura M, Banno K, Kawaguchi M, Hirao N, Hirasawa A, Susumu N, Tsukazaki K, Aoki D (2007) Relationship of aberrant DNA hypermethylation of CHFR with sensitivity to taxanes in endometrial cancer. Oncol Rep 17:41–48

    PubMed  CAS  Google Scholar 

  87. Ogi K, Toyota M, Mita H, Satoh A, Kashima L, Sasaki Y, Suzuki H, Akino K, Nishikawa N, Noguchi M, Shinomura Y, Imai K, Hiratsuka H, Tokino T (2005) Small interfering RNA-induced CHFR silencing sensitizes oral squamous cell cancer cells to microtubule inhibitors. Cancer Biol Ther 4:773–780

    Article  PubMed  CAS  Google Scholar 

  88. Takeshita M, Koga T, Takayama K, Yano T, Maehara Y, Nakanishi Y, Sueishi K (2010) Alternative efficacy-predicting markers for paclitaxel instead of CHFR in non-small-cell lung cancer. Cancer Biol Ther 10:933–941

    Article  PubMed  CAS  Google Scholar 

  89. Salazar F, Molina MA, Sanchez-Ronco M, Moran T, Ramirez JL, Sanchez JM, Stahel R, Garrido P, Cobo M, Isla D, Bertran-Alamillo J, Massuti B, Cardenal F, Manegold C, Lianes P, Trigo JM, Sanchez JJ, Taron M, Rosell R (2010) First-line therapy and methylation status of CHFR in serum influence outcome to chemotherapy versus EGFR tyrosine kinase inhibitors as second-line therapy in stage IV non-small-cell lung cancer patients. Lung Cancer 72:84–91

    Google Scholar 

  90. Kalari S, Pfeifer GP (2010) Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet 70:277–308

    Article  PubMed  CAS  Google Scholar 

  91. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    Article  PubMed  Google Scholar 

  92. Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  PubMed  CAS  Google Scholar 

  93. Toyota M, Suzuki H, Yamashita T, Hirata K, Imai K, Tokino T, Shinomura Y (2009) Cancer epigenomics: implications of DNA methylation in personalized cancer therapy. Cancer Sci 100:787–791

    Article  PubMed  CAS  Google Scholar 

  94. Tokunaga E, Oki E, Nishida K, Koga T, Yoshida R, Ikeda K, Kojima A, Egashira A, Morita M, Kakeji Y, Maehara Y (2006) Aberrant hypermethylation of the promoter region of the CHFR gene is rare in primary breast cancer. Breast Cancer Res Treat 97:199–203

    Google Scholar 

  95. Privette LM, Gonzalez ME, Ding L, Kleer CG, Petty EM (2007) Altered expression of the early mitotic checkpoint protein, CHFR, in breast cancers: implications for tumor suppression. Cancer Res 67:6064–6074

    Google Scholar 

  96. Moelans CB, Verschuur-Maes AH, van Diest PJ (2011) Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J Pathol 225:222–231

    Google Scholar 

  97. Corn PG, Summers MK, Fogt F, Virmani AK, Gazdar AF, Halazonetis TD, El-Deiry WS (2003) Frequent hypermethylation of the 5' CpG island of the mitotic stress checkpoint gene Chfr in colorectal and non-small cell lung cancer. Carcinogenesis 24:47–51

    Google Scholar 

  98. Shibata Y, Haruki N, Kuwabara Y, Ishiguro H, Shinoda N, Sato A, Kimura M, Koyama H, Toyama T, Nishiwaki T, Kudo J, Terashita Y, Konishi S, Sugiura H, Fujii Y (2002) Chfr expression is downregulated by CpG island hypermethylation in esophageal cancer. Carcinogenesis 23:1695–1699

    Google Scholar 

  99. Yoshida K, Hamai Y, Suzuki T, Sanada Y, Oue N, Yasui W (2006) DNA methylation of CHFR is not a predictor of the response to docetaxel and paclitaxel in advanced and recurrent gastric cancer. Anticancer Res 26:49–54

    Google Scholar 

  100. Mitsuno M, Kitajima Y, Ide T, Ohtaka K, Tanaka M, Satoh S, Miyazaki K (2007) Aberrant methylation of p16 predicts candidates for 5-fluorouracil-based adjuvant therapy in gastric cancer patients. J Gastroenterol 42:866–873

    Google Scholar 

  101. Gao YJ, Xin Y, Zhang JJ, Zhou J (2008) Mechanism and pathobiologic implications of CHFR promoter methylation in gastric carcinoma. World J Gastroenterol 14:5000–5007

    Google Scholar 

  102. Kang GH, Lee S, Cho NY, Gandamihardja T, Long TI, Weisenberger DJ, Campan M, Laird PW (2008) DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest 88:161–170

    Google Scholar 

  103. Hiraki M, Kitajima Y, Koga Y, Tanaka T, Nakamura J, Hashiguchi K, Noshiro H, Miyazaki K (2011) Aberrant gene methylation is a biomarker for the detection of cancer cells in peritoneal wash samples from advanced gastric cancer patients. Ann Surg Oncol 18:3013–3019

    Google Scholar 

  104. Chen K, Sawhney R, Khan M, Benninger MS, Hou Z, Sethi S, Stephen JK, Worsham MJ (2007) Methylation of multiple genes as diagnostic and therapeutic markers in primary head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 133:1131–1138

    Google Scholar 

  105. Li Z, Zhang H, Yang J, Hao T, Li S (2011) Promoter hypermethylation of DNA damage response genes in hepatocellular carcinoma. Cell Biol Int [epub ahead of print]

  106. Mariatos G, Bothos J, Zacharatos P, Summers MK, Scolnick DM, Kittas C, Halazonetis TD, Gorgoulis VG (2003) Inactivating mutations targeting the chfr mitotic checkpoint gene in human lung cancer. Cancer Res 63:7185–7189

    Google Scholar 

  107. De Jong WK, Verpooten GF, Kramer H, Louwagie J, Groen HJ (2009) Promoter methylation primarily occurs in tumor cells of patients with non-small cell lung cancer. Anticancer Res 29:363–369

    Google Scholar 

  108. Cheung HW, Ching YP, Nicholls JM, Ling MT, Wong YC, Hui N, Cheung A, Tsao SW, Wang Q, Yeun PW, Lo KW, Jin DY, Wang X (2005) Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation. Mol Carcinog 43:237–245

    Google Scholar 

  109. Hutajulu SH, Indrasari SR, Indrawati LP, Harijadi A, Duin S, Haryana SM, Steenbergen RD, Greijer AE, Middeldorp JM (2011) Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population. Mol Cancer 10:48

    Google Scholar 

  110. Kobayashi C, Oda Y, Takahira T, Izumi T, Kawaguchi K, Yamamoto H, Tamiya S, Yamada T, Iwamoto Y, Tsuneyoshi M (2006) Aberrant expression of CHFR in malignant peripheral nerve sheath tumors. Mod Pathol 19:524–532

    Google Scholar 

  111. van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA, van der Velden PA, Vermeer MH, Willemze R, Yan PS, Huang TH, Tensen CP (2005) Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol 23:3886–3896

    Google Scholar 

  112. Leong KJ, Wei W, Tannahill LA, Caldwell GM, Jones CE, Morton DG, Matthews GM, Bach SP (2011) Methylation profiling of rectal cancer identifies novel markers of early-stage disease. Br J Surg 98:724–734

    Google Scholar 

  113. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295

    Article  PubMed  CAS  Google Scholar 

  114. Mahajan A, Yuan C, Lee H, Chen ES, Wu PY, Tsai MD (2008) Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 1:re12

    Article  PubMed  Google Scholar 

  115. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  116. Matthews JM, Sunde M (2002) Zinc fingers–folds for many occasions. IUBMB Life 54:351–355

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewer for his constructive suggestions to improve the review. YFM is funded by the Singapore Ministry of Education grant R183-000-246-112 and the Yong Loo Ling SoM cross-department grant R183-000-288-733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foong May Yeong.

Glossary of terms

Glossary of terms

  • Antephase—refers to the time in late G2 phase when signs of chromosome condensation first become visible until commitment to mitosis [6].

  • ATM—refers to Ataxia telangiectasia mutated, which is a key checkpoint kinase that plays a role the activation of the DNA damage checkpoint (reviewed in [3, 4]). It is important for a cell to respond to radiation-induced double-strand breaks by eliciting cell cycle delay and repair of the DNA breaks.

  • ATR—refers to Ataxia telangiectasia mutated- and Rad3-related that is another major component of the DNA damage and replication checkpoints (reviewed in [5]). ATR is activated in the presence of DNA damage and replication blocks. Similar to ATM, activation of ATR leads to triggering of cell cycle delay and repair of the DNA damage.

  • CIN—refers to Chromosome Instability. CIN relates to a persistent high rate of chromosome loss or gain due to mis-segregation of chromosomes during cell division (reviewed in [113]). This usually leads to aneuploidy in the resulting cells and is thought to contribute to tumorigenesis.

  • DNA mis-match repair system—The system consists of proteins that are involved in repair of errors made due to mis-incorporation of nucleotides during the process DNA replication (reviewed in [70]). Such activities help to keep mutation rates low in dividing cells.

  • FHA domain—Fork-head associated domain refers to the phosphothreonine-binding domain that is found in a range of proteins with diverse functions [114]. The domain functions essentially to monitor the status phosphorylation of specific threonine residues found in target proteins. The FHA domain is quite common in proteins that are involved in DNA damage response pathways.

  • Microsatellite—refers to tandem mono-, di-, tri- and tetranucleotide repeats (e.g., A n or (CA) that are distributed in our genome [115]. The correction of errors in the microsatellite depends upon the DNA mis-match repair system [70].

  • Mitotic index—This refers to the fraction of the total number of cells examined that show condensed chromosomes [7, 8].

  • MSI—Microsatellite instability refers to the errors associated with microsatellites that fail to be (reviewed in [71, 75]).

  • MSS—Microsatellite stable refers to the absence of MSI [71].

  • RING-finger (RF) domain—RING stands for Really Interesting New Gene. The RING-finger domain is a type of Zinc Finger domain that is a small motif that folds around one or more zinc ions [116]. The RING-finger domain is found in ubiquitin ligases such as the E3 ligases that are important for ubiquitin-mediated destruction of proteins.

  • Ubiquitin and E3 ubiquitin ligase—Ubiquitin is a ubiquitous polypeptide with 76-amino acid residues (reviewed in [18]). It is activated by ATP by the action of a ubiquitin-activating enzyme known as E1. The ubiquitin is then transferred to a ubiquitin-conjugating enzyme known as E2. The E3 ubiquitin ligase is needed to help the E2 enzyme attach the ubiquitin to target proteins. Ubiquitin is attached to lysine residues on target proteins. If several ubiquitins are added to a single lysyl residue on the target protein, the target protein is referred to as poly-ubiquitinated. In some instances, ubiquitin is added to several distinct lysine residues on a target protein. In such cases, it is referred to as multi-ubiquitination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanbhnani, S., Yeong, F.M. CHFR: a key checkpoint component implicated in a wide range of cancers. Cell. Mol. Life Sci. 69, 1669–1687 (2012). https://doi.org/10.1007/s00018-011-0892-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0892-2

Keywords

Navigation