Skip to main content

Advertisement

Log in

Metabolic syndrome as a risk factor for neurological disorders

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic ‘bodyweight/appetite/satiety set point,’ resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer’s disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer’s disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer’s disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Flegal KM, Carroll MD, Ogden CL, Curtin R (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–241

    Article  PubMed  CAS  Google Scholar 

  2. Reaven GM, Laws A (1999) Insulin resistance: the metabolic syndrome X. Humana Press Totowa, NJ

    Google Scholar 

  3. Grundy SM, Hansen B, Smith SC Jr, Cleeman JI, Kahn RA, American Heart Association (2004) Clinical management of metabolic syndrome report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation 109:551–556

    Article  PubMed  Google Scholar 

  4. Groenendijk M, Cantor RM, Blom NH, Rotter JI, de Bruin TW, Dallinga-Thie GM (1999) Association of plasma lipids and apolipoproteins with the insulin response element in the apoC-III promoter region in familial combined hyperlipidemia. J Lipid Res 40:1036–1044

    PubMed  CAS  Google Scholar 

  5. Mooradian AD, Haas MJ, Wong NC (2004) Transcriptional control of apolipoprotein A-I gene expression in diabetes. Diabetes 53:513–520

    Article  PubMed  CAS  Google Scholar 

  6. Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A, Dandona P (2003) Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 52(12):2882–2887

    Article  PubMed  CAS  Google Scholar 

  7. Roden M, Perseghin G, Petersen KF, Hwang JH, Cline GW, Gerow K, Rothman DL, Shulman GI (1996) The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J Clin Invest 97:642–648

    Article  PubMed  CAS  Google Scholar 

  8. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Article  PubMed  CAS  Google Scholar 

  9. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83:S461–S465

    Google Scholar 

  10. Ahima RS, Osei SY (2008) Adipokines in obesity. Front Horm Res 36:182–197

    Article  PubMed  CAS  Google Scholar 

  11. Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, Dasuri K, Keller JN (2010) Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 114:344–361

    Article  PubMed  CAS  Google Scholar 

  12. Moller DE, Kaufman KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56:45–62

    Article  PubMed  CAS  Google Scholar 

  13. Wang S, Ma A, Song S, Quan Q, Zhao X, Zheng X (2008) Fasting serum free fatty acid composition, waist/hip ratio and insulin activity in essential hypertensive patients. Hypertens Res 31:623–632

    Article  PubMed  Google Scholar 

  14. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  PubMed  CAS  Google Scholar 

  15. Lteif AA, Han K, Mather KJ (2005) Obesity, insulin resistance, and the metabolic syndrome: determinants of endothelial dysfunction in whites and blacks. Circulation 112:32–38

    Article  PubMed  CAS  Google Scholar 

  16. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance. J Clin Invest 97:2601–2610

    Article  PubMed  CAS  Google Scholar 

  17. Rutter MK, Meigs JB, Sullivan LM, D’Agostino RB Sr, Wilson PW (2004) C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 110:380–385

    Article  PubMed  CAS  Google Scholar 

  18. Aizawa Y, Watanabe H, Ramadan MM, Usuda Y, Watanabe T, Sasaki S (2007) Clustering trend of components of metabolic syndrome. Int J Cardiol 121:117–118

    Article  PubMed  Google Scholar 

  19. Dhindsa S, Tripathy D, Mohanty P, Ghanim H, Syed T, Aljada A, Dandona P (2004) Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear nuclear factorkappaB in mononuclear cells. Metabolism 53:330–334

    Article  PubMed  CAS  Google Scholar 

  20. Yu YH, Ginsberg HN (2005) Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue. Circ Res 96:1042–1052

    Article  PubMed  CAS  Google Scholar 

  21. Friedman JM (2004) Modern science versus the stigma of obesity. Nat Med 10:563–569

    Article  PubMed  CAS  Google Scholar 

  22. Trayhurn P, Hoggard N, Mercer JG, Rayner DV (1999) Leptin: fundamental aspects. Int J Obes Relat Metab Disord 23(Suppl 1):22–28

    Article  PubMed  CAS  Google Scholar 

  23. Shimabukuro M, Koyama K, Chen G, Wang M-Y, Trieu F, Lee Y, Newgard CB, Unger RH (1997) Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA 94:4637–4641

    Article  PubMed  CAS  Google Scholar 

  24. Flier JS (1998) What’s in a name? In search of leptin’s physiologic role. J Clin Endocrinol Metab 83:1407–1413

    Article  PubMed  CAS  Google Scholar 

  25. Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, Vaziri ND (2006) Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in dietinduced metabolic syndrome. Metabolism 55:928–934

    Article  PubMed  CAS  Google Scholar 

  26. Iyer A, Fairlie DP, Prins JB, Hammock BD, Brown L (2010) Inflammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol 6:71–82

    Article  PubMed  CAS  Google Scholar 

  27. Frisardi V, Solfrizzi V, Seripa D, Capurso C, Santamato A, Sancarlo D, Vendemiale G, Pilotto A, Panza F (2010) Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res Rev 9:399–417

    Article  PubMed  Google Scholar 

  28. Oxenkrug GF (2010) Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan-kynurenine metabolism. Ann N Y Acad Sci 1199:1–14

    Article  PubMed  CAS  Google Scholar 

  29. Luchsinger JA, Gustafson DR (2009) Adiposity, type 2 diabetes, and Alzheimer’s disease. J Alzheimers Dis 16:693–704

    PubMed  Google Scholar 

  30. Frisardi V, Solfrizzi V, Capurso C, Imbimbo BP, Vendemiale G, Seripa D, Pilotto A, Panza F (2010) Is insulin resistant brain state a central feature of the metabolic-cognitive syndrome? J Alzheimers Dis 21:57–63

    PubMed  CAS  Google Scholar 

  31. Delzenne NM, Cani PD, Neyrinck AM (2007) Modulation of glucagon-like peptide1 and energy metabolism by inulin and oligofructose: experimental data. J Nutr 137(11 Suppl):2547S–2551S

    PubMed  CAS  Google Scholar 

  32. Burcelin R, Cani PD, Knauf C (2007) Glucagon-like peptide-1 and energy homeostasis. J Nutr 137(11 Suppl):2534S–2538S

    PubMed  CAS  Google Scholar 

  33. Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116:337–350

    Article  PubMed  CAS  Google Scholar 

  34. Seeley RJ, York DA (2005) Fuel sensing and the central nervous system (CNS): implications for the regulation of energy balance and the treatment for obesity. Obes Rev 6:259–265

    Article  PubMed  CAS  Google Scholar 

  35. Strader AD, Woods SC (2005) Gastrointestinal hormones and food intake. Gastroenterology 128(1):175–191

    Article  PubMed  CAS  Google Scholar 

  36. Perez-Tilve D, Stern JE, Tschöp M (2006) The brain and the metabolic syndrome: not a wireless connection. Endocrinology 147:1136–1139

    Article  PubMed  CAS  Google Scholar 

  37. Zsombok A, Smith BN (2009) Plasticity of central autonomic neural circuits in diabetes. Biochim Biophys Acta 1792:423–431

    PubMed  CAS  Google Scholar 

  38. Pocai A, Obici S, Schwartz GJ, Rossetti L (2005) A brain-liver circuit regulates glucose homeostasis. Cell Metab 1:53–61

    Article  PubMed  CAS  Google Scholar 

  39. Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ (2005) Melanocortin- 4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 289:R1467–R1476

    Article  PubMed  CAS  Google Scholar 

  40. Penicaud L, Leloup C, Fioramonti X, Lorsignol A, Benani A (2006) Brain glucose sensing: a subtle mechanism. Curr Opin Clin Nutr Metab Care 9:458–462

    Article  PubMed  CAS  Google Scholar 

  41. Lam TK, Schwartz GJ, Rossetti L (2005) Hypothalamic sensing of fatty acids. Nat Neurosci 8(5):579–584

    Article  PubMed  CAS  Google Scholar 

  42. Niijima A (1985) Blood glucose levels modulate efferent activity in the vagal supply to the rat liver. J Physiol 364:105–112

    PubMed  CAS  Google Scholar 

  43. Shimazu T, Fukuda A, Ban T (1966) Reciprocal influences of the ventromedial and lateral hypothalamic nuclei on blood glucose level and liver glycogen content. Nature 210:1178–1179

    Article  PubMed  CAS  Google Scholar 

  44. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, Aguilar-Bryan L, Rossetti L (2005) Hypothalamic K(ATP) channels control hepatic glucose production. Nature 434:1026–1031

    Article  PubMed  CAS  Google Scholar 

  45. Hill JM, Lesniak MA, Pert CB, Roth J (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17:1127–1138

    Article  PubMed  CAS  Google Scholar 

  46. de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes—evidence reviewed. J Diabetes Sci Technol 2:1101–1113

    Google Scholar 

  47. Freude S, Leeser U, Muller M, Hettich MM, Udelhoven M, Schilbach K, Tobe K, Kadowaki T, Kohler C, Schroder H, Krone W, Bruning JC, Schubert M (2008) IRS-2 branch of IGF-1 receptor signaling is essential for appropriate timing of myelination. J Neurochem 107:907–917

    PubMed  CAS  Google Scholar 

  48. D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G (1996) The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 13:227–255

    Article  PubMed  Google Scholar 

  49. Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr Opin Cell Biol 17(2):158–166

    Article  PubMed  CAS  Google Scholar 

  50. Rui L (2007) A link between protein translation and body weight. J Clin Invest 117:310–313

    Article  PubMed  CAS  Google Scholar 

  51. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    Article  PubMed  CAS  Google Scholar 

  52. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N, Leibowitz G (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57:945–957

    Article  PubMed  CAS  Google Scholar 

  53. Baskin DG, Figlewicz Lattermann D, Seeley RJ, Woods SC, Porte D Jr, Schwartz MW (1999) Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res 848:114–123

    Article  PubMed  CAS  Google Scholar 

  54. Hadari YR, Tzahar E, Nadiv O, Rothenberg P, Roberts CT Jr, LeRoith D, Yarden Y, Zick Y (1992) Insulin and insulinomimetic agents induce activation of phosphatidylinositol 3′-kinase upon its association with pp185 (IRS-1) in intact rat livers. J Biol Chem 267:17483–17486

    PubMed  CAS  Google Scholar 

  55. Tartaglia LA (1997) The leptin receptor. J Biol Chem 272:6093–6096

    PubMed  CAS  Google Scholar 

  56. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T (1991) SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674

    Article  PubMed  CAS  Google Scholar 

  57. Davis JF, Choi DL, Benoit SC (2010) Insulin, leptin and reward. Trends Endocrinol Metab 21:68–74

    Article  PubMed  CAS  Google Scholar 

  58. Myers MG Jr (2004) Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res 59:287–304

    Article  PubMed  CAS  Google Scholar 

  59. Xu AW, Kaelin CB, Takeda K, Akira S, Schwartz MW, Barsh GS (2005) PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest 115:951–958

    PubMed  CAS  Google Scholar 

  60. Morrison CD, Morton GJ, Niswender KD, Gelling RW, Schwartz MW (2005) Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling. Am J Physiol Endocrinol Metab 289:E1051–E1057

    Article  PubMed  CAS  Google Scholar 

  61. Mirshamsi S, Laidlaw HA, Ning K, Anderson E, Burgess LA, Gray A, Sutherland C, Ashford ML (2004) Leptin and insulin stimulation of signalling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and KATP channel activation. BMC Neurosci 5:54

    Article  PubMed  CAS  Google Scholar 

  62. Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, Kim KS, Kim SW, Kim HS, Park JY, Kim YB, Lee KU (2006) Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci 9:901–906

    Article  PubMed  CAS  Google Scholar 

  63. Morton GJ, Blevins JE, Kim F, Matsen M, Figlewicz DP (2009) The action of leptin in the ventral tegmental area to decrease food intake is dependent on Jak-2 signaling. Am J Physiol Endocrinol Metab 297:E202–E210

    Article  PubMed  CAS  Google Scholar 

  64. Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Book  Google Scholar 

  65. Riccardi G, Giacco R, Rivellese AA (2004) Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 23:447–456

    Article  PubMed  CAS  Google Scholar 

  66. Storlien LH, Kraegen EW, Chisholm DJ, Ford GL, Bruce DG, Pascoe WS (1987) Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237:885–888

    Article  PubMed  CAS  Google Scholar 

  67. Glauser DA, Schlegel W (2007) The emerging role of FOXO transcription factors in pancreatic beta cells. J Endocrinol 193:195–207

    Article  PubMed  CAS  Google Scholar 

  68. Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH 3rd, Wright CV, White MF, Arden KC, Accili D (2002) The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 110:1839–1847

    PubMed  CAS  Google Scholar 

  69. Szanto I, Kahn CR (2000) Selective interaction between leptin and insulin signaling pathways in a hepatic cell line. Proc Natl Acad Sci USA 97:2355–2360

    Article  PubMed  CAS  Google Scholar 

  70. Portois L, Hacquebard M, Malaisse WJ, Carpentier YA (2009) The metabolic syndrome of omega3-depleted rats. III. Brain phospholipids. Int J Mol Med 24:269–278

    PubMed  CAS  Google Scholar 

  71. Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283

    Article  PubMed  CAS  Google Scholar 

  72. Yaqoob P, Shaikh SR (2010) The nutritional and clinical significance of lipid rafts. Curr Opin Clin Nutr Metab Care 13:156–166

    Article  PubMed  CAS  Google Scholar 

  73. Plata-Salaman CR (1991) Insulin in the cerebrospinal fluid. Neurosci Biobehav Rev 15:243–258

    Article  PubMed  CAS  Google Scholar 

  74. Unger J, McNeill TH, Moxley RT, White M, Moss A, Livingston JN (1989) Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 31:143–157

    Article  PubMed  CAS  Google Scholar 

  75. de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61

    PubMed  Google Scholar 

  76. Frisardi V, Panza F, Seripa D, Imbimbo BP, Vendemiale G, Pilotto A, Solfrizzi V (2010) Nutraceutical properties of Mediterranean diet and cognitive decline: possible underlying mechanisms. J Alzheimers Dis 22:715–740

    PubMed  CAS  Google Scholar 

  77. Farooqui AA (2009) Effect of fish oil on human brain. Springer, New York

    Book  Google Scholar 

  78. Urakawa H, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Morioka K, Maruyama N, Kitagawa N, Tanaka T, Hori Y, Nakatani K, Yano Y, Adachi Y (2003) Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88:4673–4676

    Article  PubMed  CAS  Google Scholar 

  79. Haffner SM (2006) The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol 97:3A–11A

    Article  PubMed  CAS  Google Scholar 

  80. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622

    Article  PubMed  CAS  Google Scholar 

  81. Muoio DM, Newgard CB (2006) Obesity-related derangements in metabolic regulation. Annu Rev Biochem 75:367–401

    Article  PubMed  CAS  Google Scholar 

  82. Dimopoulos N, Watson M, Sakamoto K, Hundal HS (2006) Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochem J 399:473–481

    Article  PubMed  CAS  Google Scholar 

  83. Hajduch E, Litherland GJ, Hundal HS (2001) Protein kinase B: a key regulator of glucose transport? FEBS Lett 492:199–203

    Article  PubMed  CAS  Google Scholar 

  84. Merrill AH Jr (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 277:25843–25846

    Article  PubMed  CAS  Google Scholar 

  85. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 593:167–179

    Article  CAS  Google Scholar 

  86. Opara EC, Garfinkel M, Hubbard VS, Burch WM, Akwari OE (1994) Effect of fatty acids on insulin release: role of chain length and degree of unsaturation. Am J Physiol 266(4 Pt 1):E635–E639

    PubMed  CAS  Google Scholar 

  87. Salmeron J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC (2001) Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr 73:1019–1026

    PubMed  CAS  Google Scholar 

  88. Fedor D, Kelley DS (2009) Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 12:138–146

    Article  PubMed  CAS  Google Scholar 

  89. Pérez-Matute P, Marti A, Martínez JA, Fernández-Otero MP, Stanhope KL, Havel PJ, Moreno-Aliaga MJ (2005) Eicosapentaenoic fatty acid increases leptin secretion from primary cultured rat adipocytes: role of glucose metabolism. Am J Physiol Regul Integr Comp Physiol 288:R1682–R1688

    Article  PubMed  CAS  Google Scholar 

  90. Kalupahana NS, Claycombe K, Newman SJ, Stewart T, Siriwardhana N, Matthan N, Lichtenstein AH, Moustaid-Moussa N (2010) Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J Nutr 140:1915–1922

    Article  PubMed  CAS  Google Scholar 

  91. Kraveka JM, Li L, Szulc ZM, Bielawski J, Ogretmen B, Hannun YA, Obeid LM, Bielawska A (2007) Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J Biol Chem 282:16718–16728

    Article  PubMed  CAS  Google Scholar 

  92. Hu W, Ross JS, Geng T, Brice SE, Cowart LA (2011) Differential regulation of dihydroceramide desaturase by palmitate vs. monounsaturated fatty acids: implications to insulin resistance. J Biol Chem 285:35792–35802

    Google Scholar 

  93. Shmueli E, Alberti KG, Record CO (1993) Diacylglycerol/ protein kinase C signalling: a mechanism for insulin resistance? J Intern Med 234:397–400

    Article  PubMed  CAS  Google Scholar 

  94. Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011

    Article  PubMed  CAS  Google Scholar 

  95. Montell E, Turini M, Marotta M, Roberts M, Noé V, Ciudad CJ, Macé K, Gómez-Foix AM (2001) DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. Am J Physiol Endocrinol Metab 280:E229–E237

    PubMed  CAS  Google Scholar 

  96. Dobbins RL, Szczepaniak LS, Bentley B, Esser V, Myhill J, McGarry JD (2001) Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes 50:123–130

    Article  PubMed  CAS  Google Scholar 

  97. Schmitz-Peiffer C (2010) Targeting ceramide synthesis to reverse insulin resistance. Diabetes 59:2351–2353

    Article  PubMed  CAS  Google Scholar 

  98. Tada N (2004) Physiological actions of diacylglycerol outcome. Curr Opin Clin Nutr Metab Care 7:145–149

    Article  PubMed  CAS  Google Scholar 

  99. Fujii A, Allen TJ, Nestel PJ (2007) A 1, 3-diacylglycerol-rich oil induces less atherosclerosis and lowers plasma cholesterol in diabetic apoE-deficient mice. Atherosclerosis 193:55–61

    Article  PubMed  CAS  Google Scholar 

  100. Meguro S, Osaki N, Matsuo N, Tokimitsu I (2006) Effect of diacylglycerol on the development of impaired glucose tolerance in sucrose-fed rats. Lipids 41:347–355

    Article  PubMed  CAS  Google Scholar 

  101. Murase T, Aoki M, Wakisaka T, Hase T, Tokimitsu I (2002) Anti-obesity effect of dietary diacylglycerol in C57BL/6J mice: dietary diacylglycerol stimulates intestinal lipid metabolism. J Lipid Res 43:1312–1319

    PubMed  CAS  Google Scholar 

  102. Yanai H, Tomono Y, Ito K, Furutani N, Yoshida H, Tada N (2007) Diacylglycerol oil for the metabolic syndrome. Nutr J 6:43–45

    Article  PubMed  CAS  Google Scholar 

  103. Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29:381–402

    Article  PubMed  CAS  Google Scholar 

  104. Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20:1010–1018

    Article  PubMed  CAS  Google Scholar 

  105. Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278:10297–10303

    Article  PubMed  CAS  Google Scholar 

  106. Summers SA (2006) Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 45:42–72

    Article  PubMed  CAS  Google Scholar 

  107. Gorska M, Dobrzyn A, Zendzian-Piotrowska M, Gorski J (2004) Effect of streptozotocin-diabetes on the functioning of the sphingomyelin-signalling pathway in skeletal muscles of the rat. Horm Metab Res 36:14–21

    Article  PubMed  CAS  Google Scholar 

  108. Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31

    Article  PubMed  CAS  Google Scholar 

  109. Powell DJ, Hajduch E, Kular G, Hundal HS (2003) Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol 23:7794–7808

    Article  PubMed  CAS  Google Scholar 

  110. Summers SA, Garza LA, Zhou H, Birnbaum MJ (1998) Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 18:5457–5464

    PubMed  CAS  Google Scholar 

  111. Resjo S, Goransson O, Harndahl L, Zolnierowicz S, Manganiello V, Degerman E (2002) Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal 14:231–238

    Article  PubMed  CAS  Google Scholar 

  112. Di Marzo V, Petrosino S (2007) Endocannabinoids and the regulation of their levels in health and disease. Curr Opin Lipidol 18:129–140

    Article  PubMed  CAS  Google Scholar 

  113. González S, Cascio MG, Fernández-Ruiz J, Fezza F, Di Marzo V, Ramos JA (2002) Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res 954:73–81

    Article  PubMed  Google Scholar 

  114. Zhang M, Martin BR, PhD AdlerMW, Razdan RK, Ganea D, Tuma RF (2008) Modulation of the balance between cannabinoid CB(1) and CB(2) receptor activation during cerebral ischemic/reperfusion injury. Neuroscience 152:753–760

    Article  PubMed  CAS  Google Scholar 

  115. Zhao Y, Yuan Z, Liu Y, Xue J, Tian Y, Liu W, Zhang W, Shen Y, Xu W, Liang X, Chen T (2010) Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules. J Cardiovasc Pharmacol 55:292–298

    Article  PubMed  CAS  Google Scholar 

  116. Di Marzo V (2008) The endocannabinoid system in obesity and type 2 diabetes. Diabetologia 51:1356–1367

    Article  PubMed  CAS  Google Scholar 

  117. Nogueiras R, Rohner-Jeanrenaud F, Woods SC, Tschöp MH (2008) The endocannabinoid system and the control of glucose homeostasis. J Neuroendocrinol 20(Suppl 1):147–151

    Article  PubMed  CAS  Google Scholar 

  118. Micale V, Mazzola C, Drago F (2007) Endocannabinoids and neurodegenerative diseases. Pharmacol Res 56(5):382–392

    Article  PubMed  CAS  Google Scholar 

  119. Mechoulam R, Spatz M, Shohami E (2002) Endocannabinoids and neuroprotection. Sci STKE 129:RE5

    Google Scholar 

  120. Marsicano G, Moosmann B, Hermann H, Lutz B, Behl C (2002) Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J Neurochem 80:448–456

    Article  PubMed  CAS  Google Scholar 

  121. Fernández-Ruiz J (2009) The endocannabinoid system as a target for the treatment of motor dysfunction. Br J Pharmacol 156:1029–1040

    Article  PubMed  CAS  Google Scholar 

  122. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutiérrez SO, van der Stelt M, López-Rodriguez ML, Casanova E, Schütz G, Zieglgänsberger W, Di Marzo V, Behl C, Lutz B (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84–88

    Article  PubMed  CAS  Google Scholar 

  123. Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN (2005) Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95:437–445

    Article  PubMed  CAS  Google Scholar 

  124. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  125. Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP (1997) A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J Neurochem 68:255–264

    Article  PubMed  CAS  Google Scholar 

  126. Keller JN, Mattson MP (1998) Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci 9:105–116

    Article  PubMed  CAS  Google Scholar 

  127. Kadoya A, Miyake H, Ohyashiki T (2003) Contribution of lipid dynamics on the inhibition of bovine brain synaptosomal Na+-K+-ATPase activity induced by 4-hydroxy-2-nonenal. Biol Pharm Bull 26:787–793

    Article  PubMed  CAS  Google Scholar 

  128. McConkey DJ (1996) The role of calcium in the regulation of apoptosis. Scanning Microsc 10:777–793

    PubMed  CAS  Google Scholar 

  129. Xu B, Chen S, Luo Y, Chen Z, Liu L, Zhou H, Chen W, Shen T, Han X, Chen L, Huang S (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network PLoS One. 6:e19052

  130. Keller JN, Mark RJ, Bruce AJ, Blanc E, Rothstein JD, Uchida K, Wäg G, Mattson MP (1997) 4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80:685–696

    Article  PubMed  CAS  Google Scholar 

  131. Vincent HK, Powers SK, Dirks AJ, Scarpace PJ (2001) Mechanism for obesity-induced increase in myocardial lipid peroxidation. Int J Obes Relat Metab Disord 25:378–388

    Article  PubMed  CAS  Google Scholar 

  132. Russell AP, Gastaldi G, Bobbioni-Harsch E, Arboit P, Gobelet C, Dériaz O, Golay A, Witztum JL, Giacobino JP (2003) Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs. bad lipids? FEBS Lett 551:104–106

    Article  PubMed  CAS  Google Scholar 

  133. Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH, Dixit VD, Pearson M, Nassar M, Telljohann R, Maudsley S, Carlson O, John S, Laub DR, Mattson MP (2007) Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med 42:665–674

    Article  PubMed  CAS  Google Scholar 

  134. Grimsrud PA, Picklo MJ Sr, Griffin TJ, Bernlohr DA (2007) Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol Cell Proteomics 6:624–637

    Article  PubMed  CAS  Google Scholar 

  135. Zarrouki B, Soares AF, Guichardant M, Lagarde M, Géloën A (2007) The lipid peroxidation end-product 4-HNE induces COX-2 expression through p38MAPK activation in 3T3-L1 adipose cell. FEBS Lett 581:2394–2400

    Article  PubMed  CAS  Google Scholar 

  136. Mattson MP (2009) Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol 44:625–633

    Article  PubMed  CAS  Google Scholar 

  137. Singh SP, Niemczyk M, Saini D, Awasthi YC, Zimniak L, Zimniak P (2008) Role of the electrophilic lipid peroxidation product 4-hydroxynonenal in the development and maintenance of obesity in mice. Biochemistry 47:3900–3911

    Article  PubMed  CAS  Google Scholar 

  138. Devaraj S, Wang-Polagruto J, Polagruto J, Keen CL, Jialal I (2008) High-fat, energy-dense, fast-food-style breakfast results in an increase in oxidative stress in metabolic syndrome. Metabolism 57:867–870

    Article  PubMed  CAS  Google Scholar 

  139. Murakami H, Tamasawa N, Matsui J, Yamato K, JingZhi G, Suda T (2001) Plasma levels of soluble vascular adhesion molecule-1 and cholesterol oxidation product in type 2 diabetic patients with nephropathy. J Atheroscler Thromb 8:21–24

    PubMed  CAS  Google Scholar 

  140. Krook A (2006) Can the liver X receptor work its magic in skeletal muscle too? Diabetologia 49:819–821

    Article  PubMed  CAS  Google Scholar 

  141. Knopp RH, Paramsothy P (2006) Oxidized LDL and abdominal obesity: a key to understanding the metabolic syndrome. Am J Clin Nutr 83:1–2

    PubMed  CAS  Google Scholar 

  142. Ivanova PT, Milne SB, Forrester JS, Brown HA (2004) LIPID arrays: new tools in the understanding of membrane dynamics and lipid signaling. Mol Interv 4:86–96

    Article  PubMed  CAS  Google Scholar 

  143. Prineas RJ, Folsom AR, Kaye SA (1993) Central adiposity and increased risk of coronary artery disease mortality in older women. Ann Epidemiol 3:35–41

    Article  PubMed  CAS  Google Scholar 

  144. Kip KE, Morroguin OC, Kelley DE, Johnson BP, Kelsey SF, Shaw LJ, Rogers WJ, Reis SE (2004) Clinical importance of obesity versus the metabolic syndrome in cardiovascular risk in women: a report from the Women’s Ischemia Syndrome Evaluation (WISE) study. Circulation 109:706–713

    Article  PubMed  Google Scholar 

  145. Chien KL, Hsu HC, Sung FC, Su TC, Chen MF, Lee YT (2007) Metabolic syndrome as a risk factor for coronary heart disease and stroke: an 11-year prospective cohort in Taiwan community. Atherosclerosis 194:214–221

    Article  PubMed  CAS  Google Scholar 

  146. Gazdzinski S, Kornak J, Weiner MW, Meyerhoff DJ (2008) Body mass index and magnetic resonance markers of brain integrity in adults. Ann Neurol 63:652–657

    Article  PubMed  Google Scholar 

  147. Lusis AJ, Attie AD, Reue K (2008) Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet 9:819–830

    Article  PubMed  CAS  Google Scholar 

  148. Kawamoto R, Tomita H, Oka Y, Kodama A (2005) Metabolic syndrome as a predictor of ischemic stroke in elderly persons. Intern Med 44:922–927

    Article  PubMed  Google Scholar 

  149. Scott CL (2003) Diagnosis, prevention, and intervention for the metabolic syndrome. Am J Cardiol 92:35i–42i

    Article  PubMed  Google Scholar 

  150. McNeill A, Rosamond W, Girman C, Golden S, Schmidt MI, East H, Ballantyne C, Heiss G (2005) The metabolic syndrome and 11-year risk of incident cardiovascular disease in the Atherosclerosis Risk in Communities Study. Diabetes Care 28:385–390

    Article  PubMed  Google Scholar 

  151. Wannamethee SG, Shaper AG, Lennon L, Morris RW (2005) Metabolic syndrome vs Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med 165:2644–2650

    Article  PubMed  Google Scholar 

  152. Boden-Albala B, Sacco RL, Lee HS, Grahame-Clarke C, Rundek T, Elkind MV, Wright C, Giardina EG, DiTullio MR, Homma S, Paik MC (2008) Metabolic syndrome and ischemic stroke risk: Northern Manhattan Study. Stroke 39:30–35

    Article  PubMed  Google Scholar 

  153. Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Book  Google Scholar 

  154. Maejima K, Nakano S, Himeno M, Tsuda S, Makiishi H, Ito T, Nakagawa A, Kigoshi T, Ishibashi T, Nishio M, Uchida K (2001) Increased basal levels of plasma nitric oxide in type 2 diabetic subjects: relationship to microvascular complications. J Diabetes Complications 15:135–143

    Article  PubMed  CAS  Google Scholar 

  155. Cosentino F, Rubattu S, Savoia C, Venturelli V, Pagannonne E, Volpe M (2001) Endothelial dysfunction and stroke. J Cardiovasc Pharmacol 38(Suppl 2):S75–S78

    Article  PubMed  CAS  Google Scholar 

  156. Nazir FS, Alem M, Small M, Connell JM, Lees KR, Walters MR, Cleland SJ (2006) Blunted response to systemic nitric oxide synthase inhibition in the cerebral circulation of patients with type 2 diabetes. Diabet Med 23:398–402

    Article  PubMed  CAS  Google Scholar 

  157. Aoki I, Shimoyama K, Aoki N, Homori M, Yanagisawa A, Nakahara K, Kawai Y, Kitamura SI, Ishikawa K (1996) Platelet-dependent thrombin generation in patients with diabetes mellitus: effects of glycemic control on coagulability in diabetes. J Am Coll Cardiol 27:560–566

    Article  PubMed  CAS  Google Scholar 

  158. Davi G, Gennaro F, Spatola A, Catalano I, Averna M, Montalto G, Amato S, Notarbartolo A (1992) Thrombin-antithrombin III complexes in type II diabetes mellitus. J Diabetes Complicat 6:7–11

    Article  PubMed  CAS  Google Scholar 

  159. Romano M, Guagnano MT, Pacini G, Vigneri S, Falco A, Marinopiccoli M, Manigrasso MR, Basili S, Davi G (2003) Association of inflammation markers with impaired insulin sensitivity and coagulative activation in obese healthy women. J Clin Endocrinol Metab 88:5321–5326

    Article  PubMed  CAS  Google Scholar 

  160. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Chambless LE, Myerson M, Wu KK, Sharrett AR, Boerwinkle E (2005) Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Arch Intern Med 165:2479–2484

    Article  PubMed  CAS  Google Scholar 

  161. Engstrom G, Stavenow L, Hedblad B, Lind P, Eriksson KF, Janzon L, Lindgarde F (2003) Inflammation-sensitive plasma proteins, diabetes, and mortality and incidence of myocardial infarction and stroke: a population-based study. Diabetes 52:442–447

    Article  PubMed  CAS  Google Scholar 

  162. Trovati M, Mularoni EM, Burzacca S, Ponziani MC, Massucco P, Mattiello L, Piretto V, Cavalot F, Anfossi G (1995) Impaired insulin-induced platelet antiaggregating effect in obesity and in obese NIDDM patients. Diabetes 44:1318–1322

    Article  PubMed  CAS  Google Scholar 

  163. Wagenknecht LE, D’Agostino R Jr, Savage PJ, O’Leary DH, Saad MF, Haffner SM (1997) Duration of diabetes and carotid wall thickness: the Insulin Resistance Atherosclerosis Study (IRAS). Stroke 28:999–1005

    Article  PubMed  CAS  Google Scholar 

  164. Biessels GJ, Kappelle LJ (2005) Increased risk of Alzheimer’s disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans 33:1041–1044

    Article  PubMed  CAS  Google Scholar 

  165. Luchsinger JA, Tang MX, Shea S, Mayeux R (2004) Hyperinsulinemia and risk of Alzheimer disease. Neurology 63:1187–1192

    PubMed  Google Scholar 

  166. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of betaamyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21:2561–2570

    PubMed  CAS  Google Scholar 

  167. Perez A, Morell L, Cresto JC, Castano EM (2000) Degradation of soluble amyloid beta-peptides 1–40, 1–42, and the Dutch variant 1–40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem Res 25:247–255

    Article  PubMed  CAS  Google Scholar 

  168. Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, Santoro G, Davit A, Danni O, Smith MA, Perry G, Tabaton M (2005) Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 92:628–636

    Article  PubMed  CAS  Google Scholar 

  169. Sun MK, Alkon DL (2006) Links between Alzheimer’s disease and diabetes. Drugs Today (Barc) 42:481–489

    Article  CAS  Google Scholar 

  170. Grossman H (2003) Does diabetes protect or provoke Alzheimer’s disease? Insights into the pathobiology and future treatment of Alzheimer’s disease. CNS Spectr 8:815–823

    PubMed  Google Scholar 

  171. Craft S, Reger MA, Baker LD (2006) Insulin resistance in Alzheimer’s disease—a novel therapeutic target. Alzheimer’s disease and related disorders Annual 5. Taylor and Francis, London, pp 111–133

    Google Scholar 

  172. Revill P, Moral M, Prous JR (2006) Impaired insulin signaling and the pathogenesis of Alzheimer’s disease. Drug Today 42:785–790

    Article  CAS  Google Scholar 

  173. Whitmer RA (2007) Type 2 diabetes and risk of cognitive impairment and dementia. Curr Neurol Neurosci Rep 7:373–380

    Article  PubMed  CAS  Google Scholar 

  174. van Reedt Dortland AK, Giltay EJ, van Veen T, Zitman FG, Penninx BW (2010) Metabolic syndrome abnormalities are associated with severity of anxiety and depression and with tricyclic antidepressant use. Acta Psychiatr Scand 122:30–39

    Article  PubMed  CAS  Google Scholar 

  175. McIntyre RS, Park KY, Law CW, Sultan F, Adams A, Lourenco MT, Lo AK, Soczynska JK, Woldeyohannes H, Alsuwaidan M, Yoon J, Kennedy SH (2010) The association between conventional antidepressants and the metabolic syndrome: a review of the evidence and clinical implications. CNS Drugs 24:741–753

    Article  PubMed  Google Scholar 

  176. Wurtman RJ (2005) Genes, stress, and depression. Metabolism 54(5 Suppl 1):16–19

    Article  PubMed  CAS  Google Scholar 

  177. Brummett BH, Boyle SH, Siegler IC, Kuhn CM, Ashley-Koch A, Jonassaint CR, Züchner S, Collins A, Williams RB (2008) Effects of environmental stress and gender on associations among symptoms of depression and the serotonin transporter gene linked polymorphic region (5-HTTLPR). Behav Genet 38:34–43

    Article  PubMed  Google Scholar 

  178. Leonard BE, Myint A (2009) The psychoneuroimmunology of depression. Hum Psychopharmacol 24:165–175

    PubMed  CAS  Google Scholar 

  179. Anisman H (2009) Cascading effects of stressors and inflammatory immune system activation: implications for major depressive disorder. J Psychiatry Neurosci 34:4–20

    PubMed  Google Scholar 

  180. Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4:141–194

    Article  PubMed  CAS  Google Scholar 

  181. Chesik D, Wilczak N, De Keyser J (2008) IGF-1 regulates cAMP levels in astrocytes through a beta2-adrenergic receptor-dependant mechanism. Int J Med Sci 5:240–243

    Article  PubMed  CAS  Google Scholar 

  182. Robertson SD, Matthies HJ, Owens WA, Sathananthan V, Christianson NS, Kennedy JP, Lindsley CW, Daws LC, Galli A (2010) Insulin reveals Akt signaling as a novel regulator of norepinephrine transporter trafficking and norepinephrine homeostasis. J Neurosci 30:11305–11316

    Article  PubMed  CAS  Google Scholar 

  183. Frisardi V, Panza F, Farooqui AA (2011) Late-life depression and Alzheimer’s disease: the glutamatergic system inside of this mirror relationship. Brain Res Rev 67:344–355

    Article  PubMed  CAS  Google Scholar 

  184. Bardgett ME, McCarthy JJ, Stocker SD (2010) Glutamatergic receptor activation in the rostral ventrolateral medulla mediates the sympathoexcitatory response to hyperinsulinemia. Hypertension 55:284–290

    Article  PubMed  CAS  Google Scholar 

  185. Biancardi VC, Campos RR, Stern JE (2010) Altered balance of gamma-aminobutyric acidergic and glutamatergic afferent inputs in rostral ventrolateral medulla-projecting neurons in the paraventricular nucleus of the hypothalamus of renovascular hypertensive rats. J Comp Neurol 518:567–585

    Article  PubMed  CAS  Google Scholar 

  186. Novgorodtseva TP, Karaman YK, Zhukova NV, Lobanova EG, Antonyuk MV, Kantur TA (2011) Composition of fatty acids in plasma and erythrocytes and eicosanoids level in patients with metabolic syndrome. Lipids Health Dis 10:82

    Article  PubMed  CAS  Google Scholar 

  187. Henkel J, Gärtner D, Dorn C, Hellerbrand C, Schanze N, Elz SR, Püschel GP (2011) Oncostatin M produced in Kupffer cells in response to PGE2: possible contributor to hepatic insulin resistance and steatosis. Lab Invest 91:1107–1117

    Article  PubMed  CAS  Google Scholar 

  188. McLarnon JG, Choi HB, Lue LF, Walker DG, Kim SU (2005) Perturbations in calcium-mediated signal transduction in microglia from Alzheimer’s disease patients. J Neurosci Res 81:426–435

    Article  PubMed  CAS  Google Scholar 

  189. Derbent A, Kargili A, Koca C, Gümüş Iİ, Sevgili S, Simavli S, Karakurt F, Turhan NÖ (2011) Serum platelet-activating factor acetylhydrolase activity: relationship with metabolic syndrome in women with history of gestational diabetes mellitus. Gynecol Endocrinol 27:128–133

    Article  PubMed  CAS  Google Scholar 

  190. Holland WL, Knotts TA, Chavez JA, Wang LP, Hoehn KL, Summers SA (2007) Lipid mediators of insulin resistance. Nutr Rev 65:S39–S46

    Article  PubMed  Google Scholar 

  191. Alkazemi D, Egeland G, Vaya J, Meltzer S, Kubow S (2008) Oxysterol as a marker of atherogenic dyslipidemia in adolescence. J Clin Endocrinol Metab 93:4282–4289

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooqui, A.A., Farooqui, T., Panza, F. et al. Metabolic syndrome as a risk factor for neurological disorders. Cell. Mol. Life Sci. 69, 741–762 (2012). https://doi.org/10.1007/s00018-011-0840-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0840-1

Keywords

Navigation