Skip to main content
Log in

Effect of diacylglycerol on the development of impaired glucose tolerance in sucrose-fed rats

  • Articles
  • Published:
Lipids

Abstract

The effects of DAG oil and TAG oil on impaired glucose tolerance in rats that were fed a diet containing high levels of sucrose were compared. Male Wistar rats (8 wk old and 32 wk old) were fed either high-sucrose (57.5% sucrose w/w) or control diets containing either 10% (w/w) DAG or TAG oil with a similar FA composition for 48 wk in 8-wk-old rats and for 24 wk in 32-wk-old rats. Plasma lipids, the size of the islets of Langerhans, and insulin, glucose, and adipocytokine levels were measured. An oral glucose tolerance test (OGTT) was carried out during the study period. For rats in both age groups that were fed a high-sucrose diet, the DAG oil group had lower plasma glucose and insulin response in an OGTT, and lower homeostasis model assessment-R levels, than the TAG oil group. Furthermore, in 8-wk-old rats that were fed a high-sucrose diet, the DAG oil group accumulated less visceral fat and showed decreases of plasma adiponectin and suppressed increases of plasma insulin, leptin, and the size of islet of Langerhans compared with the TAG oil group. No difference in the OGTT was found between the DAG and TAG oil groups in either age group of rats fed a control diet. In conclusion, these results suggest that DAG oil ingestion prevents the high-sucrose-diet-induced development of impaired glucose tolerance compared with TAG oil ingestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EIA:

enzyme-linked immunosorbent assay

HbA1c :

glycohemoglobin A1c

HOMA-R:

homeostasis model assessment-R

NEFA:

nonesterified FA

OGTT:

oral glucose tolerance test

OLETF:

Otsuka Long-Evans Tokushima Fatty

SD:

Sprague-Dawley

References

  1. Klein, S., Sheard, N.F., Pi-Sunyer, X., Daly, A., Wylie-Rosett, J., Kulkarni, K., and Clark, N.G. (2004) Weight Management Through Lifestyle Modification for the Prevention and Management of Type 2 Diabetes: Rationale and Strategies. A Statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition, Am. J. Clin. Nutr. 80, 257–263.

    PubMed  CAS  Google Scholar 

  2. Younis, N., Soran, H., and Farook, S. (2004) The Prevention of Type 2 Diabetes Mellitus: Recent Advances, QJM, 97, 451–455.

    Article  PubMed  CAS  Google Scholar 

  3. Hartz, A.J., Rupley, D.C., Jr., Kalkhoff, R.D., and Rimm, A.A. (1983) Relationship of Obesity to Diabetes: Influence of Obesity Level and Body Fat Distribution, Prev. Med. 12, 351–357.

    Article  PubMed  CAS  Google Scholar 

  4. Tada, N., and Yoshida, H. (2003) Diacylglycerol on Lipid Metabolism, Curr. Opin. Lipidol. 14, 29–33.

    Article  PubMed  CAS  Google Scholar 

  5. Tada, N. (2004) Physiological Actions of Diacylglycerol Outcome, Curr. Opin. Clin. Nutr. Metab. Care 7, 145–149.

    Article  PubMed  CAS  Google Scholar 

  6. Taguchi, H., Nagao, T., Watanabe, H., Onizawa, K., Matsuo, N., Tokimitsu, I., and Itakura, H. (2001) Energy Value and Digestibility of Dietary Oil Containing Mainly 1,3-Diacylglycerol Are Similar to Those of Triacylglycerol, Lipids 36, 379–382.

    Article  PubMed  CAS  Google Scholar 

  7. Nagao, T., Watanabe, H., Goto, N., Onizawa, K., Taguchi, H., Matsuo, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men in a Double-Blind Controlled Trial, J. Nutr. 130, 792–797.

    PubMed  CAS  Google Scholar 

  8. Maki, K.C., Davidson, M.H., Tsushima, R., Matsuo, N., Tokimitsu, I., Umporowicz, D.M., Dicklin, M.R., Foster, G.S., Ingram, K.A., Anderson, B.D., Frost, S.D., and Bell, M. (2002) Consumption of Diacylglycerol Oil as Part of a Reduced-Energy Diet Enhances Loss of Body Weight and Fat in Comparison with Consumption of a Triacylglycerol Control Oil, Am. J. Clin. Nutr. 76, 1230–1236.

    PubMed  CAS  Google Scholar 

  9. Murase, T., Mizuno, T., Omachi, T., Onizawa, K., Komine, Y., Kondo, H., Hase, T., and Tokimitsu, I. (2001) Dietary Diacylglycerol Suppresses High Fat and High Sucrose Diet-Induced Body Fat Accumulation in C57BL/6J Mice, J. Lipid Res. 42, 372–378.

    PubMed  CAS  Google Scholar 

  10. Murase, T., Aoki, M., Wakisaka, T., Hase, T., and Tokimitsu, I. (2002) Anti-obesity Effect of Dietary Diacylglycerol in C57BL/6J Mice: Dietary Diacylglycerol Stimulates Intestinal Lipid Metabolism, J. Lipid Res. 43, 1312–1319.

    PubMed  CAS  Google Scholar 

  11. Meng, X., Zou, D., Shi, Z., Duan, Z., and Mao, Z. (2004) Dietary Diacylglycerol Prevents High-Fat Diet-Induced Lipid Accumulation in Rat Liver and Abdominal Adipose Tissue, Lipids 39, 37–41.

    Article  PubMed  CAS  Google Scholar 

  12. Kondo, H., Hase, T., Murase, T., and Tokimitsu, I. (2003) Digestion and Assimilation Features of Dietary DAG in the Rat Small Intestine, Lipids 38, 25–30.

    Article  PubMed  CAS  Google Scholar 

  13. Watanabe, H., Onizawa, K., Taguchi, H., Kobori, M., Chiba, H., Naito, S., Matsuo, N., Yasukawa, T., Hattori, M., and Shimasaki, H. (1997) Nutritional Characterization of Diacylglycerols in Rats, J. Jpn. Oil Chem. Soc. 46, 301–307.

    CAS  Google Scholar 

  14. Murata, M., Ide, T., and Hara, K. (1994) Alteration by Diacylglycerol of the Transport and Fatty Acid Composition of Lymph Chylomicron in Rats, Biosci. Biotech. Biochem. 58, 1416–1419.

    Article  Google Scholar 

  15. Taguchi, H., Watanabe, H., Onizawa, K., Nagao, T., Gotoh, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Double-Blind Controlled Study on the Effects of Diacylglycerol on Postprandial Serum and Chylomicron Triacylglycerol Responses in Healthy Humans, J. Am. Coll. Nutr. 19, 789–796.

    PubMed  CAS  Google Scholar 

  16. Tada, N., Watanabe, H., Matsuo, N., Tokimitsu, I., and Okazaki, M. (2001) Dynamics of Postprandial Remmant-Lipoprotein Particles in Serum After Loading of Diacylglycerols. Clin. Chem. Acta 311, 109–117.

    Article  CAS  Google Scholar 

  17. Yamamoto, K., Asakawa, H., Tokunaga, K., Watanabe, H., Matsuo, N., Tokimitsu, I., and Yagi, N. (2001) Long-Term Ingestion of Dietary Diacylglycerol Lowers Serum Triacylglycerol in Type II Diabetic Patients with Hypertriglyceridemia, J. Nutr. 131, 3204–3207.

    PubMed  CAS  Google Scholar 

  18. Mori, Y., Nakagiri, H., Kondo, H., Murase, T., Tokimitsu, I., and Tajima, N. (2005) Dietary Diacylglycerol Reduces Postprandial Hyperlipidemia and Ameliorates Glucose Intolerance in Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Nutrition 21, 933–939.

    PubMed  CAS  Google Scholar 

  19. Toida, S., Takahashi, M., Shimizu, H., Sato, N., Shimomura, Y., and Kobayashi, I. (1996) Effect of High Sucrose Feeding on Fat Accumulation in the Male Wistar Rat, Obes. Res. 4, 561–568.

    PubMed  CAS  Google Scholar 

  20. Nara, M., Takahashi, M., Kanda, T., Shimomura, Y., and Kobayashi, I. (1997) Running Exercise Improves Metabolic Abnormalities and Fat Accumulation in Sucrose-Induced Insulin-Resistant Rats, Obes. Res. 5, 348–353.

    PubMed  CAS  Google Scholar 

  21. Chicco, A., D'Alessandro, M.E., Karabatas, L., Pastorale, C., Basabe, J.C., and Lombardo, Y.B. (2003) Muscle Lipid Metabolism and Insulin Secretion Are Altered in Insulin-Resistant Rats Fed a High Sucrose Diet, J. Nutr. 133, 127–133.

    PubMed  CAS  Google Scholar 

  22. Soria, A., D'Alessandro, M.E., and Lombardo, Y.B. (2001) Duration of Feeding on a Sucrose-Rich Diet Determines Metabolic and Morphological Changes in Rat Adipocytes, Appl. Physiol. 91, 2109–2116.

    CAS  Google Scholar 

  23. Hallfrisch, J., Lazar, F., Jorgensen, C., and Reiser, S. (1979) Insulin and Glucose Responses in Rats Fed Sucrose or Starch, Am. J. Clin. Nutr. 32, 787–793.

    PubMed  CAS  Google Scholar 

  24. Gutman, R.A., Basilico, M.Z., Bernal, C.A., Chicco, A., and Lombardo, Y.B. (1987) Long-Term Hypertriglyceridemia and Glucose Intolerance in Rats Fed Chronically and Isocaloric Sucrose-Rich Diet, Metabolism 36, 1013–1020.

    Article  PubMed  CAS  Google Scholar 

  25. Lombardo, Y.B., Drago, S., Chicco, A., Fainstein-Day, P., Gutman, R., Gagliardino, J.J., and GomezDumm, C.L. (1996) Long-Term Administration of a Sucrose-Rich Diet to Normal Rats: Relationship Between Metabolic and Hormonal Profiles and Morphological Changes in the Endocrine Pancreas, Metabolism 45, 1527–1532.

    Article  PubMed  CAS  Google Scholar 

  26. Davidson, M.B. (1979) The Effect of Aging on Carbohydrate Metabolism: A Review of the English Literature and a Practical Approach to the Diagnosis of Diabetes Mellitus in the Elderly, Metabolism 28, 688–705.

    Article  PubMed  CAS  Google Scholar 

  27. Rowe, J.W., Minaker, K.L., Pallotta, J.A., and Flier, J.S. (1983) Characterization of the Insulin Resistance of Aging, J. Clin. Invest. 71, 1581–1587.

    PubMed  CAS  Google Scholar 

  28. Huge-Jensen, B., Galluzzo, D.R., and Jensen, R.G. (1988) Studies on Free and Immobilized Lipases from Mucormiehei, J. Am. Oil Chem. Soc. 65, 905–910.

    Article  CAS  Google Scholar 

  29. Gomori, G. (1950) A New Stain for Elastic Tissue, Am. J. Clin. Pathol. 20, 665.

    PubMed  CAS  Google Scholar 

  30. Bjorntorp, P. (1988) Abdominal Obesity and the Development of Noninsulin-Dependent Diabetes Mellitus, Diabetes Metab. Rev. 4, 615–622.

    Article  PubMed  CAS  Google Scholar 

  31. Pedersen, S.B., Borglum, J.D., Schmitz, O., Bak, J.F., Sorensen, N.S., and Richelsen, B. (1993) Abdominal Obesity Is Associated with Insulin Resistance and Reduced Glycogen Synthetase Activity in Skeletal Muscle, Metabolism 42, 998–1005.

    Article  PubMed  CAS  Google Scholar 

  32. Matsuzawa, Y., Shimomura, I., Nakamura, T., Keno, Y., Kotani, K., and Tokunaga, K. (1995) Pathophysiology and Pathogenesis of Visceral Fat Obesity, Obes. Res. 2 (Suppl.), 187S-194S.

    Google Scholar 

  33. Muzumdar, R., Ma, X., Atzmon, G., Vuguin, P., Yang, X., and Barzilai, N. (2004) Decrease in Glucose-Stimulated Insulin Secretion with Aging Is Independent of Insulin Action, Diabetes 53, 441–446.

    PubMed  CAS  Google Scholar 

  34. Iwai, H., Ohno, Y., and Aoki, N. (2003) The Effect of Leptin, Tumor Necrosis Factor-Alpha (TNF-Alpha), and Nitric Oxide (NO) Production on Insulin Resistance in Otsuka Long-Evans Fatty Rats, Endocr. J. 50, 673–680.

    Article  PubMed  CAS  Google Scholar 

  35. Addy, C.L., Gavrila, A., Tsiodras, S., Brodovicz, K., Karchmer, A.W., and Mantzoros, C.S. (2003) Hypoadiponectinemia Is Associated with Insulin Resistance, Hypertriglyceridemia, and Fat Redistribution in Human Immunodeficiency Virus-Infected Patients Treated with Highly Active Antiretroviral Therapy, J. Clin. Endocrinol. Metab. 88, 627–636.

    Article  PubMed  CAS  Google Scholar 

  36. Maehata, E., Yano, M., Shiba, T., Yamakado, M., Inoue, M., and Suzuki, S. (2002) Insulin Resistance Index (HOMA-R Method), Nippon Rinsho 8 (Suppl.), 341–350

    Google Scholar 

  37. Spiegelman, B.M., and Flier, J.S. (1996) Adrpogenesis and Obesity: Rounding Out the Big Picture, Cell 87, 377–389.

    Article  PubMed  CAS  Google Scholar 

  38. Fink, R.I., Kolterman, O.G., Griffin, J., and Olefsky, J.M. (1983) Mechanisms of Insulin Resistance in Aging, J. Clin. Invest. 71, 1523–1535.

    Article  PubMed  CAS  Google Scholar 

  39. Matthaei, S., Benecke, H., Klein, H.H., Hamann, A., Kreymann, G., and Greten, H. (1990) Potential Mechanism of Insulin Resistance in Ageing: Impaired Insulin-Stimulated glucose Transport due to a Depletion of the Intracellular Pool of Glucose Transporters in Fischer Rat Adipocytes, J. Endocrinol. 126, 99–107.

    Article  PubMed  CAS  Google Scholar 

  40. Murata, M., Ide, T., and Hara, K (1997) Reciprocal Responses to Dietary Diacylglycerol of Hepatic Enzymes of Fatty Acid Synthesis and Oxidation in the Rat, Brit. J. Nutr. 77, 107–121.

    Article  PubMed  CAS  Google Scholar 

  41. Hotta, K., Funahashi, T., Bodkin, N.L., Ortmeyer, H.K., Arita, Y., Hansen, B.C., and Matsuzawa, Y. (2001) Circulating Concentrations of the Adipocyte Protein Adiponectin Are Decreased in Parallel with Reduced Insulin Sensitivity During the Progression to Type 2 Diabetes in Rhesus Monkeys, Diabetes 50, 1126–1133.

    PubMed  CAS  Google Scholar 

  42. Lindsay, R.S., Funahashi, T., Hanson, R.L., Matsuzawa, Y., Tanaka, S., Tataranni, P.A., and Knowlwe, W.C. (2002) Adiponectin and Development of Type 2 Diabetes in the Pima Indian Population, Lancet 360, 57–58.

    Article  PubMed  CAS  Google Scholar 

  43. Ryo, M., Nakamura, T., Kihara, S., Kumada, M., Shibazaki, S., Takahashi, M., Nagai, M., and Matsuzawa, Y. (2004) Adiponectin as a Biomarker of the Metabolic Syndrome, Circ. J. 68, 975–981.

    Article  PubMed  CAS  Google Scholar 

  44. Moller, D.E., and Kaufman, K.D. (2005) Metabolic Syndrome: A Clinical and Molecular Perspective, Annu. Rev. Med. 56, 45–62.

    Article  PubMed  CAS  Google Scholar 

  45. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B.B., and Kadowaki, T. (2002) Adiponectin Stimulates Glucose Utilization and Fatty-Acid Oxidation by Activating AMP-Activated Protein Kinase, Nat. Med. 8, 1288–1295.

    Article  PubMed  CAS  Google Scholar 

  46. Havel, P.J. (2004) Update on Adipocyte Hormones: Regulation of Energy Balance and Carbohydrate/Lipid Metabolism, Diabetes 53, S143-S151.

    PubMed  CAS  Google Scholar 

  47. Fruebis, J., Tsao, T.S., Javorschi, S., Ebbets-Reed, D., Erickson, M.R., Yen, F.T., Bihain, B.E., and Lodish, H.F. (2001) Proteolytic Cleavage Product of 30-kDa Adipocyte Complement-Related Protein Increases Fatty Acid Oxidation in Muscle and Causes Weight Loss in Mice, Proc. Natl. Acad. Sci. USA 98, 2005–2010.

    Article  PubMed  CAS  Google Scholar 

  48. Huo, Y., Winters, W.D., and Yao, D.L. (2003) Prevention of Diet-Induced Type 2 Diabetes in the C57BL/6J Mouse Model by an Antidiabetic Herbal Formula, Phytother. Res. 17, 48–55.

    Article  PubMed  Google Scholar 

  49. Ikeda, H., Shino, A., Matsuo, T., Iwatsuka, H., and Suzuoki, Z. (1981) A New Genetically Obese-Hyperglycemic Rat (Wistar Fatty), Diabetes 30, 1045–1050.

    PubMed  CAS  Google Scholar 

  50. Sugimoto, T., Kimura, T., Fukuda, H., and Iritani, N. (2003) Comparisons of Glucose and Lipid Metabolism in Rats Fed Diacylglycerol and Triacylglycerol Oils, J. Nutr. Sci. Vitaminol. (Tokyo) 49, 47–55.

    CAS  Google Scholar 

  51. Sugimoto, T., Fukuda, H., Kimura, T., and Iritani, N. (2003) Dietary Diacylglycerol-Rich Oil Stimulation of Glucose Intolerance in Genetically Obese Rats, J. Nutr. Sci. Vitaminol. (Tokyo) 49, 139–144.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Meguro.

About this article

Cite this article

Meguro, S., Osaki, N., Matsuo, N. et al. Effect of diacylglycerol on the development of impaired glucose tolerance in sucrose-fed rats. Lipids 41, 347–355 (2006). https://doi.org/10.1007/s11745-006-5105-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5105-7

Keywords

Navigation