Skip to main content

Advertisement

Log in

Familial hemophagocytic lymphohistiocytosis: a model for understanding the human machinery of cellular cytotoxicity

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cytotoxic T lymphocytes, natural killer cells, and NKT cells are effector cells able to kill infected cells. In some inherited human disorders, a defect in selected proteins involved in the cellular cytotoxicity mechanism results in specific clinical syndromes, grouped under the name of familial hemophagocytic lymphohistiocytosis. Recent advances in genetic studies of these patients has allowed the identification of different genetic subsets. Additional genetic immune deficiencies may also induce a similar clinical picture. International cooperation and prospective trials resulted in refining the diagnostic and therapeutic approach to these rare diseases with improved outcome but also with improved knowledge of the mechanisms underlying granule-mediated cellular cytotoxicity in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jenkins MR, Griffiths GM (2010) The synapse and cytolytic machinery of cytotoxic T cells. Curr Opin Immunol 22:308–313

    PubMed  CAS  Google Scholar 

  2. Moretta A, Marcenaro E, Parolini S et al (2008) NK cells at the interface between innate and adaptive immunity. Cell Death Differ 15:226–233

    PubMed  CAS  Google Scholar 

  3. Moretta L, Ferlazzo G, Bottino C et al (2006) Effector and regulatory events during natural killer dendritic cell interactions. Immunol Rev 214:219–228

    PubMed  CAS  Google Scholar 

  4. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    PubMed  CAS  Google Scholar 

  5. Moretta L, Locatelli F, Pende D et al (2011) Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood 117:764–771

    PubMed  CAS  Google Scholar 

  6. Trambas CM, Griffiths GM (2003) Delivering the kiss of death. Nat Immunol 4:399–403

    PubMed  CAS  Google Scholar 

  7. de Saint Basile G, Ménasché G, Fischer A (2010) Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol 10:568–579

    PubMed  Google Scholar 

  8. Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952

    PubMed  CAS  Google Scholar 

  9. Trapani JA, Smith MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747

    PubMed  CAS  Google Scholar 

  10. Perez N, Virelizier JL, Arenzana-Seisdedos F et al (1984) Impaired natural killer activity in lymphohistiocytosis syndrome. J Pediatr 104:569–573

    PubMed  CAS  Google Scholar 

  11. Aricò M, Nespoli L, Maccario R et al (1988) Natural cytotoxicity impairment in familial haemophagocytic lymphohistiocytosis. Arch Dis Child 63:292–296

    PubMed  Google Scholar 

  12. Schneider EM, Lorenz I, Muller-Rosenberger M et al (2002) Hemophagocytic lymphohistiocytosis is associated with deficiencies of cellular cytolysis but normal expression of transcripts relevant to killer-cell-induced apoptosis. Blood 100:2891–2898

    PubMed  CAS  Google Scholar 

  13. Ishii E, Ohga S, Imashuku S et al (2005) Review of hemophagocytic lymphohistiocytosis (HLH) in children with focus on Japanese experiences. Crit Rev Oncol Hematol 53:209–223

    PubMed  Google Scholar 

  14. Marcenaro S, Gallo F, Martini S et al (2006) Analysis of natural killer-cell function in familial hemophagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease. Blood 108:2316–2323

    PubMed  CAS  Google Scholar 

  15. Farquhar J, Claireaux A (1952) Familial haemophagocytic reticulosis. Arch Dis Child 27:519–525

    PubMed  CAS  Google Scholar 

  16. Clementi R, Emmi L, Maccario R et al (2002) Adult onset and atypical presentation of hemophagocytic lymphohistiocytosis in siblings carrying PRF1 mutations. Blood 100:2266–2267

    PubMed  CAS  Google Scholar 

  17. Arico M, Janka G, Fischer A et al. (1996) Haemophagocytic lymphohistiocytosis. Report of 122 children from the International Registry. FHL Study Group of the Histiocyte Society. Leukemia 10:197–203

    Google Scholar 

  18. Allen M, De Fusco C, Legrand F et al (2001) Familial hemophagocytic lymphohistiocytosis: how late can the onset be? Haematologica 86:499–503

    PubMed  CAS  Google Scholar 

  19. Cetica V, Pende D, Griffiths GM et al (2010) Molecular basis of familial hemophagocytic lymphohistiocytosis. Haematologica 95:538–541

    PubMed  CAS  Google Scholar 

  20. Ohadi M, Lalloz MRA, Sham P et al (1999) Localization of a gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q21.3-22 by homozygosity mapping. Am J Genet 64:165–171

    CAS  Google Scholar 

  21. Stepp SE, Dufourcq-Lagelouse R, Le Deist F et al (1999) Perforin gene defects in familial hemophagocytic lymphohistiocitosis. Science 286:1957–1959

    PubMed  CAS  Google Scholar 

  22. Jordan MB, Hildeman D, Kappler J et al (2004) An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 140:735–743

    Google Scholar 

  23. Clementi R, zur Stadt U, Savoldi G et al (2001) Six novel mutations in the PRF1 gene in children with haemophagocytic lymphohistiocytosis. J Med Genet 38:643–646

    PubMed  CAS  Google Scholar 

  24. Goransdotter EK, Fadeel B, Nilsson-Ardnor S et al (2001) Spectrum of perforin gene muations in familial hemophagocytic lymphohistiocytosis. Am J Hum Gen 68:590–597

    Google Scholar 

  25. Feldmann J, Le Deist F, Ouachee-Chardin M et al (2002) Functional consequences of perforin gene mutations in 22 patients with familial haemophagocytic lymphohistiocytosis. Br J Haematol 117:956–972

    Google Scholar 

  26. Kogawa K, Lee SM, Villanueva J et al (2002) Perforin expression in cytotoxic lymphocytes. Blood 99:61–66

    PubMed  CAS  Google Scholar 

  27. Suga N, Takada H, Nomura A et al (2002) Perforin defects of primary haemophagocytic lymphohistiocytosis in Japan. Br J Hematol 116:346–349

    CAS  Google Scholar 

  28. Ueda I, Morimoto A, Inaba T et al (2003) Characteristic peforin gene mutations of haemophagocytic lymphohistiocytosis in Japan. Br J Haematol 121:503–510

    PubMed  CAS  Google Scholar 

  29. Molleran Lee S, Villanueva J, Sumegi J et al (2004) Characterisation of diverse PRF1 mutations leading to decreased killer cell activity in North American families with haemophagocytic lymphohistiocytosis. J Med Genet 41:137–144

    PubMed  CAS  Google Scholar 

  30. Trizzino A, zur Stadt U, Ueda I et al (2008) Genoptype-phenotype study of familial haemophagocytic lymphohistiocytosis due to perforin mutations. J Med Genet 45:15–21

    PubMed  CAS  Google Scholar 

  31. zur Stadt U, Kabisch H, Janka G et al (2003) Rapid LightCycler assay for identification of the perforin codon 374 Trp → stop mutation in patients and families with hemophagocytic lymphohistiocytosis (HLH). Med Pediatr Oncol 41:26–29

    PubMed  Google Scholar 

  32. Feldmann J, Callebaut I, Raposo G et al (2003) Munc 13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115:461–473

    PubMed  CAS  Google Scholar 

  33. Menasche G, Pastural E, Feldmann J et al (2000) Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 25:173–176

    PubMed  CAS  Google Scholar 

  34. Nagai K, Yamamoto K, Fujiwara H et al (2010) Subtypes of familial hemophagocytic lymphohistiocytosis in Japan based on genetic, functional analyses of cytotoxic T lymphocytes. PLoS One 5:e14173

    PubMed  CAS  Google Scholar 

  35. Rudd E, Bryceson YT, Zheng C et al (2008) Spectrum, and clinical and functional implications of UNC13D mutations in familial haemophagocytic lymphohistiocytosis. J Med Genet 45:134–141

    PubMed  CAS  Google Scholar 

  36. Santoro A, Cannella S, Bossi G et al (2006) Novel Munc13-4 mutations in children and young adult patients with haemophagocytic lymphohistiocytosis. J Med Genet 43:953–960

    PubMed  CAS  Google Scholar 

  37. Zur Stadt U, Beutel K, Kolberg S et al (2006) Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum Mutat 27:62–68

    PubMed  CAS  Google Scholar 

  38. Sieni E, Cetica V, Santoro A, et al. (2011) Genotype-phenotype study of familial haemophagocytic lymphohistiocytosis type 3. J Med Genet 48:343–352

    Google Scholar 

  39. Santoro A, Cannella S, Trizzino A et al (2008) Mutations affecting mRNA splicing are the most common molecular defect in patients with familial hemophagocytic lymphohistiocytosis type 3. Haematologica 93:1086–1090

    PubMed  CAS  Google Scholar 

  40. Ueda I, Ishii E, Morimoto A et al (2006) Correlation between phenotypic heterogeneity and gene mutational characteristics in familial hemophagocytic lymphohistiocytosis (FHL). Pediatr Blood Cancer 46:482–488

    PubMed  Google Scholar 

  41. Yoon HS, Kim HJ, Yoo KH et al (2010) UNC13D is the predominant causative gene with recurrent splicing mutations in Korean patients with familial hemophagocytic lymphohistiocytosis. Haematologica 95:622–626

    PubMed  CAS  Google Scholar 

  42. zur Stadt U, Schmidt S, Kasper B et al (2005) Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type 4 to chromosome 6q24 and identification of mutation in syntaxin 11. Hum Mol Genet 14:827–834

    PubMed  CAS  Google Scholar 

  43. Bryceson YT, Rudd E, Zheng C et al (2007) Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood 110:1906–1915

    PubMed  CAS  Google Scholar 

  44. Rudd E, Göransdotter EK, Zheng C et al (2006) Spectrum clinical implications of syntaxin 11 gene mutations in familial haemophagocytic lymphohistiocytosis: asociation with disease-free remissions, hematopoietic malignancies. J Med Genet 43:e14

    PubMed  CAS  Google Scholar 

  45. Yamamoto K, Ishii E, Horiuchi H et al (2005) Mutations of syntaxin 11 and SNAP23 genes as causes of familial hemophagocytic lymphohistiocytosis were not found in Japanese people. J Hum Genet 50:600–603

    PubMed  CAS  Google Scholar 

  46. Marsh RA, Satake N, Biroschak J et al (2010) STX11 mutations and clinical phenotypes of familial hemophagocytic lymphohistiocytosis in North America. Pediatr Blood Cancer 55:134–140

    PubMed  Google Scholar 

  47. Horne A, Ramme KG, Rudd E et al (2008) Characterization of PRF1, STX11 and UNC13D genotype-phenotype correlations in familial haemophagocytic lymphohistiocytosis. Br J Haematol 143:75–83

    PubMed  Google Scholar 

  48. zur Stadt U, Rohr J, Seifert W et al (2009) Familial hemophagocytic lymphohistiocyotsis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet 85:482–492

    PubMed  Google Scholar 

  49. Côte M, Ménager MM, Burgess A et al (2009) Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 119:3765–3773

    PubMed  Google Scholar 

  50. Cetica V, Santoro A, Gilmour KC et al (2010) STXBP2 mutations in children with familial haemophagocytic lymphohistiocytosis type 5. J Med Genet 47:595–600

    PubMed  CAS  Google Scholar 

  51. Meeths M, Entesarian M, Al-Herz W et al (2010) Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis type 5 patients with mutations in STXBP2. Blood 116:2635–2643

    PubMed  CAS  Google Scholar 

  52. Henter JI, Horne A, Aricò M et al (2007) HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 48:124–131

    PubMed  Google Scholar 

  53. Beguez-Cesar A (1943) Neutropenia cronica maligna familiar con granulaciones atipicas de los leucocitos. Bol Soc Cubana Pediatr 15:900–922

    Google Scholar 

  54. Chediak MM (1952) New leukocyte anomaly of constitutional and familial character. Rev Hematol 7:362–367

    PubMed  CAS  Google Scholar 

  55. Higashi O (1954) Congenital gigantism of peroxidase granules; the first case ever reported of qualitative abnormality of peroxidase. Tohoku J Exp Med 59:315–332

    PubMed  CAS  Google Scholar 

  56. Griscelli C, Durandy A, Guy-Grand D et al (1978) A syndrome associating partial albinism and immunodeficiency. Am J Med 65:691–702

    PubMed  CAS  Google Scholar 

  57. Introne W, Boissy RE, Gahl WA (1999) Clinical, molecular, and cell biological aspects of Chediak-Higashi syndrome. Mol Genet Metab 68:283–303

    PubMed  CAS  Google Scholar 

  58. McVey Ward D, Shiflett SL, Kaplan J et al (2002) Chediak-Higashi syndrome: a clinical and molecular view of a rare lysosomal storage disorder. Current Mol Med 2:469–477

    Google Scholar 

  59. Kaplan J, De Domenico I, Ward DM (2008) Chediak-Higashi syndrome. Curr Opin Hematol 15:22–29

    PubMed  CAS  Google Scholar 

  60. Barbosa MD, Nguyen QA, Tchernev VT et al (1996) Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature 382:262–265

    PubMed  CAS  Google Scholar 

  61. Nagle DL, Karim MA, Woolf EA et al (1996) Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat Genet 14:307–311

    PubMed  CAS  Google Scholar 

  62. Williams RL, Urbe S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8:355–368

    PubMed  CAS  Google Scholar 

  63. Kwong J, Roundabush FL, Hutton Moore P et al (2000) Hrs interacts with SNAP-25 and regulates Ca2+-dependent exocytosis. J Cell Sci 113:2273–2284

    PubMed  CAS  Google Scholar 

  64. Huizing M, Helip-Wooley A, Westbroek W et al (2008) Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet 9:359–386

    PubMed  CAS  Google Scholar 

  65. Bossi G, Griffiths GM (2005) CTL secretory lysosomes: biogenesis and secretion of a harmful organelle. Semin Immunol 17:87–94

    PubMed  CAS  Google Scholar 

  66. Stinchcombe JC, Page LJ, Griffiths GM (2000) Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak-Higashi syndrome patients. Traffic 1:435–444

    PubMed  CAS  Google Scholar 

  67. Karim MA, Suzuki K, Fukai K et al (2002) Apparent genotype-phenotype correlation in childhood, adolescent, and adult Chediak-Higashi syndrome. Am J Med Genet 108:16–22

    PubMed  Google Scholar 

  68. Hermansky F, Pudlak P (1959) Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: report of two cases with histochemical studies. Blood 14:162–169

    PubMed  CAS  Google Scholar 

  69. Stinchcombe J, Bossi G, Griffiths GM (2004) Linking albinism and immunity: the secrets of secretory lysosomes. Science 305:55–59

    PubMed  CAS  Google Scholar 

  70. Wei ML (2006) Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 19:19–42

    PubMed  CAS  Google Scholar 

  71. Clark RH, Stinchcombe JC, Day A et al (2003) Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat Immunol 4:1111–1120

    PubMed  CAS  Google Scholar 

  72. Dell’Angelica EC, Ohno H, Ooi CE et al (1997) AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J 16:917–928

    PubMed  Google Scholar 

  73. Massullo P, Druhan LJ, Bunnell BA et al (2005) Aberrant subcellular targeting of the G185R neutrophil elastase mutant associated with severe congenital neutropenia induces premature apoptosis of differentiating promyelocytes. Blood 105:3397–3404

    PubMed  CAS  Google Scholar 

  74. Enders A, Zieger B, Schwarz K et al (2006) Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood 108:81–87

    PubMed  CAS  Google Scholar 

  75. Klein C et al (1994) Partial albinism with immunodeficiency (Griscelli syndrome). J Pediatr 125:886–895

    PubMed  CAS  Google Scholar 

  76. Meeths M, Bryceson YT, Rudd E et al (2010) Clinical presentation of Griscelli syndrome type 2 and spectrum of RAB27A mutations. Pediatr Blood Cancer 54:563–572

    PubMed  Google Scholar 

  77. Mamishi S, Modarressi MH, Pourakbari B et al (2008) Analysis of RAB27A gene in Griscelli syndrome type 2: novel mutations including a deletion hotspot. J Clin Immunol 28:384–389

    PubMed  CAS  Google Scholar 

  78. Van Gele M, Dynoodt P, Lambert J (2009) Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res 22:268–282

    PubMed  Google Scholar 

  79. Ohbayashi N, Mamishi S, Ishibashi K et al (2010) Functional characterization of two RAB27A missense mutations found in Griscelli syndrome type 2. Pigment Cell Melanoma Res 23:365–374

    PubMed  CAS  Google Scholar 

  80. Menasche G, Feldmann J, Fischer A et al (2005) Primary hemophagocytc syndrome point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol Rev 203:165–171

    PubMed  CAS  Google Scholar 

  81. Neeft M, Wieffer M, de Jong AS et al (2005) Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol Biol Cell 16:731–741

    PubMed  CAS  Google Scholar 

  82. Purtilo DT, Cassel CK, Yang JP et al (1975) X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet 1:935–940

    PubMed  CAS  Google Scholar 

  83. Sumegi J, Huang D, Lanyi A et al (2000) Correlation of mutations of the SH2D1A gene and Epstein-Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood 96:3118–3125

    PubMed  CAS  Google Scholar 

  84. Gilmour KC, Cranston T, Jones A et al (2000) Diagnosis of X-linked lymphoproliferative disease by analysis of SLAM-associated protein expression. Eur J Immunol 30:1691–1697

    PubMed  CAS  Google Scholar 

  85. Coffey AJ, Brooksbank RA, Brandau O et al (1998) Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet 20:129–135

    PubMed  CAS  Google Scholar 

  86. Sayos J, Wu C, Morra M et al (1998) The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395:462–469

    PubMed  CAS  Google Scholar 

  87. Dupre L, Andolfi G, Tangye SG et al (2005) SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood 105:4383–4389

    PubMed  CAS  Google Scholar 

  88. Benoit L, Wang X, Pabst HF et al (2000) Defective NK cell activation in X-linked lymphoproliferative disease. J Immunol 165:3549–3553

    PubMed  CAS  Google Scholar 

  89. Nakajima H, Cella M, Bouchon A et al (2000) Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur J Immunol 30:3309–3318

    PubMed  CAS  Google Scholar 

  90. Tangye SG, Phillips JH, Lanier LL et al (2000) Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J Immunol 165:2932–2936

    PubMed  CAS  Google Scholar 

  91. Nichols KE, Hom J, Gong SY et al (2005) Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 11:340–345

    PubMed  CAS  Google Scholar 

  92. Chung B, Aoukaty A, Dutz J et al (2005) Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J Immunol 174:3153–3157

    PubMed  CAS  Google Scholar 

  93. Ma CS, Nichols KE, Tangye SG (2007) Regulation of cellular and humoral immune responses by the SLAM and SAP-families of molecules. Annu Rev Immunol 25:337–379

    PubMed  CAS  Google Scholar 

  94. Parolini S, Bottino C, Falco M et al (2000) X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med 192:337–346

    PubMed  CAS  Google Scholar 

  95. Dong Z, Veillette A (2010) How do SAP family deficiencies compromise immunity? Trends Immunol 31:295–302

    PubMed  CAS  Google Scholar 

  96. Cannons JL, Tangye SG, Schwartzberg PL (2010) SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol 29:665–705

    Google Scholar 

  97. Kanegane H, Ito Y, Ohshima K et al (2005) X-linked lymphoproliferative syndrome presenting with systemic lymphocytic vasculitis. Am J Hematol 78:130–133

    PubMed  Google Scholar 

  98. Booth C, Gilmour KC, Veys P et al (2011) X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood 117:53–62

    PubMed  CAS  Google Scholar 

  99. Aricò M, Danesino C, Pende D et al (2001) Pathogenesis of haemophagocytic lymphohistiocytosis. Br J Haematol 114:761–769

    PubMed  Google Scholar 

  100. Rigaud S, Fondaneche MC, Lambert N et al (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444:110–114

    PubMed  CAS  Google Scholar 

  101. Mufti AR, Burstein E, Duckett CS (2007) XIAP: cell death regulation meets copper homeostasis. Arch Biochem Biophys 463:168–174

    PubMed  CAS  Google Scholar 

  102. Marsh RA, Madden L, Kitchen BJ et al (2010) XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood 116:1079–1082

    PubMed  CAS  Google Scholar 

  103. Latour S (2007) Natural killer T cells and X-linked lymphoproliferative syndrome. Curr Opin Allergy Clin Immunol 7:510–514

    PubMed  Google Scholar 

  104. Rumble JM, Oetjen KA, Stein PL (2009) Phenotypic differences between mice deficient in XIAP and SAP, two factors targeted in X-linked lymphoproliferative syndrome (XLP). Cell Immunol 259:82–89

    PubMed  CAS  Google Scholar 

  105. Sumegi J, Barnes MG, Nestheide SV et al (2011) Gene expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis. Blood 117:e151–e160

    PubMed  CAS  Google Scholar 

  106. Pachlopnik Schmid J, Canioni D, Moshous D et al (2011) Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood 117:1522–1529

    PubMed  Google Scholar 

  107. Filipovich AH, Zhang K, Snow AL et al (2010) X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood 116:3398–3408

    PubMed  CAS  Google Scholar 

  108. Janka GE (1983) Familial erythrophagocytic lymphohistiocytosis. Eur J Pediatr 140:221–230

    PubMed  CAS  Google Scholar 

  109. Horne A, Trottestam H, Arico M et al (2008) Frequency and spectrum of central nervous system involvement in 193 children with haemophagocytic lymphohistiocytosis. Br J Haematol 140:327–335

    PubMed  Google Scholar 

  110. Haddad E, Sulis ML, Jabado N et al (1997) Frequency and severity of central nervous system lesions in hemophagocytic lymphohistiocytosis. Blood 89:794–800

    PubMed  CAS  Google Scholar 

  111. Goo HW, Weon YC (2007) A spectrum of neuroradiological findings in children with haemophagocytic lymphohistiocytosis. Pediatr Radiol 37:1110–1117

    PubMed  Google Scholar 

  112. Decaminada N, Cappellini M, Mortilla M et al (2010) Familial hemophagocytic lymphohistiocytosis: clinical and neuroradiological findings and review of the literature. Childs Nerv Syst 26:121–127

    PubMed  Google Scholar 

  113. Henter JI, Samuelsson-Horne A, Aricò M et al (2002) Histocyte Society. Treatment of hemophagocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood 100:2367–2373

    PubMed  CAS  Google Scholar 

  114. Nagafuji K, Nonami A, Kumano T et al (2007) Perforin gene mutations in adult-onset hemophagocytic lymphohistiocytosis. Haematologica 92:978–981

    PubMed  CAS  Google Scholar 

  115. Filipovich AH (2009) Hemophagocytic lymphohistiocytosis (HLH) and related disorders. Hematology Am Soc Hematol Educ Program 2009:127–131

  116. Gagnaire MH, Galambrun C, Stéphan JL (2000) Hemophagocytic syndrome: a misleading complication of visceral leishmaniasis in children—a series of 12 cases. Pediatrics 106:E58

    PubMed  CAS  Google Scholar 

  117. Aricò M, Allen M, Brusa S et al (2002) Haemophagocytic lymphohistiocytosis: proposal of a diagnostic algorithm based on perforin expression. Br J Haematol 119:180–188

    PubMed  Google Scholar 

  118. Johnson TS, Villanueva J, Filipovich AH, Marsh RA, Bleesing JJ (2011) Contemporary diagnostic methods for hemophagocytic lymphohistiocytic disorders. J Immunol Methods 364:1–13

    PubMed  CAS  Google Scholar 

  119. Wheeler RD, Cale CM, Cetica V et al (2010) A novel assay for investigation of suspected familial haemophagocytic lymphohistiocytosis. Br J Haematol 150:727–730

    PubMed  Google Scholar 

  120. Marsh RA, Bleesing JJ, Filipovich AH (2010) Using flow cytometry to screen patients for X-linked lymphoproliferative disease due to SAP deficiency and XIAP deficiency. J Immunol Methods 362:1–9

    PubMed  CAS  Google Scholar 

  121. Fischer A, Cerf-Bensussan N, Blanche S et al (1986) Allogeneic bone marrow transplantation for erythrophagocytic lymphohistiocytosis. J Pediatr 108:267–270

    PubMed  CAS  Google Scholar 

  122. Ouachée-Chardin M, Elie C, de Saint Basile G et al (2006) Hematopoietic stem cell transplantation in hemophagocytic lymphohistiocytosis: a single-center report of 48 patients. Pediatrics 117:e743–e750

    PubMed  Google Scholar 

  123. Marsh RA, Vaughn G, Kim MO et al (2010) Reduced-intensity conditioning significantly improves survival of patients with hemophagocytic lymphohistiocytosis undergoing allogeneic hematopoietic cell transplantation. Blood 116:5824–5831

    PubMed  CAS  Google Scholar 

  124. Davì S, Consolaro A, Guseinova D et al (2011) An international consensus survey of diagnostic criteria for macrophage activation syndrome in systemic juvenile idiopathic arthritis. J Rheumatol 38:764–768

    PubMed  Google Scholar 

  125. Ravelli A, Magni-Manzoni S, Pistorio A et al (2005) Preliminary diagnostic guidelines for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. J Pediatr 146:598–604

    PubMed  Google Scholar 

  126. Hazen MM, Woodward AL, Hofmann I et al (2008) Mutations of the hemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis. Arthritis Rheum 58:567–570

    PubMed  CAS  Google Scholar 

  127. Villanueva J, Lee S, Giannini EH et al (2005) Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis Res Ther 7:R30–R37

    PubMed  CAS  Google Scholar 

  128. Grom AA, Villanueva J, Lee S et al (2003) Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr 142:292–296

    PubMed  CAS  Google Scholar 

  129. Mahlaoui N, Ouachée-Chardin M, de Saint Basile G et al (2007) Immunotherapy of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins: a single-center retrospective report of 38 patients. Pediatrics 120:e622–e628

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Aricò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieni, E., Cetica, V., Mastrodicasa, E. et al. Familial hemophagocytic lymphohistiocytosis: a model for understanding the human machinery of cellular cytotoxicity. Cell. Mol. Life Sci. 69, 29–40 (2012). https://doi.org/10.1007/s00018-011-0835-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0835-y

Keywords

Navigation