Skip to main content

Genetics and Pathogenesis of Hemophagocytic Lymphohistiocytosis

  • Chapter
  • First Online:
Histiocytic Disorders

Abstract

Haemophagocytic lymphohistiocytosis (HLH) is a syndrome characterized by excessive T cell activation and severe hyperinflammation. It can be subdivided into primary, inherited, forms and secondary forms as a complication of various infections, malignancies and autoinflammatory/autoimmune disorders. In the last decade, it has been shown that most of the primary forms of HLH result from genetic defects that impair the cytotoxic function of natural killer cells and cytotoxic T cells (mutations in the perforin gene or in genes whose products are essential for the exocytosis of the cytotoxic granule contents). Studies of cytotoxicity-deficient mice have helped to define primary HLH as a syndrome in which T cell over-activation by a viral infection leads to excessive, uncontrolled macrophage activation and inflammation-associated cytopenia. The recent identification of late-onset HLH, sometimes associated with hypomorphic and/or monoallelic mutations in genes encoding effectors of the lymphocyte cytotoxicity, has changed our view of HLH’s pathophysiology, in which the disease develops after the progressive accumulation of genetic and environmental factors exceeds a critical threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

BEACH:

Beige and Chediak-Higashi

CHS:

Chediak-Higashi syndrome

CTL:

Cytotoxic T lymphocytes

CVID:

Common variable immune deficiency

EBV:

Epstein-Barr virus

FHL:

Familial lymphohistiocytosis

GS:

Griscelli syndrome

HLH:

Hemophagocytic lymphohistiocytosis

HPS2:

Hermansky-Pudlak syndrome type 2

IL-:

Interleukin-

INF:

Interferon

IS:

Immunological synapse

JIA:

Juvenile idiopathic arthritis

LRBA:

Lipopolysaccharide-responsive and beige-like anchor protein

LYST:

Lysosomal trafficking regulator

MAS:

Macrophage activation syndrome

MIM:

Mendelian inheritance in man

MTOC:

Microtubule-organizing centre

NK:

Natural killer

PH:

Pleckstrin homology domain

PID:

Primary immunodeficiency

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

TNF:

Tumour necrosis factor

t-SNARE:

Target-SNARE

XLP:

X-linked lymphoproliferative disease

References

  1. Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med. 2012;63:233–46.

    Article  CAS  PubMed  Google Scholar 

  2. Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001;15(5):751–61.

    Article  CAS  PubMed  Google Scholar 

  3. Bechara E, Dijoud F, de Saint BG, Bertrand Y, Pondarre C. Hemophagocytic lymphohistiocytosis with Munc13-4 mutation: a cause of recurrent fatal hydrops fetalis. Pediatrics. 2011;128(1):e251–4.

    Article  PubMed  Google Scholar 

  4. Lipton JM, Westra S, Haverty CE, Roberts D, Harris NL. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 28-2004. Newborn twins with thrombocytopenia, coagulation defects, and hepatosplenomegaly. N Engl J Med. 2004;351(11):1120–30.

    Article  CAS  PubMed  Google Scholar 

  5. Chia J, Yeo KP, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I. Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proc Natl Acad Sci U S A. 2009;106(24):9809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sieni E, Cetica V, Piccin A, Gherlinzoni F, Sasso FC, Rabusin M, et al. Familial hemophagocytic lymphohistiocytosis may present during adulthood: clinical and genetic features of a small series. PLoS One. 2012;7(9):e44649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagafuji K, Nonami A, Kumano T, Kikushige Y, Yoshimoto G, Takenaka K, et al. Perforin gene mutations in adult-onset hemophagocytic lymphohistiocytosis. Haematologica. 2007;92(7):978–81.

    Article  CAS  PubMed  Google Scholar 

  8. Feldmann J, Le Deist F, Ouachee-Chardin M, Certain S, Alexander S, Quartier P, et al. Functional consequences of perforin gene mutations in 22 patients with familial haemophagocytic lymphohistiocytosis. Br J Haematol. 2002;117(4):965–72.

    Article  CAS  PubMed  Google Scholar 

  9. Ohadi M, Lalloz MR, Sham P, Zhao J, Dearlove AM, Shiach C, et al. Localization of a gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q21.3-22 by homozygosity mapping. Am J Hum Genet. 1999;64(1):165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dufourcq-Lagelouse R, Jabado N, Le Deist F, Stephan JL, Souillet G, Bruin M, et al. Linkage of familial hemophagocytic lymphohistiocytosis to 10q21-22 and evidence for heterogeneity. Am J Hum Genet. 1999;64(1):172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stepp S, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew P, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957–9.

    Article  CAS  PubMed  Google Scholar 

  12. Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115(4):461–73.

    Article  CAS  PubMed  Google Scholar 

  13. zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter JI, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14(6):827–34.

    Article  PubMed  Google Scholar 

  14. zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;85(4):482–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cote M, Menager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest. 2009;119(12):3765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goransdotter Ericson K, Fadeel B, Nilsson-Ardnor S, Soderhall C, Samuelsson A, Janka G, et al. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis. Am J Hum Genet. 2001;68(3):590–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Voskoboinik I, Mar J, Camakaris J. Mutational analysis of the Menkes copper P-type ATPase (ATP7A). Biochem Biophys Res Commun. 2003;301(2):488–94.

    Article  CAS  PubMed  Google Scholar 

  18. Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature. 2010;468(7322):447–51.

    Article  CAS  PubMed  Google Scholar 

  19. Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJ, et al. The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity. 2009;30(5):684–95.

    Article  CAS  PubMed  Google Scholar 

  20. Lichtenheld MG, Olsen KJ, Lu P, Lowrey DM, Hameed A, Hengartner H, et al. Structure and function of human perforin. Nature. 1988;335(6189):448–51.

    Article  CAS  PubMed  Google Scholar 

  21. Lee SM, Sumegi J, Villanueva J, Tabata Y, Zhang K, Chakraborty R, et al. Patients of African ancestry with hemophagocytic lymphohistiocytosis share a common haplotype of PRF1 with a 50delT mutation. J Pediatr. 2006;149(1):134–7.

    Article  CAS  PubMed  Google Scholar 

  22. Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 2006;6(12):940–52.

    Article  CAS  PubMed  Google Scholar 

  23. Katano H, Ali MA, Patera AC, Catalfamo M, Jaffe ES, Kimura H, et al. Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. Blood. 2004;103(4):1244–52. Epub 2003 Oct 23

    Article  CAS  PubMed  Google Scholar 

  24. Feldmann J, Menasche G, Callebaut I, Minard-Colin V, Bader-Meunier B, Le Clainche L, et al. Severe and progressive encephalitis as a presenting manifestation of a novel missense perforin mutation and impaired cytolytic activity. Blood. 2005;105(7):2658–63.

    Article  CAS  PubMed  Google Scholar 

  25. Voskoboinik I, Thia MC, Fletcher J, Ciccone A, Browne K, Smyth MJ, et al. Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J Biol Chem. 2005;280(9):8426–34.

    Article  CAS  PubMed  Google Scholar 

  26. Zur Stadt U, Beutel K, Weber B, Kabisch H, Schneppenheim R, Janka G. A91V is a polymorphism in the perforin gene not causative of an FHLH phenotype. Blood. 2004;104(6):1909. author reply 10

    Article  CAS  PubMed  Google Scholar 

  27. Trambas C, Gallo F, Pende D, Marcenaro S, Moretta L, De Fusco C, et al. A single amino acid change, A91V, leads to conformational changes that can impair processing to the active form of perforin. Blood. 2005;106(3):932–7.

    Article  CAS  PubMed  Google Scholar 

  28. Santoro A, Cannella S, Trizzino A, Lo Nigro L, Corsello G, Arico M. A single amino acid change A91V in perforin: a novel, frequent predisposing factor to childhood acute lymphoblastic leukemia? Haematologica. 2005;90(5):697–8.

    PubMed  Google Scholar 

  29. Voskoboinik I, Sutton VR, Ciccone A, House CM, Chia J, Darcy PK, et al. Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood. 2007;110(4):1184–90.

    Article  CAS  PubMed  Google Scholar 

  30. An O, Gursoy A, Gurgey A, Keskin O. Structural and functional analysis of perforin mutations in association with clinical data of familial hemophagocytic lymphohistiocytosis type 2 (FHL2) patients. Protein Sci. 2013;22(6):823–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rohr J, Beutel K, Maul-Pavicic A, Vraetz T, Thiel J, Warnatz K, et al. Atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXBP2 overlaps with primary immunodeficiency diseases. Haematologica. 2010;95(12):2080–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meeths M, Chiang SC, Wood SM, Entesarian M, Schlums H, Bang B, et al. Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D. Blood. 2011;118(22):5783–93.

    Article  CAS  PubMed  Google Scholar 

  33. Entesarian M, Chiang SC, Schlums H, Meeths M, Chan MY, Mya SN, et al. Novel deep intronic and missense UNC13D mutations in familial haemophagocytic lymphohistiocytosis type 3. Br J Haematol. 2013;162(3):415–8.

    Article  CAS  PubMed  Google Scholar 

  34. Cichocki F, Schlums H, Li H, Stache V, Holmes T, Lenvik TR, et al. Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency. J Exp Med. 2014;211(6):1079–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Menager MM, Menasche G, Romao M, Knapnougel P, Ho CH, Garfa M, et al. Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nat Immunol. 2007;8:257–67.

    Article  CAS  PubMed  Google Scholar 

  36. Marsh RA, Satake N, Biroschak J, Jacobs T, Johnson J, Jordan MB, et al. STX11 mutations and clinical phenotypes of familial hemophagocytic lymphohistiocytosis in North America. Pediatr Blood Cancer. 2010;55(1):134–40.

    PubMed  Google Scholar 

  37. Sepulveda FE, Debeurme F, Menasche G, Kurowska M, Cote M, Pachlopnik Schmid J, et al. Distinct severity of HLH in both human and murine mutants with complete loss of cytotoxic effector PRF1, RAB27A, and STX11. Blood. 2013;121(4):595–603.

    Article  CAS  PubMed  Google Scholar 

  38. Zur Stadt U, Beutel K, Kolberg S, Schneppenheim R, Kabisch H, Janka G, et al. Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum Mutat. 2006;27(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  39. Hackmann Y, Graham SC, Ehl S, Honing S, Lehmberg K, Arico M, et al. Syntaxin binding mechanism and disease-causing mutations in Munc18-2. Proc Natl Acad Sci U S A. 2013;110(47):E4482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muller ML, Chiang SC, Meeths M, Tesi B, Entesarian M, Nilsson D, et al. An N-terminal missense mutation in STX11 causative of FHL4 abrogates Syntaxin-11 binding to Munc18-2. Front Immunol. 2014;4:515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bryceson YT, Rudd E, Zheng C, Edner J, Ma D, Wood SM, et al. Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood. 2007;110(6):1906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arneson LN, Brickshawana A, Segovis CM, Schoon RA, Dick CJ, Leibson PJ. Cutting edge: syntaxin 11 regulates lymphocyte-mediated secretion and cytotoxicity. J Immunol. 2007;179(6):3397–401.

    Article  CAS  PubMed  Google Scholar 

  43. Pagel J, Beutel K, Lehmberg K, Koch F, Maul-Pavicic A, Rohlfs AK, et al. Distinct mutations in STXBP2 are associated with variable clinical presentations in patients with familial hemophagocytic lymphohistiocytosis type 5 (FHL5). Blood. 2012;119(25):6016–24.

    Article  CAS  PubMed  Google Scholar 

  44. Machaczka M, Klimkowska M, Chiang SC, Meeths M, Muller ML, Gustafsson B, et al. Development of classical Hodgkin’s lymphoma in an adult with biallelic STXBP2 mutations. Haematologica. 2013;98(5):760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toonen RF, Verhage M. Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol. 2003;13(4):177–86.

    Article  CAS  PubMed  Google Scholar 

  46. Sudhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science. 2009;323(5913):474–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dieckmann NM, Hackmann Y, Arico M, Griffiths GM. Munc18-2 is required for syntaxin 11 localization on the plasma membrane in cytotoxic T-lymphocytes. Traffic. 2015;16(12):1330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stepensky P, Bartram J, Barth TF, Lehmberg K, Walther P, Amann K, et al. Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to STXBP2/MUNC18-2 mutations. Pediatr Blood Cancer. 2013;60(7):1215–22.

    Article  CAS  PubMed  Google Scholar 

  49. Ménasché G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S, et al. Mutations in RAB27A cause Griscelli syndrome associated with hemophagocytic syndrome. Nat Genet. 2000;25:173–6.

    Article  PubMed  Google Scholar 

  50. Stinchcombe JC, Barral DC, Mules EH, Booth S, Hume AN, Machesky LM, et al. Rab27a is required for regulated secretion in cytotoxic t lymphocytes. J Cell Biol. 2001;152(4):825–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Elstak ED, Neeft M, Nehme NT, Voortman J, Cheung M, Goodarzifard M, et al. The munc13-4-rab27 complex is specifically required for tethering secretory lysosomes at the plasma membrane. Blood. 2011;118(6):1570–8.

    Article  CAS  PubMed  Google Scholar 

  52. Menasche G, Feldmann J, Houdusse A, Desaymard C, Fischer A, Goud B, et al. Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients. Blood. 2003;101(7):2736–42.

    Article  CAS  PubMed  Google Scholar 

  53. Netter P, Chan SK, Banerjee PP, Monaco-Shawver L, Noroski LM, Hanson IC, et al. A novel Rab27a mutation binds melanophilin, but not Munc13-4, causing immunodeficiency without albinism. J Allergy Clin Immunol. 2016;138(2):599–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cetica V, Hackmann Y, Grieve S, Sieni E, Ciambotti B, Coniglio ML, et al. Patients with Griscelli syndrome and normal pigmentation identify RAB27A mutations that selectively disrupt MUNC13-4 binding. J Allergy Clin Immunol. 2015;135(5):1310–8. e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mathis S, Cintas P, de Saint-Basile G, Magy L, Funalot B, Vallat JM. Motor neuronopathy in Chediak-Higashi syndrome. J Neurol Sci. 2014;344(1–2):203–7.

    Article  CAS  PubMed  Google Scholar 

  56. Introne WJ, Westbroek W, Cullinane AR, Groden CA, Bhambhani V, Golas GA, et al. Neurologic involvement in patients with atypical Chediak-Higashi disease. Neurology. 2016;86(14):1320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tardieu M, Lacroix C, Neven B, Bordigoni P, de Saint BG, Blanche S, et al. Progressive neurologic dysfunctions 20 years after allogeneic bone marrow transplantation for Chediak-Higashi syndrome. Blood. 2005;106(1):40–2.

    Article  CAS  PubMed  Google Scholar 

  58. Nagle DL, Karim AM, Woolf EA, Holmgren L, Bork P, Misumi DJ, et al. Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat Genet. 1996;14:307–11.

    Article  CAS  PubMed  Google Scholar 

  59. Barbosa MDFS, Nguyen QA, Tchernev VT, Aschley JA, Detter JC, Blaydes SM, et al. Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature. 1996;382:262–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perou CM, Leslie JD, Green W, Li L, Ward DM, Kaplan J. The Beige/Chediak-Higashi syndrome gene encodes a widely expressed cytosolic protein. J Biol Chem. 1997;272(47):29790–4.

    Article  CAS  PubMed  Google Scholar 

  61. Jogl G, Shen Y, Gebauer D, Li J, Wiegmann K, Kashkar H, et al. Crystal structure of the BEACH domain reveals an unusual fold and extensive association with a novel PH domain. EMBO J. 2002;21(18):4785–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gebauer D, Li J, Jogl G, Shen Y, Myszka DG, Tong L. Crystal structure of the PH-BEACH domains of human LRBA/BGL. Biochemistry. 2004;43(47):14873–80.

    Article  CAS  PubMed  Google Scholar 

  63. Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol. 2008;9(7):543–56.

    Article  CAS  PubMed  Google Scholar 

  64. Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40.

    Article  CAS  PubMed  Google Scholar 

  65. Peifer M, Berg S, Reynolds AB. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell. 1994;76(5):789–91.

    Article  CAS  PubMed  Google Scholar 

  66. Andrade MA, Bork P. HEAT repeats in the Huntington's disease protein. Nat Genet. 1995;11(2):115–6.

    Article  CAS  PubMed  Google Scholar 

  67. Burgess A, Mornon JP, de Saint-Basile G, Callebaut I. A concanavalin A-like lectin domain in the CHS1/LYST protein, shared by members of the BEACH family. Bioinformatics. 2009;25(10):1219–22.

    Article  CAS  PubMed  Google Scholar 

  68. Sepulveda FE, Burgess A, Heiligenstein X, Goudin N, Menager MM, Romao M, et al. LYST controls the biogenesis of the endosomal compartment required for secretory lysosome function. Traffic. 2015;16(2):191–203.

    Article  CAS  PubMed  Google Scholar 

  69. Karim MA, Suzuki K, Fukai K, Oh J, Nagle DL, Moore KJ, et al. Apparent genotype-phenotype correlation in childhood, adolescent, and adult Chediak-Higashi syndrome. Am J Med Genet. 2002;108(1):16–22.

    Article  PubMed  Google Scholar 

  70. Certain S, Barrat F, Pastural E, Le Deist F, Goyo-Rivas J, Jabado N, et al. Protein truncation test of LYST reveals heterogenous mutations in patients with Chediak-Higashi syndrome. Blood. 2000;95(3):979–83.

    CAS  PubMed  Google Scholar 

  71. Jessen B, Maul-Pavicic A, Ufheil H, Vraetz T, Enders A, Lehmberg K, et al. Subtle differences in CTL cytotoxicity determine susceptibility to hemophagocytic lymphohistiocytosis in mice and humans with Chediak-Higashi syndrome. Blood. 2011;118(17):4620–9.

    Article  CAS  PubMed  Google Scholar 

  72. Dell’Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell. 1999;3(1):11–21.

    Article  PubMed  Google Scholar 

  73. Dell’Angelica EC, Ohno H, Ooi CE, Rabinovich E, Roche KW, Bonifacino JS. AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J. 1997;16(5):917–28.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dell’Angelica EC, Ooi CE, Bonifacino JS. Beta3A-adaptin, a subunit of the adaptor-like complex AP-3. J Biol Chem. 1997;272(24):15078–84.

    Article  PubMed  Google Scholar 

  75. Enders A, Zieger B, Schwarz K, Yoshimi A, Speckmann C, Knoepfle EM, et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood. 2006;108(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  76. Huizing M, Gahl WA. Disorders of vesicles of lysosomal lineage: the Hermansky-Pudlak syndromes. Curr Mol Med. 2002;2(5):451–67.

    Article  CAS  PubMed  Google Scholar 

  77. Shotelersuk V, Dell'Angelica EC, Hartnell L, Bonifacino JS, Gahl WA. A new variant of Hermansky-Pudlak syndrome due to mutations in a gene responsible for vesicle formation. Am J Med. 2000;108(5):423–7.

    Article  CAS  PubMed  Google Scholar 

  78. Jessen B, Bode SF, Ammann S, Chakravorty S, Davies G, Diestelhorst J, et al. The risk of hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type 2. Blood. 2013;121(15):2943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117(5):1522–9.

    Article  PubMed  CAS  Google Scholar 

  80. Purtilo DT, Cassel CK, Yang JP, Harper R. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet. 1975;1(7913):935–40.

    Article  CAS  PubMed  Google Scholar 

  81. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  82. Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 1998;95(23):13765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395(6701):462–9.

    Article  CAS  PubMed  Google Scholar 

  84. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444(7115):110–4.

    Article  CAS  PubMed  Google Scholar 

  85. Schwartzberg PL, Mueller KL, Qi H, Cannons JL. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol. 2009;9(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  86. Veillette A, Dong Z, Perez-Quintero LA, Zhong MC, Cruz-Munoz ME. Importance and mechanism of ‘switch’ function of SAP family adapters. Immunol Rev. 2009;232(1):229–39.

    Article  CAS  PubMed  Google Scholar 

  87. Palendira U, Low C, Chan A, Hislop AD, Ho E, Phan TG, et al. Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP. PLoS Biol. 2011;9(11):e1001187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tangye SG. XLP: clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J Clin Immunol. 2014;34(7):772–9.

    Article  CAS  PubMed  Google Scholar 

  89. Dong Z, Cruz-Munoz ME, Zhong MC, Chen R, Latour S, Veillette A. Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nat Immunol. 2009;10(9):973–80.

    Article  CAS  PubMed  Google Scholar 

  90. Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;116(7):1079–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Horn PC, Belohradsky BH, Urban C, Weber-Mzell D, Meindl A, Schuster V. Two new families with X-linked inhibitor of apoptosis deficiency and a review of all 26 published cases. J Allergy Clin Immunol. 2011;127(2):544–6.

    Article  PubMed  Google Scholar 

  92. Speckmann C, Lehmberg K, Albert MH, Damgaard RB, Fritsch M, Gyrd-Hansen M, et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol. 2013;149(1):133–41.

    Article  CAS  PubMed  Google Scholar 

  93. Paulsen M, Ussat S, Jakob M, Scherer G, Lepenies I, Schutze S, et al. Interaction with XIAP prevents full caspase-3/−7 activation in proliferating human T lymphocytes. Eur J Immunol. 2008;38(7):1979–87.

    Article  CAS  PubMed  Google Scholar 

  94. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 2006;7(10):988–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schile AJ, Garcia-Fernandez M, Steller H. Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes Dev. 2008;22(16):2256–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dubrez-Daloz L, Dupoux A, Cartier J. IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle. 2008;7(8):1036–46.

    Article  CAS  PubMed  Google Scholar 

  97. Krieg A, Correa RG, Garrison JB, Le Negrate G, Welsh K, Huang Z, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci U S A. 2009;106(34):14524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 2014;211(12):2385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46(10):1135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taurisano R, Maiorana A, De Benedetti F, Dionisi-Vici C, Boldrini R, Deodato F. Wolman disease associated with hemophagocytic lymphohistiocytosis: attempts for an explanation. Eur J Pediatr. 2014;173(10):1391–4.

    Article  PubMed  Google Scholar 

  102. Gokce M, Unal O, Hismi B, Gumruk F, Coskun T, Balta G, et al. Secondary hemophagocytosis in 3 patients with organic acidemia involving propionate metabolism. Pediatr Hematol Oncol. 2012;29(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  103. Duval M, Fenneteau O, Doireau V, Faye A, Emilie D, Yotnda P, et al. Intermittent hemophagocytic lymphohistiocytosis is a regular feature of lysinuric protein intolerance. J Pediatr. 1999;134(2):236–9.

    Article  CAS  PubMed  Google Scholar 

  104. Bode SF, Ammann S, Al-Herz W, Bataneant M, Dvorak CC, Gehring S, et al. The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. Haematologica. 2015;100(7):978–88.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Huang JF, Yang Y, Sepulveda H, Shi W, Hwang I, Peterson PA, et al. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science. 1999;286(5441):952–4.

    Article  CAS  PubMed  Google Scholar 

  106. Ouachee-Chardin M, Elie C, de Saint BG, Le Deist F, Mahlaoui N, Picard C, et al. Hematopoietic stem cell transplantation in hemophagocytic lymphohistiocytosis: a single-center report of 48 patients. Pediatrics. 2006;117(4):e743–50.

    Article  PubMed  Google Scholar 

  107. Hartz B, Marsh R, Rao K, Henter JI, Jordan M, Filipovich L, et al. The minimum required level of donor chimerism in hereditary hemophagocytic lymphohistiocytosis. Blood. 2016;127(25):3281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Henter JI, Elinder G, Soder O, Hansson M, Andersson B, Andersson U. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood. 1991;78(11):2918–22.

    CAS  PubMed  Google Scholar 

  109. Billiau AD, Roskams T, Van Damme-Lombaerts R, Matthys P, Wouters C. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6- and TNF-alpha-producing macrophages. Blood. 2005;105(4):1648–51.

    Article  CAS  PubMed  Google Scholar 

  110. Chung BK, Tsai K, Allan LL, Zheng DJ, Nie JC, Biggs CM, et al. Innate immune control of EBV-infected B cells by invariant natural killer T cells. Blood. 2013;122(15):2600–8.

    Article  CAS  PubMed  Google Scholar 

  111. Yabal M, Muller N, Adler H, Knies N, Gross CJ, Damgaard RB, et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep. 2014;7(6):1796–808.

    Article  CAS  PubMed  Google Scholar 

  112. Wada T, Kanegane H, Ohta K, Katoh F, Imamura T, Nakazawa Y, et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine. 2014;65(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  113. Shimizu M, Yokoyama T, Yamada K, Kaneda H, Wada H, Wada T, et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology. 2010;49(9):1645–53.

    Article  CAS  PubMed  Google Scholar 

  114. Mazodier K, Marin V, Novick D, Farnarier C, Robitail S, Schleinitz N, et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood. 2005;106(10):3483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Binder D, van den Broek MF, Kagi D, Bluethmann H, Fehr J, Hengartner H, et al. Aplastic anemia rescued by exhaustion of cytokine-secreting CD8+ T cells in persistent infection with lymphocytic choriomeningitis virus. J Exp Med. 1998;187(11):1903–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kagi D, Odermatt B, Mak TW. Homeostatic regulation of CD8+ T cells by perforin. Eur J Immunol. 1999;29(10):3262–72.

    Article  CAS  PubMed  Google Scholar 

  117. Matloubian M, Suresh M, Glass A, Galvan M, Chow K, Whitmire JK, et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J Virol. 1999;73(3):2527–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Nansen A, Jensen T, Christensen JP, Andreasen SO, Ropke C, Marker O, et al. Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus. J Immunol. 1999;163(11):6114–22.

    CAS  PubMed  Google Scholar 

  119. Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood. 2004;104:735–43.

    Article  CAS  PubMed  Google Scholar 

  120. Jessen B, Kogl T, Sepulveda FE, de Saint BG, Aichele P, Ehl S. Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Front Immunol. 2013;4:448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Sepulveda FE, Maschalidi S, Vosshenrich CA, Garrigue A, Kurowska M, Menasche G, et al. A novel immunoregulatory role for NK-cell cytotoxicity in protection from HLH-like immunopathology in mice. Blood. 2015;125(9):1427–34.

    Article  CAS  PubMed  Google Scholar 

  122. Terrell C, Zoller E, Jordan M. Perforin-dependent cytotoxicity regulates the immune response in trans: how much donor chimerism is enough? Bilbao: Histiocyte Society;2009. September 15–17.

    Google Scholar 

  123. Zoller EE, Lykens JE, Terrell CE, Aliberti J, Filipovich AH, Henson PM, et al. Hemophagocytosis causes a consumptive anemia of inflammation. J Exp Med. 2011;208(6):1203–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mancebo E, Allende LM, Guzman M, Paz-Artal E, Gil J, Urrea-Moreno R, et al. Familial hemophagocytic lymphohistiocytosis in an adult patient homozygous for A91V in the perforin gene, with tuberculosis infection. Haematologica. 2006;91(9):1257–60.

    PubMed  Google Scholar 

  125. Shabbir M, Lucas J, Lazarchick J, Shirai K. Secondary hemophagocytic syndrome in adults: a case series of 18 patients in a single institution and a review of literature. Hematol Oncol. 2011;29(2):100–6.

    Article  PubMed  Google Scholar 

  126. Zhang M, Behrens EM, Atkinson TP, Shakoory B, Grom AA, Cron RQ. Genetic defects in cytolysis in macrophage activation syndrome. Curr Rheumatol Rep. 2014;16(9):439.

    Article  PubMed  CAS  Google Scholar 

  127. Zhang K, Jordan MB, Marsh RA, Johnson JA, Kissell D, Meller J, et al. Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood. 2011;118(22):5794–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang K, Chandrakasan S, Chapman H, Valencia CA, Husami A, Kissell D, et al. Synergistic defects of different molecules in the cytotoxic pathway lead to clinical familial hemophagocytic lymphohistiocytosis. Blood. 2014;124(8):1331–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sepulveda FE, Garrigue A, Maschalidi S, Garfa-Traore M, Menasche G, Fischer A, et al. Polygenic mutations in the cytotoxicity pathway increase susceptibility to develop HLH immunopathology in mice. Blood. 2016;127(17):2113–21.

    Article  CAS  PubMed  Google Scholar 

  130. Krebs P, Crozat K, Popkin D, Oldstone MB, Beutler B. Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice. Blood. 2011;117(24):6582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Milner JD, Orekov T, Ward JM, Cheng L, Torres-Velez F, Junttila I, et al. Sustained IL-4 exposure leads to a novel pathway for hemophagocytosis, inflammation, and tissue macrophage accumulation. Blood. 2010;116(14):2476–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Behrens EM, Canna SW, Slade K, Rao S, Kreiger PA, Paessler M, et al. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J Clin Invest. 2011;121(6):2264–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Levendoglu-Tugal O, Ozkaynak MF, LaGamma E, Sherbany A, Sandoval C, Jayabose S. Hemophagocytic lymphohistiocytosis presenting with thrombocytopenia in the newborn. J Pediatr Hematol Oncol. 2002;24(5):405–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève de Saint Basile MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Saint Basile, G., Moshous, D., Fischer, A. (2018). Genetics and Pathogenesis of Hemophagocytic Lymphohistiocytosis. In: Abla, O., Janka, G. (eds) Histiocytic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-59632-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59632-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59631-0

  • Online ISBN: 978-3-319-59632-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics