Skip to main content

Advertisement

Log in

Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (vasoconstriction) and release of force (vasodilation). The initiation of force is associated with increases in intracellular calcium concentrations, activation of myosin light-chain kinase, increases in the phosphorylation of the regulatory myosin light chains, and actin-myosin crossbridge cycling. There are, however, several signaling pathways modulating Ca2+ mobilization and Ca2+ sensitivity of the contractile machinery that secondarily regulate the contractile response of vascular smooth muscle to receptor agonists. Among these regulatory mechanisms involved in the physiological regulation of vascular tone are the cyclic nucleotides (cAMP and cGMP), which are considered the main messengers that mediate vasodilation under physiological conditions. At least four distinct mechanisms are currently thought to be involved in the vasodilator effect of cyclic nucleotides and their dependent protein kinases: (1) the decrease in cytosolic calcium concentration ([Ca2+]c), (2) the hyperpolarization of the smooth muscle cell membrane potential, (3) the reduction in the sensitivity of the contractile machinery by decreasing the [Ca2+]c sensitivity of myosin light-chain phosphorylation, and (4) the reduction in the sensitivity of the contractile machinery by uncoupling contraction from myosin light-chain phosphorylation. This review focuses on each of these mechanisms involved in cyclic nucleotide-dependent relaxation of vascular smooth muscle under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Woodrum DA, Brophy CM (2001) The paradox of smooth muscle physiology. Mol Cell Endocrinol 177(1–2):135–143

    Article  PubMed  CAS  Google Scholar 

  2. Hirano K, Hirano M, Kanaide H (2004) Regulation of myosin phosphorylation and myofilament Ca2+ sensitivity in vascular smooth muscle. J Smooth Muscle Res 40(6):219–236

    Article  PubMed  Google Scholar 

  3. Ihara E, MacDonald JA (2007) The regulation of smooth muscle contractility by zipper-interacting protein kinase. Can J Physiol Pharmacol 85(1):79–87

    Article  PubMed  CAS  Google Scholar 

  4. Rembold CM (1992) Regulation of contraction and relaxation in arterial smooth muscle. Hypertension 20(2):129–137

    PubMed  CAS  Google Scholar 

  5. Somlyo AP, Somlyo AV (1998) From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta Physiol Scand 164(4):437–448

    Article  PubMed  CAS  Google Scholar 

  6. Orallo F (1996) Regulation of cytosolic calcium levels in vascular smooth muscle. Pharmacol Ther 69:153–171

    Article  PubMed  CAS  Google Scholar 

  7. Marin J, Encabo A, Briones A, Garcia-Cohen EC, Alonso MJ (1999) Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps. Life Sci 64(5):279–303

    Article  PubMed  CAS  Google Scholar 

  8. Hirano K, Derkach DN, Hirano M, Nishimura J, Kanaide H (2003) Protein kinase network in the regulation of phosphorylation and dephosphorylation of smooth muscle myosin light chain. Mol Cell Biochem 248(1–2):105–114

    Article  PubMed  CAS  Google Scholar 

  9. Akata T (2007) Cellular and molecular mechanisms regulating vascular tone. Part 1: basic mechanisms controlling cytosolic Ca2+ concentration and the Ca2+-dependent regulation of vascular tone. J Anesth 21(2):220–231

    Article  PubMed  Google Scholar 

  10. Dora KA (2010) Coordination of vasomotor responses by the endothelium. Circ J 74(2):226–232

    Article  PubMed  CAS  Google Scholar 

  11. de Wit C, Griffith TM (2010) Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 459(6):897–914

    Article  PubMed  CAS  Google Scholar 

  12. Griffith TM, Chaytor AT, Taylor HJ, Giddings BD, Edwards DH (2002) cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions. Proc Natl Acad Sci USA 99(9):6392–6397

    Article  PubMed  CAS  Google Scholar 

  13. Chaytor AT, Taylor HJ, Griffith TM (2002) Gap junction-dependent and -independent EDHF-type relaxations may involve smooth muscle cAMP accumulation. Am J Physiol Heart Circ Physiol 282(4):H1548–H1555

    PubMed  CAS  Google Scholar 

  14. Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  PubMed  CAS  Google Scholar 

  15. Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87(3):965–1010

    Article  PubMed  CAS  Google Scholar 

  16. Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27(1):47–72

    Article  PubMed  CAS  Google Scholar 

  17. Cary SP, Winger JA, Derbyshire ER, Marletta MA (2006) Nitric oxide signaling: no longer simply on or off. Trends Biochem Sci 31(4):231–239

    Article  PubMed  CAS  Google Scholar 

  18. Morita T, Perrella MA, Lee ME, Kourembanas S (1995) Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci USA 92(5):1475–1479

    Article  PubMed  CAS  Google Scholar 

  19. Ushiyama M, Morita T, Katayama S (2002) Carbon monoxide regulates blood pressure cooperatively with nitric oxide in hypertensive rats. Heart Vessels 16(5):189–195

    Article  PubMed  Google Scholar 

  20. Peers C, Steele DS (2011) Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium. J Mol Cell Cardiol (in press)

  21. Polizio AH, Santa-Cruz DM, Balestrasse KB, Gironacci MM, Bertera FM, Hocht C, Taira CA, Tomaro ML, Gorzalczany SB (2011) Heme oxygenase-1 overexpression fails to attenuate hypertension when the nitric oxide synthase system is not fully operative. Pharmacology 87(5–6):341–349

    Article  PubMed  CAS  Google Scholar 

  22. Isenberg JS, Qin Y, Maxhimer JB, Sipes JM, Despres D, Schnermann J, Frazier WA, Roberts DD (2009) Thrombospondin-1 and CD47 regulate blood pressure and cardiac responses to vasoactive stress. Matrix Biol 28(2):110–119

    Article  PubMed  CAS  Google Scholar 

  23. Yao M, Roberts DD, Isenberg JS (2011) Thrombospondin-1 inhibition of vascular smooth muscle cell responses occurs via modulation of both cAMP and cGMP. Pharmacol Res 63(1):13–22

    Article  PubMed  CAS  Google Scholar 

  24. Isenberg JS, Hyodo F, Matsumoto K, Romeo MJ, Abu-Asab M, Tsokos M, Kuppusamy P, Wink DA, Krishna MC, Roberts DD (2007) Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood 109(5):1945–1952

    Article  PubMed  CAS  Google Scholar 

  25. Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98(1):390–403

    Article  PubMed  CAS  Google Scholar 

  26. Burke-Wolin T, Abate CJ, Wolin MS, Gurtner GH (1991) Hydrogen peroxide-induced pulmonary vasodilation—role of guanosine 3’, 5’-cyclic monophosphate. Am J Physiol 261:L393–L398

    PubMed  CAS  Google Scholar 

  27. Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schroder E, Browning DD, Eaton P (2007) Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317(5843):1393–1397

    Article  PubMed  CAS  Google Scholar 

  28. Neo BH, Kandhi S, Wolin MS (2010) Roles for soluble guanylate cyclase and a thiol oxidation-elicited subunit dimerization of protein kinase G in pulmonary artery relaxation to hydrogen peroxide. Am J Physiol Heart Circ Physiol 299(4):H1235–H1241

    Article  PubMed  CAS  Google Scholar 

  29. Hussain MB, MacAllister RJ, Hobbs AJ (2001) Reciprocal regulation of cGMP-mediated vasorelaxation by soluble and particulate guanylate cyclases. Am J Physiol Heart Circ Physiol 280(3):H1151–H1159

    PubMed  CAS  Google Scholar 

  30. Madhani M, Scotland RS, MacAllister RJ, Hobbs AJ (2003) Vascular natriuretic peptide receptor-linked particulate guanylate cyclases are modulated by nitric oxide-cyclic GMP signalling. Br J Pharmacol 139(7):1289–1296

    Article  PubMed  CAS  Google Scholar 

  31. Madhani M, Okorie M, Hobbs AJ, MacAllister RJ (2006) Reciprocal regulation of human soluble and particulate guanylate cyclases in vivo. Br J Pharmacol 149(6):797–801

    Article  PubMed  CAS  Google Scholar 

  32. Cairrao E, Santos-Silva AJ, Verde I (2010) PKG is involved in testosterone-induced vasorelaxation of human umbilical artery. Eur J Pharmacol 640:94–101

    Article  PubMed  CAS  Google Scholar 

  33. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(3):366–398

    Article  PubMed  CAS  Google Scholar 

  34. Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100(3):309–327

    Article  PubMed  CAS  Google Scholar 

  35. Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S, Kemp BE (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332(6036):1433–1435

    Article  PubMed  CAS  Google Scholar 

  36. Stein SC, Woods A, Jones NA, Davison MD, Carling D (2000) The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345(Pt 3):437–443

    Article  PubMed  CAS  Google Scholar 

  37. Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH (2003) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 278(31):28434–28442

    Article  PubMed  CAS  Google Scholar 

  38. Hutchinson DS, Summers RJ, Bengtsson T (2008) Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: potential utility in treatment of diabetes and heart disease. Pharmacol Ther 119(3):291–310

    Article  PubMed  CAS  Google Scholar 

  39. Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86(1):1–23

    Article  PubMed  CAS  Google Scholar 

  40. Smith JA, Reed RB, Francis SH, Grimes K, Corbin JD (2000) Distinguishing the roles of the two different cGMP-binding sites for modulating phosphorylation of exogenous substrate (heterophosphorylation) and autophosphorylation of cGMP-dependent protein kinase. J Biol Chem 275(1):154–158

    Article  PubMed  CAS  Google Scholar 

  41. Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99(8):816–828

    Article  PubMed  CAS  Google Scholar 

  42. Lincoln TM, Cornwell TL, Taylor AE (1990) cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am J Physiol 258((3 Pt 1)):C399–C407

    PubMed  CAS  Google Scholar 

  43. Arejian M, Li Y, Anand-Srivastava MB (2009) Nitric oxide attenuates the expression of natriuretic peptide receptor C and associated adenylyl cyclase signaling in aortic vascular smooth muscle cells: role of MAPK. Am J Physiol Heart Circ Physiol 296(6):H1859–H1867

    Article  PubMed  CAS  Google Scholar 

  44. Skalhegg BS, Huang Y, Su T, Idzerda RL, McKnight GS, Burton KA (2002) Mutation of the Calpha subunit of PKA leads to growth retardation and sperm dysfunction. Mol Endocrinol 16(3):630–639

    Article  PubMed  CAS  Google Scholar 

  45. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszodi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fassler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17(11):3045–3051

    Article  PubMed  CAS  Google Scholar 

  46. Weber S, Bernhard D, Lukowski R, Weinmeister P, Worner R, Wegener JW, Valtcheva N, Feil S, Schlossmann J, Hofmann F, Feil R (2007) Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circ Res 101(11):1096–1103

    Article  PubMed  CAS  Google Scholar 

  47. Feil R, Gappa N, Rutz M, Schlossmann J, Rose CR, Konnerth A, Brummer S, Kuhbandner S, Hofmann F (2002) Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms. Circ Res 90(10):1080–1086

    Article  PubMed  CAS  Google Scholar 

  48. Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375

    Article  PubMed  CAS  Google Scholar 

  49. Roscioni SS, Elzinga CR, Schmidt M (2008) Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 377(4-6):345–357

    Article  PubMed  CAS  Google Scholar 

  50. Metrich M, Berthouze M, Morel E, Crozatier B, Gomez AM, Lezoualc’h F (2010) Role of the cAMP-binding protein Epac in cardiovascular physiology and pathophysiology. Pflugers Arch 459(4):535–546

    Article  PubMed  CAS  Google Scholar 

  51. Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K (1997) Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 49(2):157–230

    PubMed  CAS  Google Scholar 

  52. Lincoln TM, Dey N, Sellak H (2001) Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91(3):1421–1430

    PubMed  CAS  Google Scholar 

  53. Akata T (2007) Cellular and molecular mechanisms regulating vascular tone. Part 2: regulatory mechanisms modulating Ca2+ mobilization and/or myofilament Ca2+ sensitivity in vascular smooth muscle cells. J Anesth 21(2):232–242

    Article  PubMed  Google Scholar 

  54. Cogolludo A, Moreno L, Villamor E (2007) Mechanisms controlling vascular tone in pulmonary arterial hypertension: implications for vasodilator therapy. Pharmacology 79(2):65–75

    Article  PubMed  CAS  Google Scholar 

  55. Martel G, Hamet P, Tremblay J (2010) Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Mol Cell Biochem 334(1–2):53–65

    Article  PubMed  CAS  Google Scholar 

  56. Vaandrager AB, de Jonge HR (1996) Signalling by cGMP-dependent protein kinases. Mol Cell Biochem 157(1–2):23–30

    PubMed  CAS  Google Scholar 

  57. Tanaka Y, Tang G, Takizawa K, Otsuka K, Eghbali M, Song M, Nishimaru K, Shigenobu K, Koike K, Stefani E, Toro L (2006) Kv channels contribute to nitric oxide- and atrial natriuretic peptide-induced relaxation of a rat conduit artery. J Pharmacol Exp Ther 317(1):341–354

    Article  PubMed  CAS  Google Scholar 

  58. Cohen RA, Weisbrod RM, Gericke M, Yaghoubi M, Bierl C, Bolotina VM (1999) Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ Res 84(2):210–219

    PubMed  CAS  Google Scholar 

  59. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368(6474):850–853

    Article  PubMed  CAS  Google Scholar 

  60. Robertson BE, Schubert R, Hescheler J, Nelson MT (1993) cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265(1 Pt 1):C299–C303

    PubMed  CAS  Google Scholar 

  61. Dong H, Waldron GJ, Cole WC, Triggle CR (1998) Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Br J Pharmacol 123(5):821–832

    Article  PubMed  CAS  Google Scholar 

  62. Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 93(4):280–291

    Article  PubMed  CAS  Google Scholar 

  63. Ostrom RS, Liu X, Head BP, Gregorian C, Seasholtz TM, Insel PA (2002) Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains. Mol Pharmacol 62(5):983–992

    Article  PubMed  CAS  Google Scholar 

  64. Komalavilas P, Lincoln TM (1994) Phosphorylation of the inositol 1, 4, 5-trisphosphate receptor by cyclic GMP-dependent protein kinase. J Biol Chem 269(12):8701–8707

    PubMed  CAS  Google Scholar 

  65. Komalavilas P, Lincoln TM (1996) Phosphorylation of the inositol 1, 4, 5-trisphosphate receptor—cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. J Biol Chem 271:21933–21938

    Article  PubMed  CAS  Google Scholar 

  66. Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404(6774):197–201

    Article  PubMed  CAS  Google Scholar 

  67. Casteel DE, Boss GR, Pilz RB (2005) Identification of the interface between cGMP-dependent protein kinase Ibeta and its interaction partners TFII-I and IRAG reveals a common interaction motif. J Biol Chem 280(46):38211–38218

    Article  PubMed  CAS  Google Scholar 

  68. Geiselhoringer A, Werner M, Sigl K, Smital P, Worner R, Acheo L, Stieber J, Weinmeister P, Feil R, Feil S, Wegener J, Hofmann F, Schlossmann J (2004) IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. EMBO J 23(21):4222–4231

    Article  PubMed  CAS  Google Scholar 

  69. Fritsch RM, Saur D, Kurjak M, Oesterle D, Schlossmann J, Geiselhoringer A, Hofmann F, Allescher HD (2004) InsP3R-associated cGMP kinase substrate (IRAG) is essential for nitric oxide-induced inhibition of calcium signaling in human colonic smooth muscle. J Biol Chem 279(13):12551–12559

    Article  PubMed  CAS  Google Scholar 

  70. Geiselhoringer A, Gaisa M, Hofmann F, Schlossmann J (2004) Distribution of IRAG and cGKI-isoforms in murine tissues. FEBS Lett 575(1–3):19–22

    Article  PubMed  CAS  Google Scholar 

  71. Casteel DE, Zhang T, Zhuang S, Pilz RB (2008) cGMP-dependent protein kinase anchoring by IRAG regulates its nuclear translocation and transcriptional activity. Cell Signal 20(7):1392–1399

    Article  PubMed  CAS  Google Scholar 

  72. Desch M, Sigl K, Hieke B, Salb K, Kees F, Bernhard D, Jochim A, Spiessberger B, Hocherl K, Feil R, Feil S, Lukowski R, Wegener JW, Hofmann F, Schlossmann J (2011) IRAG determines nitric oxide- and atrial natriuretic peptide-mediated smooth muscle relaxation. Cardiovasc Res 86(3):496–505

    Article  CAS  Google Scholar 

  73. Rapoport RM (1986) Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ Res 58(3):407–410

    PubMed  CAS  Google Scholar 

  74. Hirata M, Kohse KP, Chang CH, Ikebe T, Murad F (1990) Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells. J Biol Chem 265(3):1268–1273

    PubMed  CAS  Google Scholar 

  75. Cornwell TL, Pryzwansky KB, Wyatt TA, Lincoln TM (1991) Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol 40(6):923–931

    PubMed  CAS  Google Scholar 

  76. Lincoln TM, Cornwell TL (1991) Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels 28(1–3):129–137

    PubMed  CAS  Google Scholar 

  77. Mundina-Weilenmann C, Vittone L, Rinaldi G, Said M, de Cingolani GC, Mattiazzi A (2000) Endoplasmic reticulum contribution to the relaxant effect of cGMP- and cAMP-elevating agents in feline aorta. Am J Physiol Heart Circ Physiol 278(6):H1856–H1865

    PubMed  CAS  Google Scholar 

  78. Gibson A, McFadzean I, Wallace P, Wayman CP (1998) Capacitative Ca2+ entry and the regulation of smooth muscle tone. Trends Pharmacol Sci 19(7):266–269

    Article  PubMed  CAS  Google Scholar 

  79. Jackson WF (2000) Ion channels and vascular tone. Hypertension 35(1 Pt 2):173–178

    PubMed  CAS  Google Scholar 

  80. Brueggemann LI, Martin BL, Barakat J, Byron KL, Cribbs LL (2005) Low voltage-activated calcium channels in vascular smooth muscle: T-type channels and AVP-stimulated calcium spiking. Am J Physiol Heart Circ Physiol 288(2):H923–H935

    Article  PubMed  CAS  Google Scholar 

  81. Putney JW Jr, McKay RR (1999) Capacitative calcium entry channels. BioEssays 21(1):38–46

    Article  PubMed  Google Scholar 

  82. Ross K, Whitaker M, Reynolds NJ (2007) Agonist-induced calcium entry correlates with STIM1 translocation. J Cell Physiol 211(3):569–576

    Article  PubMed  CAS  Google Scholar 

  83. Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364(6440):809–814

    Article  PubMed  CAS  Google Scholar 

  84. Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6(2):113–120

    Article  PubMed  CAS  Google Scholar 

  85. Bolotina VM, Csutora P (2005) CIF and other mysteries of the store-operated Ca2+ -entry pathway. Trends Biochem Sci 30(7):378–387

    Article  PubMed  CAS  Google Scholar 

  86. Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174(6):815–825

    Article  PubMed  CAS  Google Scholar 

  87. Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112(3):744–760

    Article  PubMed  CAS  Google Scholar 

  88. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  PubMed  CAS  Google Scholar 

  89. Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281(38):28254–28264

    Article  PubMed  CAS  Google Scholar 

  90. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C18–C33

    Google Scholar 

  91. Hughes AD (1995) Calcium channels in vascular smooth muscle cells. J Vasc Res 32(6):353–370

    PubMed  CAS  Google Scholar 

  92. Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N (2003) Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J 22(22):6027–6034

    Article  PubMed  CAS  Google Scholar 

  93. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74:365–507

    PubMed  CAS  Google Scholar 

  94. Xiong Z, Sperelakis N (1995) Regulation of L-type calcium channels of vascular smooth muscle cells. J Mol Cell Cardiol 27(1):75–91

    Article  PubMed  CAS  Google Scholar 

  95. Liu H, Xiong Z, Sperelakis N (1997) Cyclic nucleotides regulate the activity of L-type calcium channels in smooth muscle cells from rat portal vein. J Mol Cell Cardiol 29(5):1411–1421

    Article  PubMed  CAS  Google Scholar 

  96. Taguchi K, Ueda M, Kubo T (1997) Effects of cAMP and cGMP on L-type calcium channel currents in rat mesenteric artery cells. Jpn J Pharmacol 74(2):179–186

    Article  PubMed  CAS  Google Scholar 

  97. Ishikawa T, Hume JR, Keef KD (1993) Regulation of Ca2+ channels by cAMP and cGMP in vascular smooth muscle cells. Circ Res 73(6):1128–1137

    PubMed  CAS  Google Scholar 

  98. Ruiz-Velasco V, Zhong J, Hume JR, Keef KD (1998) Modulation of Ca2+ channels by cyclic nucleotide cross activation of opposing protein kinases in rabbit portal vein. Circ Res 82(5):557–565

    PubMed  CAS  Google Scholar 

  99. Xiong Z, Sperelakis N, Fenoglio-Preiser C (1994) Regulation of L-type calcium channels by cyclic nucleotides and phosphorylation in smooth muscle cells from rabbit portal vein. J Vasc Res 31(5):271–279

    Article  PubMed  CAS  Google Scholar 

  100. Lorenz JN, Bielefeld DR, Sperelakis N (1994) Regulation of calcium channel current in A7r5 vascular smooth muscle cells by cyclic nucleotides. Am J Physiol 266(6 Pt 1):C1656–C1663

    PubMed  CAS  Google Scholar 

  101. Satoh H, Sperelakis N (1995) Modulation of L-type Ca2+ current by isoprenaline, carbachol and phorbol ester in cultured rat aortic vascular smooth muscle (A7r5) cells. Gen Pharmacol 26(2):369–379

    Article  PubMed  CAS  Google Scholar 

  102. Gonzalez JM, Jost LJ, Rouse D, Suki WN (1996) Plasma membrane and sarcoplasmic reticulum Calcium-ATPase and smooth muscle. Miner Electrolyte Metab 22:345–348

    PubMed  CAS  Google Scholar 

  103. Kobayashi S, Kanaide H, Nakamura M (1985) Cytosolic-free calcium transients in cultured vascular smooth muscle cells: microfluorometric measurements. Science 229(4713):553–556

    Article  PubMed  CAS  Google Scholar 

  104. Rashatwar SS, Cornwell TL, Lincoln TM (1987) Effects of 8-bromo-cGMP on Ca2+ levels in vascular smooth muscle cells: possible regulation of Ca2+-ATPase by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 84(16):5685–5689

    Article  PubMed  CAS  Google Scholar 

  105. Popescu LM, Panoiu C, Hinescu M, Nutu O (1985) The mechanism of cGMP-induced relaxation in vascular smooth muscle. Eur J Pharmacol 107(3):393–394

    Article  PubMed  CAS  Google Scholar 

  106. Furukawa K, Nakamura H (1987) Cyclic GMP regulation of the plasma membrane (Ca2+-Mg2 +)ATPase in vascular smooth muscle. J Biochem 101(1):287–290

    PubMed  CAS  Google Scholar 

  107. Vrolix M, Raeymaekers L, Wuytack F, Hofmann F, Casteels R (1988) Cyclic GMP-dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol. Biochem J 255(3):855–863

    PubMed  CAS  Google Scholar 

  108. Matthew A, Shmygol A, Wray S (2004) Ca2+ entry, efflux and release in smooth muscle. Biol Res 37(4):617–624

    Article  PubMed  CAS  Google Scholar 

  109. Karashima E, Nishimura J, Iwamoto T, Hirano K, Hirano M, Kita S, Harada M, Kanaide H (2007) Involvement of Na + -Ca2+ exchanger in cAMP-mediated relaxation in mice aorta: evaluation using transgenic mice. Br J Pharmacol 150(4):434–444

    Article  PubMed  CAS  Google Scholar 

  110. Furukawa K, Ohshima N, Tawada-Iwata Y, Shigekawa M (1991) Cyclic GMP stimulates Na +/Ca2+ exchange in vascular smooth muscle cells in primary culture. J Biol Chem 266(19):12337–12341

    PubMed  CAS  Google Scholar 

  111. Aaronson PI, Benham CD (1989) Alterations in [Ca2+]i mediated by sodium-calcium exchange in smooth muscle cells isolated from the guinea-pig ureter. J Physiol 416:1–18

    PubMed  CAS  Google Scholar 

  112. Furukawa K, Tawada Y, Shigekawa M (1988) Regulation of the plasma membrane Ca2+ pump by cyclic nucleotides in cultured vascular smooth muscle cells. J Biol Chem 263(17):8058–8065

    PubMed  CAS  Google Scholar 

  113. Brayden JE (1996) Potassium channels in vascular smooth muscle. Clin Exp Pharmacol Physiol 23:1069–1076

    Article  PubMed  CAS  Google Scholar 

  114. Ko EA, Han J, Jung ID, Park WS (2008) Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res 44(2):65–81

    Article  PubMed  Google Scholar 

  115. Aiello EA, Walsh MP, Cole WC (1995) Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am J Physiol 268(2 Pt 2):H926–H934

    PubMed  CAS  Google Scholar 

  116. Aiello EA, Malcolm AT, Walsh MP, Cole WC (1998) Beta-adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells. Am J Physiol 275(2 Pt 2):H448–H459

    PubMed  CAS  Google Scholar 

  117. Sathishkumar K, Ross RG, Bawankule DU, Sardar KK, Prakash VR, Mishra SK (2005) Segmental heterogeneity in the mechanism of sodium nitroprusside-induced relaxation in ovine pulmonary artery. J Cardiovasc Pharmacol 45(6):491–498

    Article  PubMed  CAS  Google Scholar 

  118. Palen DI, Belmadani S, Lucchesi PA, Matrougui K (2005) Role of SHP-1, Kv.1.2, and cGMP in nitric oxide-induced ERK1/2 MAP kinase dephosphorylation in rat vascular smooth muscle cells. Cardiovasc Res 68(2):268–277

    Article  PubMed  CAS  Google Scholar 

  119. Rusch NJ, Liu Y, Pleyte KA (1996) Mechanisms for regulation of arterial tone by Ca2+ -dependent K + channels in hypertension. Clin Exp Pharmacol Physiol 23(12):1077–1081

    Article  PubMed  CAS  Google Scholar 

  120. Taniguchi J, Furukawa KI, Shigekawa M (1993) Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells. Pflugers Arch 423(3–4):167–172

    Article  PubMed  CAS  Google Scholar 

  121. Taguchi H, Heistad DD, Kitazono T, Faraci FM (1995) Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca(2+)-dependent K+ channels. Circ Res 76(6):1057–1062

    PubMed  CAS  Google Scholar 

  122. Schubert R, Serebryakov VN, Engel H, Hopp HH (1996) Iloprost activates KCa channels of vascular smooth muscle cells: role of cAMP-dependent protein kinase. Am J Physiol 271:C1203–C1211

    PubMed  CAS  Google Scholar 

  123. Schubert R, Serebryakov VN, Mewes H, Hopp HH (1997) Iloprost dilates rat small arteries: role of K(ATP)- and K(Ca)-channel activation by cAMP-dependent protein kinase. Am J Physiol 272(3 Pt 2):H1147–H1156

    PubMed  CAS  Google Scholar 

  124. Wu BN, Chen CF, Hong YR, Howng SL, Lin YL, Chen IJ (2007) Activation of BKCa channels via cyclic AMP- and cyclic GMP-dependent protein kinases by eugenosedin-A in rat basilar artery myocytes. Br J Pharmacol 152(3):374–385

    Article  PubMed  CAS  Google Scholar 

  125. Fellner SK, Arendshorst WJ (2010) Complex interactions of NO/cGMP/PKG systems on Ca2+ signaling in afferent arteriolar vascular smooth muscle. Am J Physiol Heart Circ Physiol 298(1):H144–H151

    Article  PubMed  CAS  Google Scholar 

  126. Liang CF, Au AL, Leung SW, Ng KF, Feletou M, Kwan YW, Man RY, Vanhoutte PM (2010) Endothelium-derived nitric oxide inhibits the relaxation of the porcine coronary artery to natriuretic peptides by desensitizing big conductance calcium-activated potassium channels of vascular smooth muscle. J Pharmacol Exp Ther 334(1):223–231

    Article  PubMed  CAS  Google Scholar 

  127. Zhang Y, Pertens E, Janssen LJ (2005) 8-isoprostaglandin E2 activates Ca2+-dependent K+ current via cyclic AMP signaling pathway in murine renal artery. Eur J Pharmacol 520(1–3):22–28

    Article  PubMed  CAS  Google Scholar 

  128. Barman SA, Zhu S, Han G, White RE (2003) cAMP activates BKCa channels in pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol 284(6):L1004–L1011

    PubMed  CAS  Google Scholar 

  129. Barman SA, Zhu S, White RE (2004) PKC activates BKCa channels in rat pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am J Physiol 286(6):13

    Google Scholar 

  130. Prieto D, Rivera L, Benedito S, Recio P, Villalba N, Hernandez M, Garcia-Sacristan A (2006) Ca2+-activated K+ (KCa) channels are involved in the relaxations elicited by sildenafil in penile resistance arteries. Eur J Pharmacol 531(1–3):232–237

    Article  PubMed  CAS  Google Scholar 

  131. Zhang Y, Tazzeo T, Chu V, Janssen LJ (2006) Membrane potassium currents in human radial artery and their regulation by nitric oxide donor. Cardiovasc Res 71(2):383–392

    Article  PubMed  CAS  Google Scholar 

  132. Alioua A, Tanaka Y, Wallner M, Hofmann F, Ruth P, Meera P, Toro L (1998) The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo. J Biol Chem 273(49):32950–32956

    Article  PubMed  CAS  Google Scholar 

  133. White RE, Lee AB, Shcherbatko AD, Lincoln TM, Schonbrunn A, Armstrong DL (1993) Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature 361(6409):263–266

    Article  PubMed  CAS  Google Scholar 

  134. Natarajan A, Han G, Chen SY, Yu P, White R, Jose P (2010) The D5 dopamine receptor mediates large-conductance, calcium- and voltage-activated potassium channel activation in human coronary artery smooth muscle cells. J Pharmacol Exp Ther 332(2):640–649

    Article  PubMed  CAS  Google Scholar 

  135. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247(4948):1341–1344

    Article  PubMed  CAS  Google Scholar 

  136. Kanatsuka H, Sekiguchi N, Sato K, Akai K, Wang Y, Komaru T, Ashikawa K, Takishima T (1992) Microvascular sites and mechanisms responsible for reactive hyperemia in the coronary circulation of the beating canine heart. Circ Res 71(4):912–922

    PubMed  CAS  Google Scholar 

  137. Ishizaka H, Gudi SR, Frangos JA, Kuo L (1999) Coronary arteriolar dilation to acidosis: role of ATP-sensitive potassium channels and pertussis toxin-sensitive G proteins. Circulation 99(4):558–563

    PubMed  CAS  Google Scholar 

  138. Landry DW, Oliver JA (1992) The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest 89(6):2071–2074

    Article  PubMed  CAS  Google Scholar 

  139. Miyoshi Y, Nakaya Y, Wakatsuki T, Nakaya S, Fujino K, Saito K, Inoue I (1992) Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery. Circ Res 70(3):612–616

    PubMed  CAS  Google Scholar 

  140. Wakatsuki T, Nakaya Y, Inoue I (1992) Vasopressin modulates K(+)-channel activities of cultured smooth muscle cells from porcine coronary artery. Am J Physiol 263(2 Pt 2):H491–H496

    PubMed  CAS  Google Scholar 

  141. Brayden JE (2002) Functional roles of KATP channels in vascular smooth muscle. Clin Exp Pharmacol Physiol 29(4):312–316

    Article  PubMed  CAS  Google Scholar 

  142. Miyoshi Y, Nakaya Y (1991) Angiotensin II blocks ATP-sensitive K+ channels in porcine coronary artery smooth muscle cells. Biochem Biophys Res Commun 181(2):700–706

    Article  PubMed  CAS  Google Scholar 

  143. Orie NN, Thomas AM, Perrino BA, Tinker A, Clapp LH (2009) Ca2+/calcineurin regulation of cloned vascular K ATP channels: crosstalk with the protein kinase A pathway. Br J Pharmacol 157(4):554–564

    Article  PubMed  CAS  Google Scholar 

  144. Wellman GC, Quayle JM, Standen NB (1998) ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. J Physiol 507(Pt 1):117–129

    Article  PubMed  CAS  Google Scholar 

  145. Kleppisch T, Nelson MT (1995) Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase. Proc Natl Acad Sci USA 92(26):12441–12445

    Article  PubMed  CAS  Google Scholar 

  146. Dart C, Standen NB (1993) Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery. J Physiol 471:767–786

    PubMed  CAS  Google Scholar 

  147. Quayle JM, Bonev AD, Brayden JE, Nelson MT (1994) Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A. J Physiol 475(1):9–13

    PubMed  CAS  Google Scholar 

  148. Miyoshi H, Nakaya Y (1993) Activation of ATP-sensitive K+ channels by cyclic AMP-dependent protein kinase in cultured smooth muscle cells of porcine coronary artery. Biochem Biophys Res Commun 193(1):240–247

    Article  PubMed  CAS  Google Scholar 

  149. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268(4 Pt 1):C799–C822

    PubMed  CAS  Google Scholar 

  150. Standen NB, Quayle JM (1998) K+ channel modulation in arterial smooth muscle. Acta Physiol Scand 164(4):549–557

    Article  PubMed  CAS  Google Scholar 

  151. Kubo M, Nakaya Y, Matsuoka S, Saito K, Kuroda Y (1994) Atrial natriuretic factor and isosorbide dinitrate modulate the gating of ATP-sensitive K+ channels in cultured vascular smooth muscle cells. Circ Res 74(3):471–476

    PubMed  CAS  Google Scholar 

  152. Miyoshi H, Nakaya Y, Moritoki H (1994) Nonendothelial-derived nitric oxide activates the ATP-sensitive K+ channel of vascular smooth muscle cells. FEBS Lett 345(1):47–49

    Article  PubMed  CAS  Google Scholar 

  153. Murphy ME, Brayden JE (1995) Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 486(Pt 1):47–58

    PubMed  CAS  Google Scholar 

  154. Eckly-Michel A, Martin V, Lugnier C (1997) Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation. Br J Pharmacol 122:158–164

    Article  PubMed  CAS  Google Scholar 

  155. Jiang H, Colbran JL, Francis SH, Corbin JD (1992) Direct evidence of cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J Biol Chem 267:1015–1019

    PubMed  CAS  Google Scholar 

  156. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20(21):6008–6016

    Article  PubMed  CAS  Google Scholar 

  157. Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68(6):1757–1764

    PubMed  CAS  Google Scholar 

  158. Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V, Cirino G (2011) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30(10):1998–2004

    Article  CAS  Google Scholar 

  159. Sobey CG (2001) Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 21(1):28–38

    Article  PubMed  CAS  Google Scholar 

  160. Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL (2000) Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circ Res 87(2):160–166

    PubMed  CAS  Google Scholar 

  161. Best PJ, Burnett JC, Wilson SH, Holmes DR Jr, Lerman A (2002) Dendroaspis natriuretic peptide relaxes isolated human arteries and veins. Cardiovasc Res 55(2):375–384

    Article  PubMed  CAS  Google Scholar 

  162. Schubert R, Krien U, Wulfsen I, Schiemann D, Lehmann G, Ulfig N, Veh RW, Schwarz JR, Gago H (2004) Nitric oxide donor sodium nitroprusside dilates rat small arteries by activation of inward rectifier potassium channels. Hypertension 43(4):891–896

    Article  PubMed  CAS  Google Scholar 

  163. Park WS, Han J, Kim N, Ko JH, Kim SJ, Earm YE (2005) Activation of inward rectifier K+ channels by hypoxia in rabbit coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 289(6):H2461–H2467

    Article  PubMed  CAS  Google Scholar 

  164. Son YK, Park WS, Ko JH, Han J, Kim N, Earm YE (2005) Protein kinase A-dependent activation of inward rectifier potassium channels by adenosine in rabbit coronary smooth muscle cells. Biochem Biophys Res Commun 337(4):1145–1152

    Article  PubMed  CAS  Google Scholar 

  165. Orie NN, Fry CH, Clapp LH (2006) Evidence that inward rectifier K+ channels mediate relaxation by the PGI2 receptor agonist cicaprost via a cyclic AMP-independent mechanism. Cardiovasc Res 69(1):107–115

    Article  PubMed  CAS  Google Scholar 

  166. Stull JT, Tansey MG, Tang DC, Word RA, Kamm KE (1993) Phosphorylation of myosin light chain kinase: a cellular mechanism for Ca2+ desensitization. Mol Cell Biochem 127–128:229–237

    Article  PubMed  Google Scholar 

  167. Conti MA, Adelstein RS (1981) The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3’:5’ cAMP-dependent protein kinase. J Biol Chem 256(7):3178–3181

    PubMed  CAS  Google Scholar 

  168. van Riper DA, McDaniel NL, Rembold CM (1997) Myosin light chain kinase phosphorylation in nitrovasodilator induced swine carotid artery relaxation. Biochim Biophys Acta 1355(3):323–330

    Article  PubMed  Google Scholar 

  169. Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME (1999) Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Ialpha. Science 286(5444):1583–1587

    Article  PubMed  CAS  Google Scholar 

  170. Nakamura K, Koga Y, Sakai H, Homma K, Ikebe M (2007) cGMP-dependent relaxation of smooth muscle is coupled with the change in the phosphorylation of myosin phosphatase. Circ Res 101(7):712–722

    Article  PubMed  CAS  Google Scholar 

  171. Kitazawa T, Semba S, Huh YH, Kitazawa K, Eto M (2009) Nitric oxide-induced biphasic mechanism of vascular relaxation via dephosphorylation of CPI-17 and MYPT1. J Physiol 587(Pt 14):3587–3603

    Article  PubMed  CAS  Google Scholar 

  172. Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TA (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem 279(33):34496–34504

    Article  PubMed  CAS  Google Scholar 

  173. Somlyo AV (2007) Cyclic GMP regulation of myosin phosphatase: a new piece for the puzzle? Circ Res 101(7):645–647

    Article  PubMed  CAS  Google Scholar 

  174. Wu X, Haystead TA, Nakamoto RK, Somlyo AV, Somlyo AP (1998) Acceleration of myosin light chain dephosphorylation and relaxation of smooth muscle by telokin. Synergism with cyclic nucleotide-activated kinase. J Biol Chem 273(18):11362–11369

    Article  PubMed  CAS  Google Scholar 

  175. Borman MA, MacDonald JA, Haystead TA (2004) Modulation of smooth muscle contractility by CHASM, a novel member of the smoothelin family of proteins. FEBS Lett 573(1–3):207–213

    Article  PubMed  CAS  Google Scholar 

  176. Khromov AS, Wang H, Choudhury N, McDuffie M, Herring BP, Nakamoto R, Owens GK, Somlyo AP, Somlyo AV (2006) Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation. Proc Natl Acad Sci USA 103(7):2440–2445

    Article  PubMed  CAS  Google Scholar 

  177. Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 275(28):21722–21729

    Article  PubMed  CAS  Google Scholar 

  178. Sakurada S, Takuwa N, Sugimoto N, Wang Y, Seto M, Sasaki Y, Takuwa Y (2003) Ca2+ -dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ Res 93(6):548–556

    Article  PubMed  CAS  Google Scholar 

  179. Loirand G, Guerin P, Pacaud P (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98(3):322–334

    Article  PubMed  CAS  Google Scholar 

  180. Santos-Silva AJ, Cairrão E, Verde I (2010) Study of the mechanisms regulating human umbilical artery contractility. Health (N. Y). 2(4):321–331

    Google Scholar 

  181. Bonnevier J, Arner A (2004) Actions downstream of cyclic GMP/protein kinase G can reverse protein kinase C-mediated phosphorylation of CPI-17 and Ca2+ sensitization in smooth muscle. J Biol Chem 279(28):28998–29003

    Article  PubMed  CAS  Google Scholar 

  182. Bolz SS, Vogel L, Sollinger D, Derwand R, De Wit C, Loirand G, Pohl U (2003) Nitric oxide-induced decrease in calcium sensitivity of resistance arteries is attributable to activation of the myosin light chain phosphatase and antagonized by the RhoA/Rho kinase pathway. Circulation 107(24):3081–3087

    Article  PubMed  CAS  Google Scholar 

  183. Woodrum DA, Brophy CM, Wingard CJ, Beall A, Rasmussen H (1999) Phosphorylation events associated with cyclic nucleotide-dependent inhibition of smooth muscle contraction. Am J Physiol 277(3 Pt 2):H931–H939

    PubMed  CAS  Google Scholar 

  184. Beall AC, Kato K, Goldenring JR, Rasmussen H, Brophy CM (1997) Cyclic nucleotide-dependent vasorelaxation is associated with the phosphorylation of a small heat shock-related protein. J Biol Chem 272(17):11283–11287

    Article  PubMed  CAS  Google Scholar 

  185. Salinthone S, Tyagi M, Gerthoffer WT (2008) Small heat shock proteins in smooth muscle. Pharmacol Ther 119(1):44–54

    Article  PubMed  CAS  Google Scholar 

  186. Beall A, Bagwell D, Woodrum D, Stoming TA, Kato K, Suzuki A, Rasmussen H, Brophy CM (1999) The small heat shock-related protein, HSP20, is phosphorylated on serine 16 during cyclic nucleotide-dependent relaxation. J Biol Chem 274(16):11344–11351

    Article  PubMed  CAS  Google Scholar 

  187. Rembold CM, Foster DB, Strauss JD, Wingard CJ, Eyk JE (2000) cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery. J Physiol 524(Pt 3):865–878

    Article  PubMed  CAS  Google Scholar 

  188. Woodrum D, Pipkin W, Tessier D, Komalavilas P, Brophy CM (2003) Phosphorylation of the heat shock-related protein, HSP20, mediates cyclic nucleotide-dependent relaxation. J Vasc Surg 37(4):874–881

    Article  PubMed  Google Scholar 

  189. Fan GC, Kranias EG (2010) Small heat shock protein 20 (HspB6) in cardiac hypertrophy and failure. J Mol Cell Cardiol

  190. Brophy CM, Lamb S, Graham A (1999) The small heat shock-related protein-20 is an actin-associated protein. J Vasc Surg 29(2):326–333

    Article  PubMed  CAS  Google Scholar 

  191. Flynn CR, Brophy CM, Furnish EJ, Komalavilas P, Tessier D, Thresher J, Joshi L (2005) Transduction of phosphorylated heat shock-related protein 20, HSP20, prevents vasospasm of human umbilical artery smooth muscle. J Appl Physiol 98(5):1836–1845

    Article  PubMed  CAS  Google Scholar 

  192. Brophy CM, Dickinson M, Woodrum D (1999) Phosphorylation of the small heat shock-related protein, HSP20, in vascular smooth muscles is associated with changes in the macromolecular associations of HSP20. J Biol Chem 274(10):6324–6329

    Article  PubMed  CAS  Google Scholar 

  193. Kargacin GJ, Cooke PH, Abramson SB, Fay FS (1989) Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells. J Cell Biol 108(4):1465–1475

    Article  PubMed  CAS  Google Scholar 

  194. Dreiza CM, Brophy CM, Komalavilas P, Furnish EJ, Joshi L, Pallero MA, Murphy-Ullrich JE, von Rechenberg M, Ho YS, Richardson B, Xu N, Zhen Y, Peltier JM, Panitch A (2005) Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. FASEB J 19(2):261–263

    PubMed  CAS  Google Scholar 

  195. Murphy-Ullrich JE, Pallero MA, Boerth N, Greenwood JA, Lincoln TM, Cornwell TL (1996) Cyclic GMP-dependent protein kinase is required for thrombospondin and tenascin mediated focal adhesion disassembly. J Cell Sci 109(Pt 10):2499–2508

    PubMed  CAS  Google Scholar 

  196. Castro LRV, Verde I, Cooper DMF, Fischmeister R (2006) Cyclic GMP compartmentation in rat cardiac myocytes. Circulation 113:2221–2228

    Article  PubMed  CAS  Google Scholar 

  197. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  198. Vo NK, Gettemy JM, Coghlan VM (1998) Identification of cGMP-dependent protein kinase anchoring proteins (GKAPs). Biochem Biophys Res Commun 246(3):831–835

    Article  PubMed  CAS  Google Scholar 

  199. Corbin JD, Sugden PH, Lincoln TM, Keely SL (1977) Compartmentalization of adenosine 3’:5’-monophosphate and adenosine 3’:5’-monophosphate-dependent protein kinase in heart tissue. J Biol Chem 252(11):3854–3861

    PubMed  CAS  Google Scholar 

  200. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715

    Article  PubMed  CAS  Google Scholar 

  201. Yan C, Nagel DJ, Jeon K (2007) In: Beavo J, Francis S, Houslay M (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC Press, Taylor & Francis Group, Boca Raton, pp 465–484

    Google Scholar 

  202. Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, Beavo JA, Berk BC, Yan C (2001) Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 104(19):2338–2343

    Article  PubMed  CAS  Google Scholar 

  203. Nagel DJ, Aizawa T, Jeon KI, Liu W, Mohan A, Wei H, Miano JM, Florio VA, Gao P, Korshunov VA, Berk BC, Yan C (2006) Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circ Res 98(6):777–784

    Article  PubMed  CAS  Google Scholar 

  204. Cawley SM, Sawyer CL, Brunelle KF, van der Vliet A, Dostmann WR (2007) Nitric oxide-evoked transient kinetics of cyclic GMP in vascular smooth muscle cells. Cell Signal 19(5):1023–1033

    Article  PubMed  CAS  Google Scholar 

  205. Nausch LW, Ledoux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci USA 105(1):365–370

    Article  PubMed  CAS  Google Scholar 

  206. Piggott LA, Hassell KA, Berkova Z, Morris AP, Silberbach M, Rich TC (2006) Natriuretic peptides and nitric oxide stimulate cGMP synthesis in different cellular compartments. J Gen Physiol 128(1):3–14

    Article  PubMed  CAS  Google Scholar 

  207. Gros R, Ding Q, Chorazyczewski J, Pickering JG, Limbird LE, Feldman RD (2006) Adenylyl cyclase isoform-selective regulation of vascular smooth muscle proliferation and cytoskeletal reorganization. Circ Res 99(8):845–852

    Article  PubMed  CAS  Google Scholar 

  208. Beavo JA, Brunton LL (2002) Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3(9):710–718

    Article  PubMed  CAS  Google Scholar 

  209. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5(12):959–970

    Article  PubMed  CAS  Google Scholar 

  210. Zhong J, Hume JR, Keef KD (1999) Anchoring protein is required for cAMP-dependent stimulation of L-type Ca2+ channels in rabbit portal vein. Am J Physiol 277(4 Pt 1):C840–C844

    PubMed  CAS  Google Scholar 

  211. Hayabuchi Y, Dart C, Standen NB (2001) Evidence for involvement of A-kinase anchoring protein in activation of rat arterial K(ATP) channels by protein kinase A. J Physiol 536(Pt 2):421–427

    Article  PubMed  CAS  Google Scholar 

  212. Indolfi C, Stabile E, Coppola C, Gallo A, Perrino C, Allevato G, Cavuto L, Torella D, Di Lorenzo E, Troncone G, Feliciello A, Avvedimento E, Chiariello M (2001) Membrane-bound protein kinase A inhibits smooth muscle cell proliferation in vitro and in vivo by amplifying cAMP-protein kinase A signals. Circ Res 88(3):319–324

    PubMed  CAS  Google Scholar 

  213. Michel V, Bakovic M (2007) Lipid rafts in health and disease. Biol Cell 99(3):129–140

    Article  PubMed  CAS  Google Scholar 

  214. Sampson LJ, Hayabuchi Y, Standen NB, Dart C (2004) Caveolae localize protein kinase A signaling to arterial ATP-sensitive potassium channels. Circ Res 95(10):1012–1018

    Article  PubMed  CAS  Google Scholar 

  215. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  CAS  Google Scholar 

  216. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293(5539):2449–2452

    Article  PubMed  CAS  Google Scholar 

  217. Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J Jr, Chien KR (2002) Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci USA 99(17):11375–11380

    Article  PubMed  CAS  Google Scholar 

  218. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276(41):38121–38138

    PubMed  CAS  Google Scholar 

  219. Gratton JP, Bernatchez P, Sessa WC (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94(11):1408–1417

    Article  PubMed  CAS  Google Scholar 

  220. Bergdahl A, Sward K (2004) Caveolae-associated signalling in smooth muscle. Can J Physiol Pharmacol 82(5):289–299

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the FCT (Fundação para a Ciência e a Tecnologia) for supporting the fellowship grant SFRH/BD/36756/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Verde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgado, M., Cairrão, E., Santos-Silva, A.J. et al. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell. Mol. Life Sci. 69, 247–266 (2012). https://doi.org/10.1007/s00018-011-0815-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0815-2

Keywords

Navigation