Skip to main content

Neuropeptides and Their Physiological Functions in Mollusks

  • Chapter
  • First Online:
Biological Effects by Organotins

Abstract

Neuropeptides have essential functions in the neural regulation of physiological functions of various tissues and organs, as well as of animal behaviors. Many neuropeptides have been identified in mollusks, and investigation of their functions is currently proceeding. In this review, I attempt to give an overview of the neuropeptides in mollusks. Then, regulatory actions of neuropeptides are described with a special reference to reproduction. I chose three neuropeptides: egg-laying hormone (ELH) and caudodorsal cell hormone (CDCH), gonadotropin-releasing hormone (GnRH), and APGWamide. ELH and CDCH are well-investigated peptide hormones that trigger complex egg-laying behaviors in Aplysia and Lymnaea. GnRH, which is a key peptide that induces gonadal maturation and ovulation in mammals, also regulates gonadal maturation in bivalves and cephalopods. However, evidence suggests that GnRH also mediates other activities such as feeding and locomotion in mollusks. APGWamide, which regulates the male copulatory activity in freshwater snails, seems to have pheromonal actions in bivalves and cephalopods. These facts collectively emphasize the diverse actions of neuropeptides and peptide hormones on the regulation of reproduction in mollusks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACEP:

Achatina cardioexcitatory peptide

AGP:

atrial gland peptide

AKH:

adipokinetic hormone

BCP:

bag cell peptide

CDC:

caudodorsal cell

CDCH:

caudodorsal cell hormone

CDCP:

caudodorsal cell peptide

EC50 :

effective concentration that induce 50 % response

EDC:

endocrine-disrupting chemical

ELH:

egg-laying hormone

GnRH:

gonadotropin-releasing hormone

GPCR:

G protein-coupled receptor

HPLC:

high-performance liquid chromatography

LC-ESI-MS/MS:

liquid chromatography–electrospray ionization tandem mass spectrometry

LUQ:

left upper quadrant

NMDA:

N-methyl-D-aspartate

PC2:

prohormone convertase 2

PCR:

polymerase chain reaction

Q-PCR:

quantitative PCR

PTM:

post-translational modification

RT-PCR:

reverse transcription PCR

TEP:

Thais excitatory peptide

References

  • Alevizos A, Weiss KR, Koester J (1991) Synaptic actions of identified peptidergic neuron R15 in Aplysia. III. Activation of the large hermaphroditic duct. J Neurosci 11:1282–1290

    CAS  Google Scholar 

  • Amano M, Moriyama S, Okubo K et al (2010a) Biochemical and immunohistochemical analyses of a GnRH-like peptide in the neural ganglia of the Pacific abalone Haliotis discus hannai (Gastropoda). Zool Sci 27:656–661. doi:10.2108/zsj.27.656

    Article  Google Scholar 

  • Amano M, Yokoyama T, Amiya N et al (2010b) Biochemical and immunohistochemical analyses of GnRH-like peptides in the nerve ganglion of the chiton, Acanthopleura japonica. Zool Sci 27:924–930. doi:10.2108/zsj.27.924

    Article  CAS  Google Scholar 

  • Baba Y, Matsuo H, Schally AV (1971) Structure of the porcine LH- and FSH-releasing hormone. II. Confirmation of the proposed structure by conventional sequential analyses. Biochem Biophys Res Commun 44:459–463

    Article  CAS  Google Scholar 

  • Barlow LA, Truman JW (1992) Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotis rufescens. J Neurobiol 23:829–844

    Article  CAS  Google Scholar 

  • Bernay B, Baudy-Floc’h M, Zanuttini B et al (2006) Ovarian and sperm regulatory peptides regulate ovulation in the oyster Crassostrea gigas. Mol Reprod Dev 73:607–616

    Article  CAS  Google Scholar 

  • Bigot L, Zatylny-Gaudin C, Rodet F et al (2012) Characterization of GnRH-related peptides from the Pacific oyster Crassostrea gigas. Peptides 34:303–310. doi:10.1016/j.peptides.2012.01.017

    Article  CAS  Google Scholar 

  • Birchenough AC, Barnes N, Evans SM et al (2002) A review and assessment of tributyltin contamination in the North Sea, based on surveys of butyltin tissue burdens and imposex/intersex in four species of neogastropods. Mar Pollut Bull 44:534–543

    Article  CAS  Google Scholar 

  • Blankenship JE, Haskins JT (1979) Electronic coupling among neuroendocrine cells in Aplysia. J Neurophysiol 42:347–355

    CAS  Google Scholar 

  • Brown RO, Mayeri E (1989) Positive feedback by autoexcitatory neuropeptides in neuroendocrine bag cells of Aplysia. J Neurosci 9:1443–1451

    CAS  Google Scholar 

  • Brown RO, Pulst SM, Mayeri E (1989) Neuroendocrine bag cells of Aplysia are activated by bag cell peptide-containing neurons in the pleural ganglion. J Neurophysiol 61:1142–1152

    CAS  Google Scholar 

  • Buckett KJ, Peters M, Dockray GJ et al (1990) Regulation of heartbeat in Lymnaea by motoneurons containing FMRFamide-like peptides. J Neurophysiol 63:1426–1435

    CAS  Google Scholar 

  • Budelmann BU (1995) The cephalopod nervous system: what evolution has made of the molluscan design. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhauser Verlag, Basel

    Google Scholar 

  • Castro LF, Lima D, Machado A et al (2007) Imposex induction is mediated through the retinoid X receptor signalling pathway in the neogastropod Nucella lapillus. Aquat Toxicol 85:57–66

    Article  CAS  Google Scholar 

  • Chase R (2002) Behavior and its neural control in gastropod molluscs. Oxford University Press, New York

    Google Scholar 

  • Chase R, Antkowiak T, Geoffroy E et al (2004) Why the ovotestis of Helix aspersa is innervated. Acta Biol Hung 55:239–249. doi:10.1556/ABiol.55.2004.1-4.29

    Article  CAS  Google Scholar 

  • Chiu AY, Strumwasser F (1981) An immunohistochemical study of the neuropeptidergic bag cells of Aplysia. J Neurosci 1:812–826

    CAS  Google Scholar 

  • Chiu AY, Hunkapiller MW, Heller E et al (1979) Purification and primary structure of the neuropeptide egg-laying hormone of Aplysia californica. Proc Natl Acad Sci USA 76:6656–6660

    Article  CAS  Google Scholar 

  • Clare AS (1986) Induction of egg spawning in Gibbula umbilicalis (da Costa) by an homogenate of the cerebral ganglia. Gen Comp Endocrinol 64:85–90

    Article  CAS  Google Scholar 

  • Cox KJ, Tensen CP, Van der Schors RC et al (1997) Cloning, characterization, and expression of a G-protein-coupled receptor from Lymnaea stagnalis and identification of a leucokinin-like peptide, PSFHSWSamide, as its endogenous ligand. J Neurosci 17:1197–1205

    CAS  Google Scholar 

  • Croll RP, Van Minnen J (1992) Distribution of the peptide Ala-Pro-Gly-Trp-NH2 (APGWamide) in the nervous system and periphery of the snail Lymnaea stagnalis as revealed by immunocytochemistry and in situ hybridization. J Comp Neurol 324:567–574

    Article  CAS  Google Scholar 

  • Davenel A, Quellec S, Pouvreau S (2006) Noninvasive characterization of gonad maturation and determination of the sex of Pacific oysters by MRI. Magn Reson Imaging 24:1103–1110

    Article  Google Scholar 

  • De Boer PA, Ter Maat A, Pieneman AW et al (1997) Functional role of peptidergic anterior lobe neurons in male sexual behavior of the snail Lymnaea stagnalis. J Neurophysiol 78:2823–2833

    Google Scholar 

  • De Camargo AC, Da Fonseca MJ, Caldo H et al (1982) Influence of the carboxyl terminus of luteinizing hormone-releasing hormone and bradykinin on hydrolysis by brain endo-oligopeptidases. J Biol Chem 257:9265–9267

    Google Scholar 

  • de Lange RP, van Minnen J (1998) Localization of the neuropeptide APGWamide in gastropod molluscs by in situ hybridization and immunocytochemistry. Gen Comp Endocrinol 109:166–174

    Article  Google Scholar 

  • De Lange RP, Joosse J, Van Minnen J (1998) Multi-messenger innervation of the male sexual system of Lymnaea stagnalis. J Comp Neurol 390:564–577

    Article  Google Scholar 

  • De Lisa E, Carella F, De Vico G et al (2013) The gonadotropin-releasing hormone (GnRH)-like molecule in prosobranch Patella caerulea: potential biomarker of endocrine-disrupting compounds in marine environments. Zool Sci 30:135–140. doi:10.2108/zsj.30.135

    Article  CAS  Google Scholar 

  • Di Cosmo A, Di Cristo C (1998) Neuropeptidergic control of the optic gland of Octopus vulgaris: FMRF-amide and GnRH immunoreactivity. J Comp Neurol 398:1–12

    Article  Google Scholar 

  • Di Cristo C (2013) Nervous control of reproduction in Octopus vulgaris: a new model. Invertebr Neurosci 13:27–34. doi:10.1007/s10158-013-0149-x

    Article  CAS  Google Scholar 

  • Di Cristo C, Di Cosmo A (2007) Neuropeptidergic control of Octopus oviducal gland. Peptides 28:163–168

    Article  CAS  Google Scholar 

  • Di Cristo C, Delli Bovi P, Di Cosmo A (2003). Role of FMRFamide in the reproduction of Octopus vulgaris: molecular analysis and effect on visual input. Peptides 24: 1525–1532. doi: S0196978103003218 [pii]

    Google Scholar 

  • Di Cristo C, Van Minnen J, Di Cosmo A (2005) The presence of APGWamide in Octopus vulgaris: a possible role in the reproductive behavior. Peptides 26:53–62

    Article  CAS  Google Scholar 

  • Di Cristo C, De Lisa E, Di Cosmo A (2009) GnRH in the brain and ovary of Sepia officinalis. Peptides 30:531–537. doi:10.1016/j.peptides.2008.07.008

    Article  CAS  Google Scholar 

  • Dudek FE, Tobe SS (1978) Bag cell peptide acts directly on ovotestis of Aplysia californica: basis for an in vitro bioassay. Gen Comp Endocrinol 36:618–627

    Article  CAS  Google Scholar 

  • Dudek FE, Cobbs JS, Pinsker HM (1979) Bag cell electrical activity underlying spontaneous egg laying in freely behaving Aplysia brasiliana. J Neurophysiol 42:804–817

    CAS  Google Scholar 

  • Dudek FE, Weir G, Acosta-Urquidi J et al (1980) A secretion from neuroendocrine bag cells evokes egg release in vitro from ovotestis of Aplysia californica. Gen Comp Endocrinol 40:241–244

    Article  CAS  Google Scholar 

  • Duvail L, Lopez E, Fouchereau-Peron M (1997) Characterization of a calcitonin gene related peptide-like molecule in the abalone, Haliotis tuberculata. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 116:155–159

    Article  CAS  Google Scholar 

  • Ebberink RH, van Loenhout H, Geraerts WP et al (1985) Purification and amino acid sequence of the ovulation neurohormone of Lymnaea stagnalis. Proc Natl Acad Sci USA 82:7767–7771

    Article  CAS  Google Scholar 

  • Elekes K, Rozsa KS (1984) Synaptic organization of a multifunctional interneuron in the central nervous system of Helix pomatia L. Cell Tissue Res 236:677–683

    Article  CAS  Google Scholar 

  • Enriquez-Diaz M, Pouvreau S, Chavez-Villalba J et al (2009) Gametogenesis, reproductive investment, and spawning behavior of the Pacific oyster Crassostrea gigas: evidence of an environment-dependent strategy. Aquac Int 17:491–506

    Article  Google Scholar 

  • Favrel P, Mathieu M (1996) Molecular cloning of a cDNA encoding the precursor of Ala-Pro-Gly-Trp amide-related neuropeptides from the bivalve mollusc Mytilus edulis. Neurosci Lett 205:210–214

    Article  CAS  Google Scholar 

  • Fisher JM, Sossin W, Newcomb R et al (1988) Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell 54:813–822

    Article  CAS  Google Scholar 

  • Fossier P, Baux G, Tauc L (1994) Presynaptic mechanisms regulating Ca2+ concentration triggering acetylcholine release at an identified neuro-neuronal synapse of Aplysia. Neuroscience 63:405–414

    Article  CAS  Google Scholar 

  • Franchini A, Rebecchi B, Fantin AM (1994) Immunocytochemical detection of endocrine cells in the gut of Viviparus ater (Mollusca, Gastropoda). Eur J Histochem 38:237–244

    CAS  Google Scholar 

  • Fretter V (1984) Prosobranch. In: Tompa AS, Verdonk NH, van den Biggelaar JAM (eds) Reproduction, vol 7. Academic Press Inc, Orlando, pp 1–45

    Chapter  Google Scholar 

  • Fujimoto K, Kubota I, Yasuda-Kamatani Y et al (1991) Purification of achatin-I from the atria of the African giant snail, Achatina fulica, and its possible function. Biochem Biophys Res Commun 177:847–853

    Article  CAS  Google Scholar 

  • Furgal SM, Brownell PH (1987) Ganglionic circulation and its effects on neurons controlling cardiovascular functions in Aplysia californica. J Exp Zool 244:347–363. doi:10.1002/jez.1402440302

    Article  CAS  Google Scholar 

  • Furukawa Y, Nakamaru K, Wakayama H et al (2001) The enterins: a novel family of neuropeptides isolated from the enteric nervous system and CNS of Aplysia. J Neurosci 21:8247–8261

    CAS  Google Scholar 

  • Furukawa Y, Nakamaru K, Sasaki K et al (2003) PRQFVamide, a novel pentapeptide identified from the CNS and gut of Aplysia. J Neurophysiol 89:3114–3127

    Article  CAS  Google Scholar 

  • Furukawa Y, Miyawaki Y, Abe G (2006) Molecular cloning and functional characterization of the Aplysia FMRFamide-gated Na+ channel. Pflugers Arch 451:646–656

    Article  CAS  Google Scholar 

  • Geiger JE, Hickey CM, Magoski NS (2009) Ca2+ entry through a non-selective cation channel in Aplysia bag cell neurons. Neuroscience 162:1023–1038. doi:10.1016/j.neuroscience.2009.05.006

    Article  CAS  Google Scholar 

  • Geraerts WP, Bohlken S (1976) The control of ovulation in the hermaphroditic freshwater snail Lymnaea stagnalis by the neurohormone of the caudodorsal cells. Gen Comp Endocrinol 28:350–357

    Article  CAS  Google Scholar 

  • Geraerts WPM, Joosse J (1984) Freshwater snails (Basommatophora). In: Tompa AS, Verdonk NH, van den Biggelaar JAM (eds) Reproduction, vol 7. Academic, Orlando, pp 141–207

    Chapter  Google Scholar 

  • Geraerts WP, Tensen CP, Hogenes TM (1983) Multiple release of peptides by electrically active neurosecretory caudo-dorsal cells of Lymnaea stagnalis. Neurosci Lett 41:151–155

    Article  CAS  Google Scholar 

  • Geraerts WPM, Vreugdenhil E, Ebberink RH (1988) Bioactive peptides in molluscs. In: Thorndyke MC, Goldworthy GJ (eds) Neurohormones in invertebrates. Cambridge University Press, Cambridge, pp 261–282

    Chapter  Google Scholar 

  • Goldberg JI, Garofalo R, Price CJ et al (1993) Presence and biological activity of a GnRH-like factor in the nervous system of Helisoma trivolvis. J Comp Neurol 336:571–582. doi:10.1002/cne.903360409

    Article  CAS  Google Scholar 

  • Gorbman A, Whiteley A, Kavanaugh S (2003) Pheromonal stimulation of spawning release of gametes by gonadotropin-releasing hormone in the chiton, Mopalia sp. Gen Comp Endocrinol 131:62–65

    Article  CAS  Google Scholar 

  • Guillemin R (1978) Peptides in the brain: the new endocrinology of the neuron. Science 202:390–402

    Article  CAS  Google Scholar 

  • Hadfield MG, Switzer-Dunlap M (1984) Opistobranchs. In: Tompa AS, Verdonk NH, van den Biggelaar JAM (eds) Reproduction, vol 7. Academic, Orlando, pp 209–350

    Chapter  Google Scholar 

  • Hall JD, Lloyd PE (1990) Involvement of pedal peptide in locomotion in Aplysia: modulation of foot muscle contractions. J Neurobiol 21:858–868. doi:10.1002/neu.480210604

    Article  CAS  Google Scholar 

  • Harada A, Yoshida M, Minakata H et al (1993) Structure and function of the molluscan myoactive tetradecapeptides. Zool Sci 10:257–265

    CAS  Google Scholar 

  • Haskins JT, Blankenship JE (1979) Interactions between bilateral clusters of neuroendocrine cells in Aplysia. J Neurophysiol 42:356–367

    CAS  Google Scholar 

  • Hauser F, Grimmelikhuijzen CJ (2014) Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. Gen Comp Endocrinol 209C:35–49. doi:10.1016/j.ygcen.2014.07.009

    Article  CAS  Google Scholar 

  • Heller E, Kaczmarek LK, Hunkapiller MW et al (1980) Purification and primary structure of two neuroactive peptides that cause bag cell after discharge and egg-laying in Aplysia. Proc Natl Acad Sci USA 77:2328–2332

    Article  CAS  Google Scholar 

  • Henry J, Zatylny C (2002) Identification and tissue mapping of APGWamide-related peptides in Sepia officinalis using LC-ESI-MS/MS. Peptides 23:1031–1037

    Article  CAS  Google Scholar 

  • Henry J, Favrel P, Boucaud-Camou E (1997) Isolation and identification of a novel Ala-Pro-Gly-Trp-amide-related peptide inhibiting the motility of the mature oviduct in the cuttlefish, Sepia officinalis. Peptides 18:1469–1474

    Article  CAS  Google Scholar 

  • Henry J, Zatylny C, Favrel P (2000) HPLC and electrospray ionization mass spectrometry as tools for the identification of APGWamide-related peptides in gastropod and bivalve mollusks: comparative activities on Mytilus muscles. Brain Res 862:162–170

    Article  CAS  Google Scholar 

  • Hermann PM, de Lange RP, Pieneman AW et al (1997) Role of neuropeptides encoded on CDCH-1 gene in the organization of egg-laying behavior in the pond snail, Lymnaea stagnalis. J Neurophysiol 78:2859–2869

    CAS  Google Scholar 

  • Horiguchi T (2006) Masculinization of female gastropod mollusks induced by organotin compounds, focusing on mechanism of actions of tributyltin and triphenyltin for development of imposex. Environ Sci 13:77–87

    CAS  Google Scholar 

  • Hua N, Ako H (2013) Maturation and spawning induction in Hawaiian opihi Cellana spp. by hormone GnRH. Commun Agric Appl Biol Sci 78:194–197

    CAS  Google Scholar 

  • Iversen S, Iversen L, Saper CB (2000) The autonomic nervous system and the hypothalamus. In: Kandel E, Schwartz JH, Jessel TM (eds) Principles of neural science. McGraw-Hill, New York, pp 960–981

    Google Scholar 

  • Iwakoshi E, Takuwa-Kuroda K, Fujisawa Y et al (2002) Isolation and characterization of a GnRH-like peptide from Octopus vulgaris. Biochem Biophys Res Commun 291:1187–1193. doi:10.1006/bbrc.2002.6594

    Article  CAS  Google Scholar 

  • Iwakoshi-Ukena E, Ukena K, Takuwa-Kuroda K et al (2004) Expression and distribution of octopus gonadotropin-releasing hormone in the central nervous system and peripheral organs of the octopus (Octopus vulgaris) by in situ hybridization and immunohistochemistry. J Comp Neurol 477:310–323

    Article  CAS  Google Scholar 

  • Jung LH, Kavanaugh SI, Sun B et al (2014) Localization of a molluscan gonadotropin-releasing hormone in Aplysia californica by in situ hybridization and immunocytochemistry. Gen Comp Endocrinol 195:132–137. doi:10.1016/j.ygcen.2013.11.007

    Article  CAS  Google Scholar 

  • Kamatani Y, Minakata H, Nomoto K et al (1991) Isolation of achatin-I, a neuroactive tetrapeptide having a D-phenylalanine residue, from Achatina ganglia, and its effects on Achatina giant neurones. Comp Biochem Physiol C 98:97–103

    CAS  Google Scholar 

  • Kanda T, Kuroki Y, Kubota I et al (1990) Neuropeptides isolated from the ganglia of a prosobranch mollusc, Fusinus ferrugineus. Pept Chem 1989:39–44

    Google Scholar 

  • Kanda A, Takuwa-Kuroda K, Iwakoshi-Ukena E et al (2003) Cloning of Octopus cephalotocin receptor, a member of the oxytocin/vasopressin superfamily. J Endocrinol 179:281–291

    Article  CAS  Google Scholar 

  • Kanda A, Takahashi T, Satake H et al (2006) Molecular and functional characterization of a novel gonadotropin-releasing-hormone receptor isolated from the common octopus (Octopus vulgaris). Biochem J 395:125–135

    Article  CAS  Google Scholar 

  • Kanda A, Takuwa-Kuroda K, Aoyama M et al (2007) A novel tachykinin-related peptide receptor of Octopus vulgaris: evolutionary aspects of invertebrate tachykinin and tachykinin-related peptide. FEBS J 274:2229–2239. doi:10.1111/j.1742-4658.2007.05760.x

    Article  CAS  Google Scholar 

  • Kauer JA, Fisher TE, Kaczmarek LK (1987) Alpha bag cell peptide directly modulates the excitability of the neurons that release it. J Neurosci 7:3623–3632

    CAS  Google Scholar 

  • Kellett E, Perry SJ, Santama N et al (1996) Myomodulin gene of Lymnaea: structure, expression, and analysis of neuropeptides. J Neurosci 16:4949–4957

    CAS  Google Scholar 

  • Ketata I, Denier X, Hamza-Chaffai A et al (2008) Endocrine-related reproductive effects in molluscs. Comp Biochem Physiol C Toxicol Pharmacol 147:261–270. doi:S1532-0456(07)00247-5 [pii] 10.1016/j.cbpc.2007.11.007

  • Koene JM (2010) Neuro-endocrine control of reproduction in hermaphroditic freshwater snails: mechanisms and evolution. Front Behav Neurosci 4:167. doi:10.3389/fnbeh.2010.00167

    Google Scholar 

  • Koene JM, Jansen RF, Ter Maat A et al (2000) A conserved location for the central nervous system control of mating behaviour in gastropod molluscs: evidence from a terrestrial snail. J Exp Biol 203:1071–1080

    CAS  Google Scholar 

  • Koert CE, Spencer GE, van Minnen J et al (2001) Functional implications of neurotransmitter expression during axonal regeneration: serotonin, but not peptides, auto-regulate axon growth of an identified central neuron. J Neurosci 21:5597–5606

    CAS  Google Scholar 

  • Koester J, Alevizos A (1989) Innervation of the kidney of Aplysia by L10, the LUQ cells, and an identified peripheral motoneuron. J Neurosci 9:4078–4088

    CAS  Google Scholar 

  • Kreil G (1994a) Conversion of l- to d-amino acids: a posttranslational reaction. Science 266:996–997

    Article  CAS  Google Scholar 

  • Kreil G (1994b) Peptides containing a d-amino acid from frogs and molluscs. J Biol Chem 269:10967–10970

    CAS  Google Scholar 

  • Kupfermann I (1970) Stimulation of egg laying by extracts of neuroendocrine cells (bag cells) of abdominal ganglion of Aplysia. J Neurophysiol 33:877–881

    CAS  Google Scholar 

  • Kupfermann I, Kandel ER (1970) Electrophysiological properties and functional interconnections of two symmetrical neurosecretory clusters (bag cells) in abdominal ganglion of Aplysia. J Neurophysiol 33:865–876

    CAS  Google Scholar 

  • Kuroki Y, Kanda T, Kubota I et al (1990) A molluscan neuropeptide related to the crustacean hormone, RPCH. Biochem Biophys Res Commun 167:273–279

    Article  CAS  Google Scholar 

  • Kuroki Y, Kanda T, Kubota I et al (1993) FMRFamide-related peptides isolated from the prosobranch mollusc Fusinus ferrugineus. Acta Biol Hung 44:41–44

    CAS  Google Scholar 

  • Kurosky A, Gorham EL, Van Heumen WR et al (1997) Expression and genetic variation of the Aplysia egg-laying hormone gene family in the atrial gland. Invertebr Neurosci 2:261–271

    Article  CAS  Google Scholar 

  • Lee W, Wayne NL (2004) Secretion of locally synthesized neurohormone from neurites of peptidergic neurons. J Neurochem 88:532–537

    Article  CAS  Google Scholar 

  • Leng G, Ludwig M (2008) Neurotransmitters and peptides: whispered secrets and public announcements. J Physiol 586:5625–5632. doi:10.1113/jphysiol.2008.159103

    Article  CAS  Google Scholar 

  • Levitan ES, Kramer RH, Levitan IB (1987) Augmentation of bursting pacemaker activity by egg-laying hormone in Aplysia neuron R15 is mediated by a cyclic AMP-dependent increase in Ca2+ and K+ currents. Proc Natl Acad Sci USA 84:6307–6311

    Article  CAS  Google Scholar 

  • Li KW, Jimenez CR, Van Veelen PA et al (1994) Processing and targeting of a molluscan egg-laying peptide prohormone as revealed by mass spectrometric peptide fingerprinting and peptide sequencing. Endocrinology 134:1812–1819

    CAS  Google Scholar 

  • Lingueglia E, Champigny G, Lazdunski M et al (1995) Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature (Lond) 378:730–733

    Article  CAS  Google Scholar 

  • Luo CW, Dewey EM, Sudo S et al (2005) Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci USA 102:2820–2825. doi:10.1073/pnas.0409916102

    Article  CAS  Google Scholar 

  • Mackie GL (1984) Bivalves. In: Tompa AS, Verdonk NH, van den Biggelaar JAM (eds) Reproduction, vol 7. Academic, Orlando, pp 351–418

    Chapter  Google Scholar 

  • Magoski NS (2004) Regulation of an Aplysia bag-cell neuron cation channel by closely associated protein kinase A and a protein phosphatase. J Neurosci 24:6833–6841. doi:10.1523/JNEUROSCI.1694-04.2004.24/30/6833[pii]

  • Matsuo H, Baba Y, Nair RM et al (1971) Structure of the porcine LH- and FSH-releasing hormone. I. The proposed amino acid sequence. Biochem Biophys Res Commun 43:1334–1339

    Article  CAS  Google Scholar 

  • Mayeri E, Rothman BS, Brownell PH et al (1985) Nonsynaptic characteristics of neurotransmission mediated by egg-laying hormone in the abdominal ganglion of Aplysia. J Neurosci 5:2060–2077

    CAS  Google Scholar 

  • Mentlein R (1988) Proline residues in the maturation and degradation of peptide hormones and neuropeptides. FEBS Lett 234:251–256

    Article  CAS  Google Scholar 

  • Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158:5–14. doi:10.1111/j.1476-5381.2009.00169.x

    Article  CAS  Google Scholar 

  • Minakata H, Kuroki Y, Ikeda T et al (1991) Effects of the neuropeptide APGW-amide and related compounds on molluscan muscles: GW-amide shows potent modulatory effects. Comp Biochem Physiol C 100:565–571

    Article  CAS  Google Scholar 

  • Minakata H, Shigeno S, Kano N et al (2009) Octopus gonadotrophin-releasing hormone: a multifunctional peptide in the endocrine and nervous systems of the cephalopod. J Neuroendocrinol 21:322–326. doi:10.1111/j.1365-2826.2009.01852.x

    Article  CAS  Google Scholar 

  • Morishita F, Furukawa Y (2006) Neuropeptides in Aplysia: key players for the neural regulation of physiological functions and behavior. In: Satake H (ed) Invertebrate neuropeptides and hormones: basic knowledge and recent advances. Transworld Research Network, Trivandrum, pp 37–73

    Google Scholar 

  • Morishita F, Nakanishi Y, Kaku S et al (1997) A novel D-amino-acid-containing peptide isolated from Aplysia heart. Biochem Biophys Res Commun 240:354–358. doi:S0006-291X(97)97659-2 [pii] 10.1006/bbrc.1997.7659

  • Morishita F, Matsushima O, Furukawa Y et al (2003) Deamidase inactivates a D-amino acid-containing Aplysia neuropeptide. Peptides 24:45–51

    Article  CAS  Google Scholar 

  • Morishita F, Minakata H, Takeshige K et al (2006a) Purifications, physiological functions and localizations of neuropeptides in a prosobranch gastropod, Thais clavigera. Pept Sci 2005:43–46

    Google Scholar 

  • Morishita F, Minakata H, Takeshige K et al (2006b) Novel excitatory neuropeptides isolated from a prosobranch gastropod, Thais clavigera: the molluscan counterpart of the annelidan GGNG peptides. Peptides 27:483–492

    Article  CAS  Google Scholar 

  • Morishita F, Furukawa Y, Matsushima O et al (2010) Regulatory actions of neuropeptides and peptide hormones on the reproduction of molluscs. Can J Zool 88:825–845

    Article  CAS  Google Scholar 

  • Morishita F, Furukawa Y, Kodani Y et al (2015) Molecular cloning of precursors for TEP-1 and TEP-2: the GGNG peptide-related peptides of a prosobranch gastropod, Thais clavigera. Peptides 68:72–82

    Google Scholar 

  • Moroz LL (2006) Localization of putative nitrergic neurons in peripheral chemosensory areas and the central nervous system of Aplysia californica. J Comp Neurol 495:10–20. doi:10.1002/cne.20842

    Article  CAS  Google Scholar 

  • Muneoka Y, Morishita F, Furukawa Y et al (2000) Comparative aspects of invertebrate neuropeptides. Acta Biol Hung 51:111–132

    CAS  Google Scholar 

  • Nagle GT, Painter SD, Blankenship JE et al (1986) Evidence for the expression of three genes encoding homologous atrial gland peptides that cause egg laying in Aplysia. J Biol Chem 261:7853–7859

    CAS  Google Scholar 

  • Nagle GT, Painter SD, Blankenship JE et al (1988) Proteolytic processing of egg-laying hormone-related precursors in Aplysia. Identification of peptide regions critical for biological activity. J Biol Chem 263:9223–9237

    CAS  Google Scholar 

  • Nagle GT, de Jong-Brink M, Painter SD et al (1990) Delta-bag cell peptide from the egg-laying hormone precursor of Aplysia. Processing, primary structure, and biological activity. J Biol Chem 265:22329–22335

    CAS  Google Scholar 

  • Nagle GT, van Heumen WR, Knock SL et al (1993) Occurrence of a furin-like prohormone processing enzyme in Aplysia neuroendocrine bag cells. Comp Biochem Physiol B 105:345–348

    CAS  Google Scholar 

  • Nagle GT, Garcia AT, Knock SL et al (1995) Molecular cloning, cDNA sequence, and localization of a prohormone convertase (PC2) from the Aplysia atrial gland. DNA Cell Biol 14:145–154

    Article  CAS  Google Scholar 

  • Nakamura S, Osada M, Kijima A (2007) Involvement of GnRH neuron in the spermatogonial proliferation of the scallop, Patinopecten yessoensis. Mol Reprod Dev 74:108–115. doi:10.1002/mrd.20544

    Article  CAS  Google Scholar 

  • Nambu JR, Scheller RH (1986) Egg-laying hormone genes of Aplysia: evolution of the ELH gene family. J Neurosci 6:2026–2036

    CAS  Google Scholar 

  • Narusuye K, Hamaguchi A, Nagahama T (2013) Activity changes in jaw motor neurons induced by egg-laying hormone contribute to the feeding suppression during egg-laying behavior in Aplysia kurodai. Neurosci Res 76:31–41. doi:10.1016/j.neures.2013.03.001

    Article  CAS  Google Scholar 

  • Newcomb RW, Scheller RH (1990) Regulated release of multiple peptides from the bag cell neurons of Aplysia californica. Brain Res 521:229–237

    Article  CAS  Google Scholar 

  • Nishikawa J, Mamiya S, Kanayama T et al (2004) Involvement of the retinoid X receptor in the development of imposex caused by organotins in gastropods. Environ Sci Technol 38:6271–6276

    Article  CAS  Google Scholar 

  • Nuurai P, Poljaroen J, Tinikul Y et al (2010) The existence of gonadotropin-releasing hormone-like peptides in the neural ganglia and ovary of the abalone, Haliotis asinina L. Acta Histochem 112:557–566. doi:10.1016/j.acthis.2009.06.002

    Article  CAS  Google Scholar 

  • Nuurai P, Primphon J, Seangcharoen T et al (2014) Immunohistochemical detection of GnRH-like peptides in the neural ganglia and testis of Haliotis asinina. Microsc Res Tech 77:110–119. doi:10.1002/jemt.22304

    Article  CAS  Google Scholar 

  • Oberdorster E, McClellan-Green P (2002) Mechanisms of imposex induction in the mud snail, Ilyanassa obsoleta: TBT as a neurotoxin and aromatase inhibitor. Mar Environ Res 54:715–718. doi:S0141-1136(02)00118-6 [pii]

    Google Scholar 

  • O’Dor RK, Wells MJ (1973) Yolk protein synthesis in the ovary of Octopus vulgaris and its control by the optic gland gonadotropin. J Exp Biol 59:665–674

    Google Scholar 

  • Osada M, Treen N (2013) Molluscan GnRH associated with reproduction. Gen Comp Endocrinol 181:254–258. doi:10.1016/j.ygcen.2012.09.002

    Article  CAS  Google Scholar 

  • Owens DF, Menon JG, Rothman BS (1992) Structure–activity relationship of the neurotransmitter alpha-bag cell peptide on Aplysia LUQ neurons: implications regarding its inactivation in the extracellular space. J Neurobiol 23:656–670. doi:10.1002/neu.480230605

    Article  CAS  Google Scholar 

  • Painter SD, Kalman VK, Nagle GT et al (1985) The anatomy and functional morphology of the large hermaphroditic duct of three species of Aplysia, with special reference to the atrial gland. J Morphol 186:167–194

    Article  CAS  Google Scholar 

  • Painter SD, Rock MK, Nagle GT et al (1988) Peptide B induction of bag-cell activity in Aplysia: localization of sites of action to the cerebral and pleural ganglia. J Neurobiol 19:695–706

    Article  CAS  Google Scholar 

  • Pazos AJ, Mathieu M (1999) Effects of five natural gonadotropin-releasing hormones on cell suspensions of marine bivalve gonad: stimulation of gonial DNA synthesis. Gen Comp Endocrinol 113:112–120. doi:S0016-6480(98)97186-6 [pii] 10.1006/gcen.1998.7186

  • Pinsker HM, Dudek FE (1977) Bag cell control of egg laying in freely behaving Aplysia. Science 197:490–493. doi:197/4302/490 [pii] 10.1126/science.197.4302.490

  • Ram JL (1977) Hormonal control of reproduction in Busycon: laying of egg capsules caused by nervous system extracts. Biol Bull 152:221–232

    Article  CAS  Google Scholar 

  • Ram JL, Ram ML, Davis JP (1982) Hormonal control of reproduction in Busycon: II. Laying of egg-containing capsules caused by nervous system extracts and further characterization of the substance causing egg capsule laying. Biol Bull 162:360–370

    Article  CAS  Google Scholar 

  • Reed W, Weiss KR, Lloyd PE et al (1988) Association of neuroactive peptides with the protein secretory pathway in identified neurons of Aplysia californica: immunolocalization of SCPA and SCPB to the contents of dense-core vesicles and the trans face of the Golgi apparatus. J Comp Neurol 272:358–369

    Article  CAS  Google Scholar 

  • Roch GJ, Busby ER, Sherwood NM (2011) Evolution of GnRH: diving deeper. Gen Comp Endocrinol 171:1–16. doi:10.1016/j.ygcen.2010.12.014

    Article  CAS  Google Scholar 

  • Rodet F, Lelong C, Dubos MP et al (2005) Molecular cloning of a molluscan gonadotropin-releasing hormone receptor orthologue specifically expressed in the gonad. Biochim Biophys Acta 1730:187–195. doi:10.1016/j.bbaexp.2005.05.012

    Article  CAS  Google Scholar 

  • Rodet F, Lelong C, Dubos MP et al (2008) Alternative splicing of a single precursor mRNA generates two subtypes of gonadotropin-releasing hormone receptor orthologues and their variants in the bivalve mollusc Crassostrea gigas. Gene (Amst) 414:1–9. doi:10.1016/j.gene.2008.01.022

    Article  CAS  Google Scholar 

  • Rothman BS, Mayeri E, Brown RO et al (1983a) Primary structure and neuronal effects of alpha-bag cell peptide, a second candidate neurotransmitter encoded by a single gene in bag cell neurons of Aplysia. Proc Natl Acad Sci USA 80:5753–5757

    Google Scholar 

  • Rothman BS, Weir G, Dudek FE (1983b) Egg-laying hormone: direct action on the ovotestis of Aplysia. Gen Comp Endocrinol 52:134–141. doi: 0016-6480(83)90166-1 [pii]

    Google Scholar 

  • Rothman BS, Hawke DH, Brown RO et al (1986) Isolation and primary structure of the califins, three biologically active egg-laying hormone-like peptides from the atrial gland of Aplysia californica. J Biol Chem 261:1616–1623

    CAS  Google Scholar 

  • Rothman BS, Dekruyff S, Talebian M et al (1992) Aplysia peptide neurotransmitters beta-bag cell peptide, Phe-Met-Arg-Phe-amide, and small cardioexcitatory peptide B are rapidly degraded by a leucine aminopeptidase-like activity in hemolymph. J Biol Chem 267:25135–25140

    CAS  Google Scholar 

  • Saitongdee P, Apisawetakan S, Anunruang N et al (2005) Egg-laying-hormone immunoreactivity in the neural ganglia and ovary of Haliotis asinina Linnaeus. Invertebr Neurosci 5:165–172. doi:10.1007/s10158-005-0032-5

    Article  CAS  Google Scholar 

  • Sasaki K, Morishita F, Furukawa Y (2004) Peptidergic innervation of the vasoconstrictor muscle of the abdominal aorta in Aplysia kurodai. J Exp Biol 207:4439–4450

    Article  CAS  Google Scholar 

  • Satake H, Matsubara S, Aoyama M et al (2013) GPCR heterodimerization in the reproductive system: functional regulation and implication for biodiversity. Front Endocrinol (Lausanne) 4:100. doi:10.3389/fendo.2013.00100

    Google Scholar 

  • Schally AV (1978) Aspects of hypothalamic regulation of the pituitary gland. Science 202:18–28

    Article  CAS  Google Scholar 

  • Scheller RH, Jackson JF, McAllister LB et al (1983) A single gene encodes multiple neuropeptides mediating a stereotyped behavior. Cell 32:7–22. doi:0092-8674(83)90492-0 [pii]

    Google Scholar 

  • Seaman RL, Lynch MJ, Moss RL (1980) Effects of hypothalamic peptide hormones on the electrical activity of Aplysia neurons. Brain Res Bull 5:233–237

    Article  CAS  Google Scholar 

  • Sigvardt KA, Rothman BS, Brown RO et al (1986) The bag cells of Aplysia as a multitransmitter system: identification of alpha bag cell peptide as a second neurotransmitter. J Neurosci 6:803–813

    CAS  Google Scholar 

  • Smit AB, Jimenez CR, Dirks RW et al (1992) Characterization of a cDNA clone encoding multiple copies of the neuropeptide APGWamide in the mollusk Lymnaea stagnalis. J Neurosci 12:1709–1715

    CAS  Google Scholar 

  • Smit AB, Spijker S, Nagle GT et al (1994) Structural characterization of a Lymnaea putative endoprotease related to human furin. FEBS Lett 343:27–31

    Article  CAS  Google Scholar 

  • Smith BS (1981) Reproductive anomalies in stenoglossan snails related to pollution from marinas. J Appl Toxicol 1:15–21

    Article  CAS  Google Scholar 

  • Sossin WS, Sweet-Cordero A, Scheller RH (1990) Dale’s hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes. Proc Natl Acad Sci USA 87:4845–4848

    Article  CAS  Google Scholar 

  • Spijker S, Smit AB, Sharp-Baker HE et al (1999) Family of prohormone convertases in Lymnaea: characterization of two alternatively spliced furin-like transcripts and cell-specific regulation of their expression. J Neurobiol 41: 399–413. doi: 10.1002/(SICI)1097-4695(19991115)41:3<399::AID-NEU8>3.0.CO;2-Z [pii]

  • Squire CR, Talebian M, Menon JG et al (1991) Leucine aminopeptidase-like activity in Aplysia hemolymph rapidly degrades biologically active alpha-bag cell peptide fragments. J Biol Chem 266:22355–22363

    CAS  Google Scholar 

  • Stewart MJ, Favrel P, Rotgans BA et al (2014) Neuropeptides encoded by the genomes of the Akoya pearl oyster Pinctata fucata and Pacific oyster Crassostrea gigas: a bioinformatic and peptidomic survey. BMC Genomics 15:840. doi:10.1186/1471-2164-15-840

    Article  Google Scholar 

  • Stone JV, Mordue W, Batley KE et al (1976) Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilisation during flight. Nature (Lond) 263:207–211

    Article  CAS  Google Scholar 

  • Sudhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harbor Perspect Biol 4:a011353. doi:10.1101/cshperspect.a011353

    Article  Google Scholar 

  • Sun B, Tsai PS (2011) A gonadotropin-releasing hormone-like molecule modulates the activity of diverse central neurons in a gastropod mollusk, Aplysia californica. Front Endocrinol (Lausanne) 2:36. doi:10.3389/fendo.2011.00036

    CAS  Google Scholar 

  • Sun B, Kavanaugh SI, Tsai PS (2012) Gonadotropin-releasing hormone in protostomes: insights from functional studies on Aplysia californica. Gen Comp Endocrinol 176:321–326. doi:10.1016/j.ygcen.2011.11.030

    Article  CAS  Google Scholar 

  • Susswein AJ, Benny M (1985) Sexual behavior in Aplysia fasciata induced by homogenates of the distal large hermaphroditic duct. Neurosci Lett 59:325–330. doi:0304-3940(85)90153-3 [pii]

    Google Scholar 

  • Sweedler JV, Li L, Rubakhin SS et al (2002) Identification and characterization of the feeding circuit-activating peptides, a novel neuropeptide family of Aplysia. J Neurosci 22:7797–7808

    CAS  Google Scholar 

  • Taussig R, Scheller RH (1986) The Aplysia FMRFamide gene encodes sequences related to mammalian brain peptides. DNA 5:453–461

    Article  CAS  Google Scholar 

  • Tensen CP, Cox KJ, Smit AB et al (1998) The Lymnaea cardioexcitatory peptide (LyCEP) receptor: a G-protein-coupled receptor for a novel member of the RFamide neuropeptide family. J Neurosci 18:9812–9821

    CAS  Google Scholar 

  • Ter Maat A, Pieneman AW, Goldschmeding JT et al (1989) Spontaneous and induced egg laying behavior of the pond snail, Lymnaea stagnalis. J Comp Physiol A 164:673–683

    Article  Google Scholar 

  • Titley-O’Neal CP, Munkittrick KR, Macdonald BA (2011) The effects of organotin on female gastropods. J Environ Monit 13:2360–2388. doi:10.1039/c1em10011d

    Article  CAS  Google Scholar 

  • Tompa AS (1984) Land snails (Stylommatophora). In: Tompa AS, Verdonk NH, van den Biggelaar JAM (eds) Reproduction, vol 7. Academic, Orlando, pp 47–140

    Chapter  Google Scholar 

  • Treen N, Itoh N, Miura H et al (2012) Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction. Gen Comp Endocrinol 176:167–172. doi:10.1016/j.ygcen.2012.01.008

    Article  CAS  Google Scholar 

  • Tsai PS, Sun B, Rochester JR et al (2010) Gonadotropin-releasing hormone-like molecule is not an acute reproductive activator in the gastropod, Aplysia californica. Gen Comp Endocrinol 166:280–288. doi:10.1016/j.ygcen.2009.09.009

    Article  CAS  Google Scholar 

  • Van Duivenboden YA, Ter Maat A (1988) Mating behaviour of Lymnaea stagnalis. Malacologia 28:53–64

    Google Scholar 

  • van Kesteren RE, Tensen CP, Smit AB et al (1995) A novel G protein-coupled receptor mediating both vasopressin- and oxytocin-like functions of Lys-conopressin in Lymnaea stagnalis. Neuron 15:897–908

    Article  Google Scholar 

  • van Minnen J, Bergman JJ (2003) Stimulus-dependent translocation of egg-laying hormone encoding mRNA into the axonal compartment of the neuroendocrine caudodorsal cells. Invert Neurosci 5:1–7. doi:10.1007/s10158-003-0022-4

    Article  CAS  Google Scholar 

  • Van Minnen J, Bergman JJ, Van Kesteren ER et al (1997) De novo protein synthesis in isolated axons of identified neurons. Neuroscience 80:1–7

    Article  Google Scholar 

  • Veenstra JA (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett 250:231–234

    Article  CAS  Google Scholar 

  • Veenstra JA (2010) Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 167:86–103. doi:S0016-6480(10)00053-5 [pii] 10.1016/j.ygcen.2010.02.010

  • Vilim FS, Cropper EC, Price DA et al (2000) Peptide cotransmitter release from motorneuron B16 in Aplysia californica: costorage, corelease, and functional implications. J Neurosci 20:2036–2042

    CAS  Google Scholar 

  • Vreugdenhil E, Geraerts WP, Jackson JF et al (1985) The molecular basis of the neuro-endocrine control of egg-laying behaviour in Lymnaea. Peptides 6(suppl 3):465–470

    Article  CAS  Google Scholar 

  • Vreugdenhil E, Jackson JF, Bouwmeester T et al (1988) Isolation, characterization, and evolutionary aspects of a cDNA clone encoding multiple neuropeptides involved in the stereotyped egg-laying behavior of the freshwater snail Lymnaea stagnalis. J Neurosci 8:4184–4191

    CAS  Google Scholar 

  • Wayne NL, Frumovitz M (1995) Calcium influx following onset of electrical afterdischarge is not required for hormone secretion from neuroendocrine cells of Aplysia. Endocrinology 136:369–372

    CAS  Google Scholar 

  • Wayne NL, Lee W, Michel S et al (2004) Activity-dependent regulation of neurohormone synthesis and its impact on reproductive behavior in Aplysia. Biol Reprod 70:277–281

    Article  CAS  Google Scholar 

  • York PS, Cummins SF, Degnan SM et al (2012) Marked changes in neuropeptide expression accompany broadcast spawnings in the gastropod Haliotis asinina. Front Zool 9:9. doi:10.1186/1742-9994-9-9

    Article  CAS  Google Scholar 

  • Young KG, Chang JP, Goldberg JI (1999) Gonadotropin-releasing hormone neuronal system of the freshwater snails Helisoma trivolvis and Lymnaea stagnalis: possible involvement in reproduction. J Comp Neurol 404:427–437

    Article  CAS  Google Scholar 

  • Zhang L, Wayne NL, Sherwood NM et al (2000) Biological and immunological characterization of multiple GnRH in an opisthobranch mollusk, Aplysia californica. Gen Comp Endocrinol 118:77–89. doi:10.1006/gcen.2000.7457 S0016-6480(00)97457-4 [pii]

  • Zhang L, Tello JA, Zhang W et al (2008) Molecular cloning, expression pattern, and immunocytochemical localization of a gonadotropin-releasing hormone-like molecule in the gastropod mollusk, Aplysia californica. Gen Comp Endocrinol 156:201–209

    Article  CAS  Google Scholar 

  • Zhang X, Mao Y, Huang Z et al (2012) Transcriptome analysis of the Octopus vulgaris central nervous system. PLoS One 7:e40320. doi:10.1371/journal.pone.0040320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiro Morishita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Morishita, F. (2017). Neuropeptides and Their Physiological Functions in Mollusks. In: Horiguchi, T. (eds) Biological Effects by Organotins. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56451-5_8

Download citation

Publish with us

Policies and ethics