Skip to main content
Log in

Efficiency of nonhomologous DNA end joining varies among somatic tissues, despite similarity in mechanism

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Failure to repair DNA double-strand breaks (DSBs) can lead to cell death or cancer. Although nonhomologous end joining (NHEJ) has been studied extensively in mammals, little is known about it in primary tissues. Using oligomeric DNA mimicking endogenous DSBs, NHEJ in cell-free extracts of rat tissues were studied. Results show that efficiency of NHEJ is highest in lungs compared to other somatic tissues. DSBs with compatible and blunt ends joined without modifications, while noncompatible ends joined with minimal alterations in lungs and testes. Thymus exhibited elevated joining, followed by brain and spleen, which could be correlated with NHEJ gene expression. However, NHEJ efficiency was poor in terminally differentiated organs like heart, kidney and liver. Strikingly, NHEJ junctions from these tissues also showed extensive deletions and insertions. Hence, for the first time, we show that despite mode of joining being generally comparable, efficiency of NHEJ varies among primary tissues of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NHEJ:

Nonhomologous end joining

DSB:

Double-strand break

HR:

Homologous recombination

PSL U:

Photo stimulated luminescence unit

BSA:

Bovine serum albumin

DAPI:

4,6-Diamidino-2-phenylindole

PCR:

Polymerase chain reaction

IP:

Immunoprecipitation

RT-PCR:

Reverse transcriptase PCR

References

  1. Lieber MR, Yu K, Raghavan SC (2006) Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst) 5:1234–1245

    Article  CAS  Google Scholar 

  2. Ferguson DO, Alt FW (2001) DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20:5572–5579

    Article  CAS  PubMed  Google Scholar 

  3. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  CAS  PubMed  Google Scholar 

  4. Nambiar M, Kari V, Raghavan SC (2008) Chromosomal translocations in cancer. Biochim Biophys Acta 1786:139–152

    CAS  PubMed  Google Scholar 

  5. Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283:1–5

    Article  CAS  PubMed  Google Scholar 

  6. Weterings E, Chen DJ (2008) The endless tale of non-homologous end-joining. Cell Res 18:114–124

    Article  CAS  PubMed  Google Scholar 

  7. Burma S, Chen BP, Chen DJ (2006) Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst) 5:1042–1048

    Article  CAS  Google Scholar 

  8. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383

    Article  CAS  PubMed  Google Scholar 

  9. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  CAS  PubMed  Google Scholar 

  10. Hefferin ML, Tomkinson AE (2005) Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) 4:639–648

    CAS  Google Scholar 

  11. Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4:712–720

    Article  CAS  PubMed  Google Scholar 

  12. Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17:598–608

    Article  CAS  PubMed  Google Scholar 

  13. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–5508

    Article  CAS  PubMed  Google Scholar 

  14. Lieber MR, Lu H, Gu J, Schwarz K (2008) Flexibility in the order of action and in the enzymology of the nuclease, polymerases, and ligase of vertebrate non-homologous DNA end joining: relevance to cancer, aging, and the immune system. Cell Res 18:125–133

    Article  CAS  PubMed  Google Scholar 

  15. Yano K, Morotomi-Yano K, Adachi N, Akiyama H (2009) Molecular mechanism of protein assembly on DNA double-strand breaks in the non-homologous end-joining pathway. J Radiat Res (Tokyo) 50:97–108

    Article  CAS  Google Scholar 

  16. Chiruvella KK, Sankaran SK, Singh M, Nambiar M, Raghavan SC (2007) Mechanism of DNA double-strand break repair. ICFAI J Biotech 1:7–22

    Google Scholar 

  17. Mimori T, Hardin JA (1986) Mechanism of interaction between Ku protein and DNA. J Biol Chem 261:10375–10379

    CAS  PubMed  Google Scholar 

  18. Falzon M, Fewell JW, Kuff EL (1993) EBP-80, a transcription factor closely resembling the human autoantigen Ku, recognizes single- to double-strand transitions in DNA. J Biol Chem 268:10546–10552

    CAS  PubMed  Google Scholar 

  19. West RB, Yaneva M, Lieber MR (1998) Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol Cell Biol 18:5908–5920

    CAS  PubMed  Google Scholar 

  20. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, Lu H, Tippin B, Goodman MF, Shimazaki N, Koiwai O, Hsieh CL, Schwarz K, Lieber MR (2004) A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell 16:701–713

    Article  CAS  PubMed  Google Scholar 

  22. Nick McElhinny SA, Ramsden DA (2004) Sibling rivalry: competition between Pol X family members in V(D)J recombination and general double strand break repair. Immunol Rev 200:156–164

    Article  CAS  PubMed  Google Scholar 

  23. Tseng HM, Tomkinson AE (2002) A physical and functional interaction between yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end joining. J Biol Chem 277:45630–45637

    Article  CAS  PubMed  Google Scholar 

  24. Mahajan KN, Nick McElhinny SA, Mitchell BS, Ramsden DA (2002) Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol Cell Biol 22:5194–5202

    Article  CAS  PubMed  Google Scholar 

  25. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495

    Article  CAS  PubMed  Google Scholar 

  26. Wilson TE, Grawunder U, Lieber MR (1997) Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388:495–498

    Article  CAS  PubMed  Google Scholar 

  27. Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124:301–313

    Article  CAS  PubMed  Google Scholar 

  28. Labhart P (1999) Nonhomologous DNA end joining in cell-free systems. Eur J Biochem 265:849–861

    Article  CAS  PubMed  Google Scholar 

  29. North P, Ganesh A, Thacker J (1990) The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res 18:6205–6210

    Article  CAS  PubMed  Google Scholar 

  30. Sankaranarayanan K, Wassom JS (2005) Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders. Mutat Res 578:333–370

    CAS  PubMed  Google Scholar 

  31. Budman J, Chu G (2005) Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J 24:849–860

    Article  CAS  PubMed  Google Scholar 

  32. Roth DB, Wilson JH (1985) Relative rates of homologous and nonhomologous recombination in transfected DNA. Proc Natl Acad Sci USA 82:3355–3359

    Article  CAS  PubMed  Google Scholar 

  33. Roth DB, Wilson JH (1986) Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol 6:4295–4304

    CAS  PubMed  Google Scholar 

  34. Baumann P, West SC (1998) DNA end-joining catalyzed by human cell-free extracts. Proc Natl Acad Sci USA 95:14066–14070

    Article  CAS  PubMed  Google Scholar 

  35. Jones HW Jr, McKusick VA, Harper PS, Wuu KD (1971) George Otto Gey. (1899–1970). The HeLa cell and a reappraisal of its origin. Obstet Gynecol 38:945–949

    PubMed  Google Scholar 

  36. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423

    CAS  PubMed  Google Scholar 

  37. Foley GE, Lazarus H, Farber S, Uzman BG, Boone BA, McCarthy RE (1965) Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer 18:522–529

    Article  CAS  PubMed  Google Scholar 

  38. Raju MR, Trujillo TT, Mullaney PF, Romero A, Steinkamp JA, Walters RA (1974) The distribution in the cell cycle of normal cells and of irradiated tumour cells in mice. Br J Radiol 47:405–410

    Article  CAS  PubMed  Google Scholar 

  39. Short SC, Martindale C, Bourne S, Brand G, Woodcock M, Johnston P (2007) DNA repair after irradiation in glioma cells and normal human astrocytes. Neuro Oncol 9:404–411

    Article  CAS  PubMed  Google Scholar 

  40. Barret JM, Calsou P, Larsen AK, Salles B (1994) A cisplatin-resistant murine leukemia cell line exhibits increased topoisomerase II activity. Mol Pharmacol 46:431–436

    CAS  PubMed  Google Scholar 

  41. Cai QQ, Plet A, Imbert J, Lafage-Pochitaloff M, Cerdan C, Blanchard JM (1994) Chromosomal location and expression of the genes coding for Ku p70 and p80 in human cell lines and normal tissues. Cytogenet Cell Genet 65:221–227

    Article  CAS  PubMed  Google Scholar 

  42. Sandberg R, Ernberg I (2005) Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). Proc Natl Acad Sci USA 102:2052–2057

    Article  CAS  PubMed  Google Scholar 

  43. Sathees CR, Raman MJ (1999) Mouse testicular extracts process DNA double-strand breaks efficiently by DNA end-to-end joining. Mutat Res 433:1–13

    CAS  PubMed  Google Scholar 

  44. Raghavan SC, Raman MJ (2004) Nonhomologous end joining of complementary and noncomplementary DNA termini in mouse testicular extracts. DNA Repair (Amst) 3:1297–1310

    Article  CAS  Google Scholar 

  45. Vyjayanti VN, Rao KS (2006) DNA double strand break repair in brain: reduced NHEJ activity in aging rat neurons. Neurosci Lett 393:18–22

    Article  CAS  PubMed  Google Scholar 

  46. Ren K, Pena de Ortiz S (2002) Non-homologous DNA end joining in the mature rat brain. J Neurochem 80:949–959

    Article  CAS  PubMed  Google Scholar 

  47. Naik AK, Raghavan SC (2008) P1 nuclease cleavage is dependent on length of the mismatches in DNA. DNA Repair (Amst) 7:1384–1391

    Article  CAS  Google Scholar 

  48. Naik AK, Lieber MR, Raghavan SC (2010) Cytosines, but not purines, determine recombination activating gene (RAG)-induced breaks on heteroduplex DNA structures: implications for genomic instability. J Biol Chem 285:7587–7597

    Article  CAS  PubMed  Google Scholar 

  49. Milne GT, Jin S, Shannon KB, Weaver DT (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol 16:4189–4198

    CAS  PubMed  Google Scholar 

  50. Modesti M, Hesse JE, Gellert M (1999) DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J 18:2008–2018

    Article  CAS  PubMed  Google Scholar 

  51. Goedecke W, Eijpe M, Offenberg HH, van Aalderen M, Heyting C (1999) Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 23:194–198

    Article  CAS  PubMed  Google Scholar 

  52. Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, Gademan IS, Kal HB, van Buul PP, Ashley T, de Rooij DG (2003) Function of DNA-protein kinase catalytic subunit during the early meiotic prophase without Ku70 and Ku86. Biol Reprod 68:717–721

    Article  CAS  PubMed  Google Scholar 

  53. Zhong Q, Boyer TG, Chen PL, Lee WH (2002) Deficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts. Cancer Res 62:3966–3970

    CAS  PubMed  Google Scholar 

  54. Daza P, Reichenberger S, Gottlich B, Hagmann M, Feldmann E, Pfeiffer P (1996) Mechanisms of nonhomologous DNA end-joining in frogs, mice and men. Biol Chem 377:775–786

    CAS  PubMed  Google Scholar 

  55. Pfeiffer P, Gottlich B, Reichenberger S, Feldmann E, Daza P, Ward JF, Milligan JR, Mullenders LH, Natarajan AT (1996) DNA lesions and repair. Mutat Res 366:69–80

    CAS  PubMed  Google Scholar 

  56. Lehman CW, Clemens M, Worthylake DK, Trautman JK, Carroll D (1993) Homologous and illegitimate recombination in developing Xenopus oocytes and eggs. Mol Cell Biol 13:6897–6906

    CAS  PubMed  Google Scholar 

  57. Pont-Kingdon G, Dawson RJ, Carroll D (1993) Intermediates in extrachromosomal homologous recombination in Xenopus laevis oocytes: characterization by electron microscopy. EMBO J 12:23–34

    CAS  PubMed  Google Scholar 

  58. Roth DB, Porter TN, Wilson JH (1985) Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5:2599–2607

    CAS  PubMed  Google Scholar 

  59. Thacker J, Chalk J, Ganesh A, North P (1992) A mechanism for deletion formation in DNA by human cell extracts: the involvement of short sequence repeats. Nucleic Acids Res 20:6183–6188

    Article  CAS  PubMed  Google Scholar 

  60. Fairman MP, Johnson AP, Thacker J (1992) Multiple components are involved in the efficient joining of double stranded DNA breaks in human cell extracts. Nucleic Acids Res 20:4145–4152

    Article  CAS  PubMed  Google Scholar 

  61. Nicolas AL, Young CS (1994) Characterization of DNA end joining in a mammalian cell nuclear extract: junction formation is accompanied by nucleotide loss, which is limited and uniform but not site specific. Mol Cell Biol 14:170–180

    CAS  PubMed  Google Scholar 

  62. Kindt TJ, Goldsby RA, Osborne BA (2007) Kuby immunology. Freeman, New York

    Google Scholar 

  63. Mason RM, Thacker J, Fairman MP (1996) The joining of non-complementary DNA double-strand breaks by mammalian extracts. Nucleic Acids Res 24:4946–4953

    Article  CAS  PubMed  Google Scholar 

  64. Honjo T, Alt FW, Neuberger M (2004) Molecular biology of B cells. Elsevier, London

    Google Scholar 

  65. Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102:721–729

    Article  CAS  PubMed  Google Scholar 

  66. Liang L, Deng L, Nguyen SC, Zhao X, Maulion CD, Shao C, Tischfield JA (2008) Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res 36:3297–3310

    Article  CAS  PubMed  Google Scholar 

  67. Boan F, Blanco MG, Barros P, Gomez-Marquez J (2006) DNA end-joining driven by microhomologies catalyzed by nuclear extracts. Biol Chem 387:263–267

    Article  CAS  PubMed  Google Scholar 

  68. Karanjawala ZE, Murphy N, Hinton DR, Hsieh C-L, Lieber MR (2002) Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in double-strand break repair mutants. Curr Biol 12:397–402

    Article  CAS  PubMed  Google Scholar 

  69. Shen H, Spitz MR, Qiao Y, Guo Z, Wang LE, Bosken CH, Amos CI, Wei Q (2003) Smoking, DNA repair capacity and risk of nonsmall cell lung cancer. Int J Cancer 107:84–88

    Article  CAS  PubMed  Google Scholar 

  70. Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland L, Phillips DH, Canzian F, Haugen A (2006) Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 27:560–567

    Article  CAS  PubMed  Google Scholar 

  71. Omori S, Takiguchi Y, Suda A, Sugimoto T, Miyazawa H, Tanabe N, Tatsumi K, Kimura H, Pardington PE, Chen F, Chen DJ, Kuriyama T (2002) Suppression of a DNA double-strand break repair gene, Ku70, increases radio- and chemosensitivity in a human lung carcinoma cell line. DNA Repair (Amst) 1:299–310

    Article  CAS  Google Scholar 

  72. Tseng RC, Hsieh FJ, Shih CM, Hsu HS, Chen CY, Wang YC (2009) Lung cancer susceptibility and prognosis associated with polymorphisms in the nonhomologous end-joining pathway genes: a multiple genotype–phenotype study. Cancer 115:2939–2948

    Article  CAS  PubMed  Google Scholar 

  73. Feldmann E, Schmiemann V, Goedecke W, Reichenberger S, Pfeiffer P (2000) DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 28:2585–2596

    Article  CAS  PubMed  Google Scholar 

  74. Ramsden DA, Gellert M (1998) Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J 17:609–614

    Article  CAS  PubMed  Google Scholar 

  75. Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Kumaravel Somasundaram, IISc for providing us with the BRCA1 antibody. We thank Dr. Kavitha C.V. for her help in western blot experiments. We also thank Dr. Binu Tharakan, Abhishek K.V., Mrinal Srivastava, Mridula Nambiar, Nishana M. and other members of SCR laboratory for discussions and help. This work was supported by grant from DAE, India (2008/37/5/BRNS) and IISc start up grant for SCR. We also thank Dr. Raghavan Varadarajan for financial assistance. SS acknowledges Senior Research Fellowship from DBT, India.

Conflict of interest

Authors disclose that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathees C. Raghavan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 695 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Choudhary, B. & Raghavan, S.C. Efficiency of nonhomologous DNA end joining varies among somatic tissues, despite similarity in mechanism. Cell. Mol. Life Sci. 68, 661–676 (2011). https://doi.org/10.1007/s00018-010-0472-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0472-x

Keywords

Navigation