Skip to main content

Advertisement

Log in

Spider silk proteins: recent advances in recombinant production, structure–function relationships and biomedical applications

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Spider dragline silk is an outstanding material made up of unique proteins—spidroins. Analysis of the amino acid sequences of full-length spidroins reveals a tripartite composition: an N-terminal non-repetitive domain, a highly repetitive central part composed of approximately 100 polyalanine/glycine rich co-segments and a C-terminal non-repetitive domain. Recent molecular data on the terminal domains suggest that these have different functions. The composite nature of spidroins allows for recombinant production of individual and combined regions. Miniaturized spidroins designed by linking the terminal domains with a limited number of repetitive segments recapitulate the properties of native spidroins to a surprisingly large extent, provided that they are produced and isolated in a manner that retains water solubility until fibre formation is triggered. Biocompatibility studies in cell culture or in vivo of native and recombinant spider silk indicate that they are surprisingly well tolerated, suggesting that recombinant spider silk has potential for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADF:

Araneus diadematus fibroin

LPS:

Lipopolysaccharide

MaSp:

Major ampullate spidroin

Spidroin:

Spider silk protein

References

  1. Bon M (1710) A discourse upon the usefulness of the silk of spiders. Phil Trans 27:2–16

    Google Scholar 

  2. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    CAS  PubMed  Google Scholar 

  3. Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303

    CAS  PubMed  Google Scholar 

  4. Luan XY, Huo GH, Li MZ, Lu SZ, Zhang XG (2009) Antheraea pernyi silk fibroin maintains the immunosupressive properties of human bone marrow mesenchymal stem cells. Cell Biol Int 33:1127–1134

    CAS  PubMed  Google Scholar 

  5. Mandal BB, Kundu SC (2009) Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 30:2956–2965

    CAS  PubMed  Google Scholar 

  6. Hardy JG, Scheibel TR (2009) Silk-inspired polymers and proteins. Biochem Soc Trans 37:677–681

    CAS  PubMed  Google Scholar 

  7. Vendrely C, Scheibel T (2007) Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 7:401–409

    CAS  PubMed  Google Scholar 

  8. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL (2008) Spider silks and their applications. Trends Biotechnol 26:244–251

    CAS  PubMed  Google Scholar 

  9. Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4:324–355

    Google Scholar 

  10. Leal-Egana A, Scheibel T (2010) Silk-based materials for biomedical applications. Biotechnol Appl Biochem 55:155–167

    Google Scholar 

  11. Stark M, Grip S, Rising A, Hedhammar M, Engstrom W, Hjalm G, Johansson J (2007) Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 8:1695–1701

    CAS  PubMed  Google Scholar 

  12. Chen X, Knight DP, Vollrath F (2002) Rheological characterization of nephila spidroin solution. Biomacromolecules 3:644–648

    CAS  PubMed  Google Scholar 

  13. Work RW (1977) Mechanisms of major ampullate silk fiber formation by orb-web-spinning spiders. Trans Am Microsc Soc 96:170–189

    Google Scholar 

  14. Candelas GC, Cintron J (1981) A spider fibroin and its synthesis. J Exp Zool 216:1–6

    CAS  Google Scholar 

  15. Schulz S (2001) Composition of the silk lipids of the spider nephila clavipes. Lipids 637-647

  16. Sponner A, Vater W, Monajembashi S, Unger E, Grosse F, Weisshart K (2007) Composition and hierarchical organisation of a spider silk. PLoS One 2:e998

    PubMed  Google Scholar 

  17. Augsten K, Muhlig P, Herrmann C (2000) Glycoproteins and skin-core structure in nephila clavipes spider silk observed by light and electron microscopy. Scanning 22:12–15

    CAS  PubMed  Google Scholar 

  18. Kovoor J (1987) Comparative structure and histochemistry of silk-producing organs in arachnids. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 160–186

  19. Plazaola A, Candelas GC (1991) Stimulation of fibroin synthesis elicits ultrastructural modifications in spider silk secretory cells. Tissue Cell 23:277–284

    CAS  PubMed  Google Scholar 

  20. Mita K, Ichimura S, Zama M, James TC (1988) Specific codon usage pattern and its implications on the secondary structure of silk fibroin mRNA. J Mol Biol 203:917–925

    CAS  PubMed  Google Scholar 

  21. Hinman MB, Lewis RV (1992) Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem 267:19320–19324

    CAS  PubMed  Google Scholar 

  22. Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2:e514

    PubMed  Google Scholar 

  23. Gregory TR, Shorthouse DP (2003) Genome sizes of spiders. J Hered 94:285–290

    CAS  PubMed  Google Scholar 

  24. Rising A, Johansson J, Larson G, Bongcam-Rudloff E, Engstrom W, Hjalm G (2007) Major ampullate spidroins from euprosthenops australis: multiplicity at protein, mRNA and gene levels. Insect Mol Biol 16:551–561

    CAS  PubMed  Google Scholar 

  25. Ayoub NA, Hayashi CY (2008) Multiple recombining loci encode masp1, the primary constituent of dragline silk, in widow spiders (latrodectus: Theridiidae). Mol Biol Evol 25:277–286

    CAS  PubMed  Google Scholar 

  26. Candelas GC, Arroyo G, Carrasco C, Dompenciel R (1990) Spider silkglands contain a tissue-specific alanine tRNA that accumulates in vitro in response to the stimulus for silk protein synthesis. Dev Biol 140:215–220

    Google Scholar 

  27. Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW (1996) 13C NMR of Nephila clavipes major ampullate silk gland. Biophys J 71:3442–3447

    CAS  PubMed  Google Scholar 

  28. Simmons AH, Michal CA, Jelinski LW (1996) Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271:84–87

    CAS  PubMed  Google Scholar 

  29. Knight DP, Vollrath F (2001) Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88:179–182

    CAS  PubMed  Google Scholar 

  30. Dicko C, Vollrath F, Kenney JM (2004) Spider silk protein refolding is controlled by changing pH. Biomacromolecules 5:704–710

    CAS  PubMed  Google Scholar 

  31. Guerette PA, Ginzinger DG, Weber BH, Gosline JM (1996) Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272:112–115

    CAS  PubMed  Google Scholar 

  32. Rising A, Hjalm G, Engstrom W, Johansson J (2006) N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7:3120–3124

    CAS  PubMed  Google Scholar 

  33. Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J, Knight SD (2010) Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465:236–238

    CAS  PubMed  Google Scholar 

  34. Hagn F, Eisoldt L, Hardy J, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465:239–242

    CAS  PubMed  Google Scholar 

  35. Garb JE, Dimauro T, Vo V, Hayashi CY (2006) Silk genes support the single origin of orb webs. Science 312:1762

    CAS  PubMed  Google Scholar 

  36. Sponner A, Unger E, Grosse F, Weisshart K (2005) Differential polymerization of the two main protein components of dragline silk during fibre spinning. Nat Mater 4:772–775

    CAS  PubMed  Google Scholar 

  37. Hu X, Vasanthavada K, Kohler K, McNary S, Moore AM, Vierra CA (2006) Molecular mechanisms of spider silk. Cell Mol Life Sci 63:1986–1999

    CAS  PubMed  Google Scholar 

  38. Kummerlen J, van Beek JD, Vollrath F, Meier BH (1996) Local structure in spider dragline silk investigated by two- dimensional spin-diffusion nuclear magnetic resonance. Macromolecules 29:2920–2928

    Google Scholar 

  39. Hayashi CY, Shipley NH, Lewis RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275

    CAS  PubMed  Google Scholar 

  40. Madsen B, Shao ZZ, Vollrath F (1999) Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual. Int J Biol Macromol 24:301–306

    CAS  PubMed  Google Scholar 

  41. Pouchkina-Stantcheva NN, McQueen-Mason SJ (2004) Molecular studies of a novel dragline silk from a nursery web spider, Euprosthenops sp. (pisauridae). Comp Biochem Physiol B Biochem Mol Biol 138:371–376

    PubMed  Google Scholar 

  42. Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strenght and mechanical toughness of β-sheet crystals in silk. Nat Mater 9:359–367

    CAS  PubMed  Google Scholar 

  43. Kukuruzinska MA, Lennon K (1998) Protein N-glycosylation: molecular genetics and functional significance. Crit Rev Oral Biol Med 9:415–448

    CAS  PubMed  Google Scholar 

  44. Michal CA, Simmons AH, Chew BG, Zax DB, Jelinski LW (1996) Presence of phosphorus in nephila clavipes dragline silk. Biophys J 70:489–493

    CAS  PubMed  Google Scholar 

  45. Zhao AC, Zhao TF, Nakagaki K, Zhang YS, Sima YH, Miao YG, Shiomi K, Kajiura Z, Nagata Y, Takadera M, Nakagaki M (2006) Novel molecular and mechanical properties of egg case silk from wasp spider, argiope bruennichi. Biochemistry 45:3348–3356

    CAS  PubMed  Google Scholar 

  46. Hayashi CY, Lewis RV (2000) Molecular architecture and evolution of a modular spider silk protein gene. Science 287:1477–1479

    CAS  PubMed  Google Scholar 

  47. Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Purification and characterization of recombinant spider silk expressed in escherichia coli. Appl Microbiol Biotechnol 49:31–38

    CAS  PubMed  Google Scholar 

  48. Fahnestock SR, Irwin SL (1997) Synthetic spider dragline silk proteins and their production in escherichia coli. Appl Microbiol Biotechnol 47:23–32

    CAS  PubMed  Google Scholar 

  49. Prince J, Mcgrath K, Digirolamo C, Kaplan D (1995) Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34:10879–10885

    CAS  PubMed  Google Scholar 

  50. Winkler S, Szela S, Avtges P, Valluzzi R, Kirschner DA, Kaplan D (1999) Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol 24:265–270

    CAS  PubMed  Google Scholar 

  51. Schmidt M, Romer L, Strehle M, Scheibel T (2007) Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media. Biotechnol Lett 29:1741–1744

    CAS  PubMed  Google Scholar 

  52. Fukushima Y (1998) Genetically engineered syntheses of tandem repetitive polypeptides consisting of glycine-rich sequence of spider dragline silk. Biopolymers 45:269–279

    CAS  PubMed  Google Scholar 

  53. Arcidiacono S, Mello CM, Butler M, Welsh E, Soares JW, Allen A, Ziegler D, Laue T, Chase S (2002) Aqueous processing and fiber spinning of recombinant spider silks. Macromolecules 35:1262–1266

    CAS  Google Scholar 

  54. Winkler S, Wilson D, Kaplan DL (2000) Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39:14002

    CAS  PubMed  Google Scholar 

  55. Zhou Y, Wu S, Conticello VP (2001) Genetically directed synthesis and spectroscopic analysis of a protein polymer derived from a flagelliform silk sequence. Biomacromolecules 2:111–125

    CAS  PubMed  Google Scholar 

  56. Stephens JS, Fahnestock SR, Farmer RS, Kiick KL, Chase DB, Rabolt JF (2005) Effects of electrospinning and solution casting protocols on the secondary structure of a genetically engineered dragline spider silk analogue investigated via Fourier transform Raman spectroscopy. Biomacromolecules 6:1405–1413

    CAS  PubMed  Google Scholar 

  57. Slotta UK, Rammensee S, Gorb S, Scheibel T (2008) An engineered spider silk protein forms microspheres. Angew Chem Int Ed Engl 47:4592–4594

    CAS  PubMed  Google Scholar 

  58. Slotta U, Tammer M, Kremer F, Koelsch P, Scheibel T (2006) Structural analysis of films cast from recombinant spider silk proteins. Supramol Chem 18:465–471

    Google Scholar 

  59. Bini E, Foo CW, Huang J, Karageorgiou V, Kitchel B, Kaplan DL (2006) RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7:3139–3145

    CAS  PubMed  Google Scholar 

  60. Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A 82:219–222

    CAS  Google Scholar 

  61. Huang J, Wong C, George A, Kaplan DL (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28:2358–2367

    CAS  PubMed  Google Scholar 

  62. Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR, Lewis RV (2008) Properties of synthetic spider silk fibers based on argiope aurantia masp2. Biomacromolecules 9:1506–1510

    CAS  PubMed  Google Scholar 

  63. Liebmann B, Hummerich D, Scheibel T, Fehr M (2008) Formulation of poorly watersoluble substances using self-assembling spider silk protein. Colloids Surf A Physicochem Eng Aspects 331:126–132

    CAS  Google Scholar 

  64. Mello CM, Soares JW, Arcidiacono S, Butler MM (2004) Acid extraction and purification of recombinant spider silk proteins. Biomacromolecules 5:1849–1852

    CAS  PubMed  Google Scholar 

  65. Szela S, Avtges P, Valluzzi R, Winkler S, Wilson D, Kirschner D, Kaplan DL (2000) Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules 1:534–542

    CAS  PubMed  Google Scholar 

  66. Wong Po Foo C, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 103:9428–9433

    PubMed  Google Scholar 

  67. Fahnestock SR, Bedzyk LA (1997) Production of synthetic spider dragline silk protein in pichia pastoris. Appl Microbiol Biotechnol 47:33–39

    CAS  PubMed  Google Scholar 

  68. Werten MW, Moers AP, Vong T, Zuilhof H, van Hest JC, de Wolf FA (2008) Biosynthesis of an amphiphilic silk-like polymer. Biomacromolecules 9:1705–1711

    CAS  PubMed  Google Scholar 

  69. Menassa R, Zhu H, Karatzas CN, Lazaris A, Richman A, Brandle J (2004) Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol J 2:431–438

    CAS  PubMed  Google Scholar 

  70. Lazaris A, Arcidiacono S, Huang Y, Zhou J-F, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 259:472–476

    Google Scholar 

  71. Xu HT, Fan BL, Yu SY, Huang YH, Zhao ZH, Lian ZX, Dai YP, Wang LL, Liu ZL, Fei J, Li N (2007) Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim Biotechnol 18:1–12

    PubMed  Google Scholar 

  72. Williams D (2003) Sows’ ears, silk purses and goats’ milk: new production methods and medical applications for silk. Med Device Technol 14:9–11

    Google Scholar 

  73. Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004) Novel assembly properties of recombinant spider dragline silk proteins. Curr Biol 14:2070–2074

    CAS  PubMed  Google Scholar 

  74. Ittah S, Cohen S, Garty S, Cohn D, Gat U (2006) An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 7:1790–1795

    CAS  PubMed  Google Scholar 

  75. Zhang Y, Hu J, Miao Y, Zhao A, Zhao T, Wu D, Liang L, Miikura A, Shiomi K, Kajiura Z, Nakagaki M (2008) Expression of EGFP-spider dragline silk fusion protein in bmn cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Mol Biol Rep 35:329–335

    PubMed  Google Scholar 

  76. Wen H, Lan X, Zhang Y, Zhao T, Wang Y, Kajiura Z, Nakagaki M (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37:1815–1821

    CAS  PubMed  Google Scholar 

  77. Zhu Z, Kikuchi Y, Kojima K, Tamura T, Kuwabara N, Nakamura T, Asakura T (2010) Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms. J Biomater Sci Polym Ed 21:395–411

    Google Scholar 

  78. Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43:13604–13612

    CAS  PubMed  Google Scholar 

  79. Lewis RV, Hinman M, Kothakota S, Fournier MJ (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expr Purif 7:400–406

    CAS  PubMed  Google Scholar 

  80. Scheller J, Gührs K-H, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577

    CAS  PubMed  Google Scholar 

  81. Junghans F, Morawietz U, Conrad U, Scheibel T, Heilmann A, Spohn U (2006) Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm. Appl Phys A 82:253–260

    Google Scholar 

  82. Exler JH, Hummerich D, Scheibel T (2007) The amphiphilic properties of spider silks are important for spinning. Angew Chem Int Ed Engl 46:3559–3562

    CAS  PubMed  Google Scholar 

  83. Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci USA 105:6590–6595

    CAS  PubMed  Google Scholar 

  84. Lammel A, Schwab M, Slotta U, Winter G, Scheibel T (2008) Processing conditions for spider silk microsphere formation. ChemSusChem 5:413–416

    Google Scholar 

  85. Geisler M, Pirzer T, Ackerschott C, Lud S, Garrido J, Scheibel T, Hugel T (2008) Hydrophobic and hofmeister effects on the adhesion of spider silk proteins onto solid substrates: an AFM-based single-molecule study. Langmuir 24:1350–1355

    CAS  PubMed  Google Scholar 

  86. Bogush VG, Sokolova OS, Davydova LI, Klinov DV, Sidoruk KV, Esipova NG, Neretina TV, Orchanskyi IA, Makeev VY, Tumanyan VG, Shaitan KV, Debabov VG, Kirpichnikov MP (2009) A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. J Neuroimmun Pharmacol 4:17–27

    Google Scholar 

  87. Agapov II, Pustovalova OL, Moisenovich MM, Bogush VG, Sokolova OS, Sevastyanov VI, Debabov VG, Kirpichnikov MP (2009) Three-dimensional scaffold made from recombinant spider silk protein for tissue engineering. Dokl Biochem Biophys 426:127–130

    CAS  PubMed  Google Scholar 

  88. Lin Z, Huang W, Zhang J, Fan JS, Yang D (2009) Solution structure of eggcase silk protein and its implications for silk fiber formation. Proc Natl Acad Sci USA 106:8906–8911

    CAS  PubMed  Google Scholar 

  89. Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D (1999) Methionine redox controlled crystallization of biosynthetic silk spidroin. J Phys Chem B 103:11382–11392

    CAS  Google Scholar 

  90. Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, Huss F, Rising A (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2:1908–1922

    CAS  Google Scholar 

  91. Hedhammar M, Bramfeldt H, Baris T, Widhe M, Askarieh G, Nordling K, von Aulock S, Johansson J (2010) Sterilized recombinant spider silk fibers of low pyrogenicity. Biomacromolecules 11:953–959

    CAS  PubMed  Google Scholar 

  92. Hedhammar M, Rising A, Grip S, Martinez AS, Nordling K, Casals C, Stark M, Johansson J (2008) Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from euprosthenops australis: implications for fiber formation. Biochemistry 47:3407–3417

    CAS  PubMed  Google Scholar 

  93. Grip S, Johansson J, Hedhammar M (2009) Engineered disulfides improve mechanical properties of recombinant spider silk. Protein Sci 18:1012–1022

    CAS  PubMed  Google Scholar 

  94. Seidel A, Liivak O, Calve S, Adaska J, Ji G, Yang Z, Grubb D, Zax DB, Jelinski LW (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33:775–780

    CAS  Google Scholar 

  95. Shao Z, Vollrath F, Yang Y, Thogersen HC (2003) Structure and behavior of regenerated spider silk. Macromolecules 36:1157–1161

    CAS  Google Scholar 

  96. Teulé F, Furin WA, Cooper AR, Duncan JR, Lewis RV (2007) Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J Mater Sci 42:8974–8985

    Google Scholar 

  97. Yang J, Barr LA, Fahnestock SR, Liu ZB (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14:313–324

    CAS  PubMed  Google Scholar 

  98. Zhou S, Peng H, Yu X, Zheng X, Cui W, Zhang Z, Li X, Wang J, Weng J, Jia W, Li F (2008) Preparation and characterization of a novel electrospun spider silk fibroin/poly(d, l-lactide) composite fiber. J Phys Chem B 112:11209–11216

    CAS  PubMed  Google Scholar 

  99. Metwalli E, Slotta U, Darko C, Roth S, Scheibel T, Papadakis C (2007) Structural changes of thin films from recombinant spider silk proteins upon post treatment. Appl Phys A 89:655–661

    Google Scholar 

  100. Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57

    CAS  PubMed  Google Scholar 

  101. Hermanson KD, Harasim MB, Scheibel T, Bausch AR (2007) Permeability of silk microcapsules made by the interfacial adsorption of protein. Phys Chem Chem Phys 9:6442–6446

    CAS  PubMed  Google Scholar 

  102. Kenney JM, Knight D, Wise MJ, Vollrath F (2002) Amyloidogenic nature of spider silk. Eur J Biochem 269:4159–4163

    CAS  PubMed  Google Scholar 

  103. Thiel BL, Guess KB, Viney C (1997) Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41:703–719

    CAS  PubMed  Google Scholar 

  104. Sponner A, Unger E, Grosse F, Weisshart K (2004) Conserved C-termini of spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules 5:840–845

    CAS  PubMed  Google Scholar 

  105. Eisoldt L, Hardy JG, Heim M, Scheibel TR (2010) The role of salt and shear on the storage and assembly of spider silk proteins. J Struct Biol 170:413–419

    CAS  PubMed  Google Scholar 

  106. Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    CAS  PubMed  Google Scholar 

  107. Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM (2006) Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 10:770–777

    PubMed  Google Scholar 

  108. Gellynck K, Verdonk PC, Van Nimmen E, Almqvist KF, Gheysens T, Schoukens G, Van Langenhove L, Kiekens P, Mertens J, Verbruggen G (2008) Silkworm and spider silk scaffolds for chondrocyte support. J Mater Sci Mater Med 19:3399–3409

    CAS  PubMed  Google Scholar 

  109. Hakimi O, Gheysens T, Vollrath F, Grahn MF, Knight DP, Vadgama P (2010) Modulation of cell growth on exposure to silkworm and spider silk fibers. J Biomed Mater Res A 92:1366–1372

    PubMed  Google Scholar 

  110. Allmeling C, Jokuszies A, Reimers K, Kall S, Choi CY, Brandes G, Kasper C, Scheper T, Guggenheim M, Vogt PM (2008) Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif 41:408–420

    CAS  PubMed  Google Scholar 

  111. Vollrath F, Barth P, Basedow A, Engstrom W, List H (2002) Local tolerance to spider silks and protein polymers in vivo. In Vivo 16:229–234

    CAS  PubMed  Google Scholar 

  112. Gellynck K, Verdonk P, Forsyth R, Almqvist KF, Van Nimmen E, Gheysens T, Mertens J, Van Langenhove L, Kiekens P, Verbruggen G (2008) Biocompatibility and biodegradability of spider egg sac silk. J Mater Sci Mater Med 19:2963–2970

    CAS  PubMed  Google Scholar 

  113. Baoyong L, Jian Z, Denglong C, Min L (2010) Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models. Burns. doi:10.1016/j.burns.2009.12.001

  114. Morgan AW, Roskov KE, Lin-Gibson S, Kaplan DL, Becker ML, Simon CG Jr (2008) Characterization and optimization of rgd-containing silk blends to support osteoblastic differentiation. Biomaterials 29:2556–2563

    CAS  PubMed  Google Scholar 

  115. Wang H, Wei M, Zue Z, Li M (2009) Cytocompatibility study of Arg-Gly-Asp-recombinant spider silk protein/poly vinyl alcohol scaffold (in Chinese). Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 23:747–750

    Google Scholar 

  116. Colgin MA, Lewis RV (1998) Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “Spacer regions”. Protein Sci 7:667–672

    CAS  PubMed  Google Scholar 

  117. Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21:1950–1959

    CAS  PubMed  Google Scholar 

  118. Vasanthavada K, Hu X, Falick AM, La Mattina C, Moore AM, Jones PR, Yee R, Reza R, Tuton T, Vierra C (2007) Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus. J Biol Chem 282:35088–35097

    CAS  PubMed  Google Scholar 

  119. Tian M, Lewis RV (2005) Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein. Biochemistry 44:8006–8012

    CAS  PubMed  Google Scholar 

  120. Hu X, Lawrence B, Kohler K, Falick AM, Moore AM, McMullen E, Jones PR, Vierra C (2005) Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus. Biochemistry 44:10020–10027

    CAS  PubMed  Google Scholar 

  121. Hu X, Kohler K, Falick AM, Moore AM, Jones PR, Sparkman OD, Vierra C (2005) Egg case protein-1. A new class of silk proteins with fibroin-like properties from the spider Latrodectus hesperus. J Biol Chem 280:21220–21230

    CAS  PubMed  Google Scholar 

  122. Hu X, Kohler K, Falick AM, Moore AM, Jones PR, Vierra C (2006) Spider egg case core fibers: trimeric complexes assembled from TuSP1, ECP-1, and ECP-2. Biochemistry 45:3506–3516

    CAS  PubMed  Google Scholar 

  123. Zhao A, Zhao T, Sima Y, Zhang Y, Nakagaki K, Miao Y, Shiomi K, Kajiura Z, Nagata Y, Nakagaki M (2005) Unique molecular architecture of egg case silk protein in a spider, Nephila clavata. J Biochem (Tokyo) 138:593–604

    CAS  Google Scholar 

  124. Bittencourt D, Souto BM, Verza NC, Vinecky F, Dittmar K, Silva PI Jr, Andrade AC, da Silva FR, Lewis RV, Rech EL (2007) Spidroins from the brazilian spider Nephilengys cruentata (araneae: Nephilidae). Comp Biochem Physiol B Biochem Mol Biol 147:597–606

    CAS  PubMed  Google Scholar 

  125. Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Vierra CA (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46:3294–3303

    CAS  PubMed  Google Scholar 

  126. Blasingame E, Tuton-Blasingame T, Larkin L, Falick AM, Zhao L, Fong J, Vaidyanathan V, Visperas A, Geurts P, Hu X, La Mattina C, Vierra C (2009) Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J Biol Chem 284:29097–29108

    CAS  PubMed  Google Scholar 

  127. Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990) Genetic engineering of structural protein polymers. Biotechnol Prog 6:198–202

    CAS  PubMed  Google Scholar 

  128. Yang M, Asakura T (2005) Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins. J Biochem 137:721–729

    CAS  PubMed  Google Scholar 

  129. Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E, Grosse F, Weisshart K (2005) The conserved C-termini contribute to the properties of spider silk fibroins. Biochem Biophys Res Commun 338:897–902

    CAS  PubMed  Google Scholar 

  130. Heim M, Ackerschott CB, Scheibel T (2010) Characterization of recombinantly produced spider flagelliform silk domains. J Struct Biol 170(2):420–425

    Google Scholar 

  131. Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA (2009) Engineering the salmonella type III secretion system to export spider silk monomers. Mol Syst Biol 5:309

    PubMed  Google Scholar 

  132. Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J (2007) Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–249

    CAS  PubMed  Google Scholar 

  133. Grip S, Rising A, Nummervoll H, Storkenfeldt E, McQueen-Mason SJ, Pouchkina-Stantcheva N, Vollrath F, Engström W, Fernandez-Arias A (2006) Transient expression of a major ampullate spidroin 1 gene fragment from Euprosthenops sp. in mammalian cells. Cancer Genomics Proteomics 3:83–88

    CAS  Google Scholar 

  134. Ittah S, Michaeli A, Goldblum A, Gat U (2007) A model for the structure of the C-terminal domain of dragline spider silk and the role of its conserved cysteine. Biomacromolecules 8:2768–2773

    CAS  PubMed  Google Scholar 

  135. Ittah S, Barak N, Gat U (2009) A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties. Biopolymers 93:458–468

    Google Scholar 

  136. Lee KS, Kim BY, Je YH, Woo SD, Sohn HD, Jin BR (2007) Molecular cloning and expression of the c-terminus of spider flagelliform silk protein from araneus ventricosus. J Biosci 32:705–712

    CAS  PubMed  Google Scholar 

  137. Miao Y, Zhang Y, Nakagaki K, Zhao T, Zhao A, Meng Y, Nakagaki M, Park EY, Maenaka K (2006) Expression of spider flagelliform silk protein in bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system. Appl Microbiol Biotechnol 71:192–199

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Wilhelm Engström for introducing spidroin research at our department. Financial support from the Swedish Research Council, Formas, Vinnova, Spiber Technologies AB, and the EU Commission is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Johansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rising, A., Widhe, M., Johansson, J. et al. Spider silk proteins: recent advances in recombinant production, structure–function relationships and biomedical applications. Cell. Mol. Life Sci. 68, 169–184 (2011). https://doi.org/10.1007/s00018-010-0462-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0462-z

Keywords

Navigation