Skip to main content

Advertisement

Log in

Epstein-Barr virus encoded EBNA-3 binds to vitamin D receptor and blocks activation of its target genes

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Epstein-Barr virus (EBV) is a human gamma herpes virus that infects B cells and induces their transformation into immortalized lymphoblasts that can grow as cell lines (LCLs) in vitro. EBNA-3 is a member of the EBNA-3-protein family that can regulate transcription of cellular and viral genes. The identification of EBNA-3 cellular partners and a study of its influence on cellular pathways are important for understanding the transforming action of the virus. In this work, we have identified the vitamin D receptor (VDR) protein as a binding partner of EBNA-3. We found that EBNA3 blocks the activation of VDR-dependent genes and protects LCLs against vitamin-D3-induced growth arrest and/or apoptosis. The presented data shed some light on the anti-apoptotic EBV program and the role of the EBNA-3-VDR interaction in the viral strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kieff E, Rikinson A (2001) Epstein-Barr virus and its replication. In: Fields BN (ed) Fields Virology, vol II, 2nd edn. Lippincott Williams&Wilkins, Philadelphia, pp 2511–2574

    Google Scholar 

  2. Robertson ES, Grossman S, Johannsen E, Miller C, Lin J, Tomkinson B, Kieff E (1995) Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J Virol 69:3108–3116

    CAS  PubMed  Google Scholar 

  3. Robertson ES, Lin J, Kieff E (1996) The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ (kappa). J Virol 70:3068–3074

    CAS  PubMed  Google Scholar 

  4. Johannsen E, Miller CL, Grossman SR, Kieff E (1996) EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJkappa in Epstein-Barr virus-transformed B lymphocytes. J Virol 70:4179–4183

    CAS  PubMed  Google Scholar 

  5. Zhao B, Marshall DR, Sample CE (1996) A conserved domain of the Epstein-Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jkappa. J Virol 70:4228–4236

    CAS  PubMed  Google Scholar 

  6. Krauer K, Kienzle N, Young DB, Sculley TB (1996) Epstein-Barr nuclear antigen-3 and -4 interact with RBP-2N, a major isoform of RBP-J kappa in B lymphocytes. Virology 226:346–353

    Article  CAS  PubMed  Google Scholar 

  7. Le Roux A, Kerdiles B, Walls D, Dedieu JF, Perricaudet M (1994) The Epstein-Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology 205:596–602

    Article  CAS  PubMed  Google Scholar 

  8. Cludts I, Farrell PJ (1998) Multiple functions within the Epstein-Barr virus EBNA-3A protein. J Virol 72:1862–1869

    CAS  PubMed  Google Scholar 

  9. Cooper A, Johannsen E, Maruo S, Cahir-McFarland E, Illanes D, Davidson D, Kieff E (2003) EBNA3A association with RBP-Jkappa down-regulates c-myc and Epstein-Barr virus-transformed lymphoblast growth. J Virol 77:999–1010

    Article  CAS  PubMed  Google Scholar 

  10. Kashuba EV, Gradin K, Isaguliants M, Szekely L, Poellinger L, Klein G, Kazlauskas A (2006) Regulation of transactivation function of the aryl hydrocarbon receptor by the Epstein-Barr virus-encoded EBNA-3 protein. J Biol Chem 281:1215–1223

    Article  CAS  PubMed  Google Scholar 

  11. Kashuba E, Kashuba V, Pokrovskaja K, Klein G, Szekely L (2000) Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with Hepatitis B virus X antigen. Oncogene 19:1801–1806

    Article  CAS  PubMed  Google Scholar 

  12. Yenamandra SP, Klein G, Kashuba E (2009) Nuclear receptors and their role in Epstein-Barr virus induced B cell transformation. Exp Oncol 31:67–73

    CAS  PubMed  Google Scholar 

  13. Yenamandra SP, Lundin A, Arulampalam G, Yurchenko M, Pettersson S, Klein G, Kashuba E (2009) Expression profile of nuclear receptors upon Epstein-Barr virus induced B cell transformation. Exp Oncol 31:92–96

    CAS  PubMed  Google Scholar 

  14. Buck M, Burgess A, Stirzaker R, Krauer K, Sculley T (2006) Epstein-Barr virus nuclear antigen 3A contains six nuclear-localization signals. J Gen Virol 87:2879–2884

    Article  CAS  PubMed  Google Scholar 

  15. Hertle ML, Popp C, Peterman S, Maier S, Kremmer E, Lang R, Mages J, Kempkes B (2009) Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes. PLoS Pathog 5:e1000506

    Article  PubMed  Google Scholar 

  16. Hellman U (2002) Peptide mapping using MALDI-TOFMS. Wiley, Inc, New York

    Google Scholar 

  17. Hellman U, Bhikhabhai R (2002) Easy amino acid sequencing of sulfonated peptides using post-source decay on a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer equipped with a variable voltage reflector. Rapid Commun Mass Spectrom 16:1851–1859

    Article  CAS  PubMed  Google Scholar 

  18. Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (2003) The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 113:905–917

    Article  CAS  PubMed  Google Scholar 

  19. Gregory CD, Dive C, Henderson S, Smith CA, Williams GT, Gordon J, Rickinson AB (1991) Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature 349:612–614

    Article  CAS  PubMed  Google Scholar 

  20. Lee JM, Lee KH, Farrell CJ, Ling PD, Kempkes B, Park JH, Hayward SD (2004) EBNA2 is required for protection of latently Epstein-Barr virus-infected B cells against specific apoptotic stimuli. J Virol 78:12694–12697

    Article  CAS  PubMed  Google Scholar 

  21. Lee JM, Lee KH, Weidner M, Osborne BA, Hayward SD (2002) Epstein-Barr virus EBNA2 blocks Nur77- mediated apoptosis. Proc Natl Acad Sci USA 99:11878–11883

    Article  CAS  PubMed  Google Scholar 

  22. Pegman PM, Smith SM, D’Souza BN, Loughran ST, Maier S, Kempkes B, Cahill PA, Simmons MJ, Gelinas C, Walls D (2006) Epstein-Barr virus nuclear antigen 2 trans-activates the cellular antiapoptotic bfl-1 gene by a CBF1/RBPJ kappa-dependent pathway. J Virol 80:8133–8144

    Article  CAS  PubMed  Google Scholar 

  23. Horndasch M, Raschke EE, Bommer G, Schuhmacher M, Dumont E, Kuklik-Roos C, Eick D, Kempkes B (2002) Epstein-Barr virus antagonizes the antiproliferative activity of transforming growth factor-beta but does not abolish its signaling. Int J Cancer 101:442–447

    Article  CAS  PubMed  Google Scholar 

  24. Kelly GL, Milner AE, Tierney RJ, Croom-Carter DS, Altmann M, Hammerschmidt W, Bell AI, Rickinson AB (2005) Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt’s lymphoma cells and with increased resistance to apoptosis. J Virol 79:10709–10717

    Article  CAS  PubMed  Google Scholar 

  25. Anderton E, Yee J, Smith P, Crook T, White RE, Allday MJ (2008) Two Epstein-Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt’s lymphoma. Oncogene 27:421–433

    Article  CAS  PubMed  Google Scholar 

  26. Jurutka PW, Remus LS, Whitfield GK, Thompson PD, Hsieh JC, Zitzer H, Tavakkoli P, Galligan MA, Dang HT, Haussler CA, Haussler MR (2000) The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol 14:401–420

    Article  CAS  PubMed  Google Scholar 

  27. Norman AW (2006) Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology 147:5542–5548

    Article  CAS  PubMed  Google Scholar 

  28. Gombart AF, Luong QT, Koeffler HP (2006) Epstein-Barr virus antagonizes the antiproliferative activity of transforming growth factor-beta but does not abolish its signaling. Anticancer Res 26:2531–2542

    CAS  PubMed  Google Scholar 

  29. Banerjee P, Chatterjee M (2003) Antiproliferative role of vitamin D and its analogs–a brief overview. Mol Cell Biochem 253:247–254

    Article  CAS  PubMed  Google Scholar 

  30. Dusso AS, Brown AJ, Slatopolsky E (2005) Vitamin D. Am J Physiol Renal Physiol 289:F8–28

    Article  CAS  PubMed  Google Scholar 

  31. Morgan JW, Reddy GS, Uskokovic MR, May BK, Omdahl JL, Maizel AL, Sharma S (1994) Functional block for 1 alpha, 25-dihydroxyvitamin D3-mediated gene regulation in human B lymphocytes. J Biol Chem 269:13437–13443

    CAS  PubMed  Google Scholar 

  32. Morgan JW, Kouttab N, Ford D, Maizel AL (2000) Vitamin D-mediated gene regulation in phenotypically defined human B cell subpopulations. Endocrinology 141:3225–3234

    Article  CAS  PubMed  Google Scholar 

  33. Elstner E, Lee YY, Hashiya M, Pakkala S, Binderup L, Norman AW, Okamura WH, Koeffler HP (1994) 1 alpha, 25-Dihydroxy-20-epi-vitamin D3: an extraordinarily potent inhibitor of leukemic cell growth in vitro. Blood 84:1960–1967

    CAS  PubMed  Google Scholar 

  34. Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78:1193–1231

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Cancer Society, a matching grant from the Concern Foundation (Los Angeles), the Cancer Research Institute (New York), the Swedish Institute, and the Swedish Foundation for Strategic Research.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Kashuba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yenamandra, S.P., Hellman, U., Kempkes, B. et al. Epstein-Barr virus encoded EBNA-3 binds to vitamin D receptor and blocks activation of its target genes. Cell. Mol. Life Sci. 67, 4249–4256 (2010). https://doi.org/10.1007/s00018-010-0441-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0441-4

Keywords

Navigation