Skip to main content
Log in

15-Deoxy-Δ12,14-prostaglandin-J2 reveals a new pVHL-independent, lysosomal-dependent mechanism of HIF-1α degradation

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factor-1α (HIF-1α) protein is degraded under normoxia by its association to von Hippel-Lindau protein (pVHL) and further proteasomal digestion. However, human renal cells HK-2 treated with 15-deoxy-Δ12,14-prostaglandin-J2 (15d-PGJ2) accumulate HIF-1α in normoxic conditions. Thus, we aimed to investigate the mechanism involved in this accumulation. We found that 15d-PGJ2 induced an over-accumulation of HIF-1α in RCC4 cells, which lack pVHL and in HK-2 cells treated with inhibitors of the pVHL-proteasome pathway. These results indicated that pVHL-proteasome-independent mechanisms are involved, and therefore we aimed to ascertain them. We have identified a new lysosomal-dependent mechanism of HIF-1α degradation as a target for 15d-PGJ2 based on: (1) HIF-1α colocalized with the specific lysosomal marker Lamp-2a, (2) 15d-PGJ2 inhibited the activity of cathepsin B, a lysosomal protease, and (3) inhibition of lysosomal activity did not result in over-accumulation of HIF-1α in 15d-PGJ2-treated cells. Therefore, expression of HIF-1α is also modulated by lysosomal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AA, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratclife PJ (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    Article  PubMed  CAS  Google Scholar 

  2. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468

    Article  PubMed  CAS  Google Scholar 

  3. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J 20:5197–5206

    Article  PubMed  CAS  Google Scholar 

  4. Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278(33):30772–30780

    Article  PubMed  Google Scholar 

  5. Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 98(17):9630–9635

    Article  PubMed  CAS  Google Scholar 

  6. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295(5556):858–861

    Article  PubMed  CAS  Google Scholar 

  7. Matsumoto M, Makino Y, Tanaka T, Tanaka H, Ishizaka N, Noiri E, Fujita T, Nangaku M (2003) Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J Am Soc Nephrol 14(7):1825–1832

    Article  PubMed  Google Scholar 

  8. Guo G (2004) Improvement of kidney function in a rat model of renal ischemia-reperfusion injury by treatment with a novel HIF prolyl-hydroxylase inhibitor. ASN annual meeting, St Louis MO. J Am Soc Nephrol 15:460A

    Google Scholar 

  9. Chatterjee PK, Patel NS, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Britti D, Eberhardt W, Pfeilschifter J, Thiemermann C (2004) The cyclopentenone prostaglandin 15-deoxy-Δ 12, 14-prostaglandin-J2 ameliorates ischemic acute renal failure. Cardiovasc Res 61:630–643

    Article  PubMed  CAS  Google Scholar 

  10. Olmos G, Conde I, Arenas MI, Del Peso L, Castellanos C, Landazuri MO, Lucio-Cazana FJ (2007) Accumulation of hypoxia-inducible factor-1α through a novel electrophilic, thiol antioxidant-sensitive mechanism. Cell Signal 19:2098–2105

    Article  PubMed  CAS  Google Scholar 

  11. Flügel D, Görlach A, Michiels C, Kietzmann T (2007) Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1α and mediates its destabilization in a VHL-independent manner. Mol Cell Biol 27:3253–3265

    Article  PubMed  Google Scholar 

  12. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL (2007) RACK1 Competes with HSP90 for Binding to HIF-1α and is Required for O2-independent and HSP90 Inhibitor-induced Degradation of HIF-1α. Mol Cell 25:207–217

    Article  PubMed  Google Scholar 

  13. Qian DZ, Kachhap SK, Collis SJ, Verheul HMW, Carducci MA, Atadja P, Pili R (2006) Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1A. Cancer Res 66:8814–8821

    Google Scholar 

  14. Isaacs JS, Jung Y, Mimnaugh EG, Martine ZA, Cuttitta F, Neckers LM (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J Biol Chem 277:29936–29944

    Article  PubMed  CAS  Google Scholar 

  15. Zhou J, Köhl R, Herr B, Frank R, Brüne B (2006) Calpain mediates a von hippel-lindau protein–independent destruction of hypoxia-inducible factor-1α. Mol Cell Biol 17:1549–1558

    Article  CAS  Google Scholar 

  16. Im E, Venkatakrishan A, Kazlauskas A (2005) Cathepsin B regulates the intrinsic angiogenic threshold of endotelial cells. Mol Biol Cell 16:3488–3500

    Article  PubMed  CAS  Google Scholar 

  17. Waters SL, Sarang SS, Wang KKW, Schnellmann RG (1997) Calpain mediate calcium and chloride influx during the late phase of cell injury. J Pharmacol Exp Ther 117:7–1184

    Google Scholar 

  18. Wu TY, Tan HL, Huang Q, Kim YS, Pan N, Ong WY, Liu ZG, Ong CN, Shen HM (2008) Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4:457–466

    PubMed  CAS  Google Scholar 

  19. Kong W, Alvarez-Castelao B, Lin ZJ, Castano JG, Caro J (2007) Constitutive/Hypoxic Degradation of HIF-α Proteins by the Proteasome Is Independent of von Hippel Lindau Protein Ubiquitylation and the Transactivation Activity of the Protein. J Biol Chem 282:15498–15505

    Article  PubMed  CAS  Google Scholar 

  20. Stamatakis K, Sanchez-Gomez FJ, Perez-Sala D (2006) Identification of novel protein targets for modification by 15-deoxy-Δ12, 14-prostaglandin-J2 in mesangial cells reveals multiple interactions with the cytoskeleton. J Am Soc Nephrol 17:89–98

    Article  PubMed  CAS  Google Scholar 

  21. Schotte P, Schauvliege R, Janssens S, Beyaert R (2001) The cathepsin B inhibitor z-FA.fmk inhibits cytokine production in macrophages stimulated by lipopolysaccharide. J Biol Chem 276:21153–21157

    Article  PubMed  CAS  Google Scholar 

  22. Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores G (2000) Cathepsin B contributes to TNFalpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137

    Article  PubMed  CAS  Google Scholar 

  23. Riccio M, Di Giaimo R, Pianetti S, Palmieri PP, Melli M, Santi S (2001) Nuclear localization of cystatin B, the cathepsin inhibitor implicated in myoclonus epilepsy (EPM1). Exp Cell Res 262:84–94

    Article  PubMed  CAS  Google Scholar 

  24. Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  25. Fuertes G, Martín de Llano JJ, Villarroya A, Rivett A, Knecht E (2003) Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions. Biochem J 375:75–80

    Article  PubMed  CAS  Google Scholar 

  26. Kisselev AF, Callard A, Goldberg AL (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281:8582–8590

    Article  PubMed  CAS  Google Scholar 

  27. Li Z, Melandri F, Berdo I, Jansen M, Hunter L, Wright S, Valbrun D, Figueiredo-Pereira M (2004) Δ12-prostaglandin J2 elicits ubiquitin-protein aggregation without proteasome inhibition. Biochem Biophys Res Commun 319:1171–1180

    Article  PubMed  CAS  Google Scholar 

  28. Branca D (2004) Calpain-related diseases. Biochem Biophys Res Commun 322:1098–1104

    Article  PubMed  CAS  Google Scholar 

  29. Shibata T, Yamada T, Kondo M, Tanahashi N, Tanaka K, Nakamura H, Masutani H, Yodoi J, Uchida K (2003) An endogenous electrophile that modulates the regulatory mechanism of protein turnover: inhibitory effects of 15-deoxy-Delta12, 14-prostaglandin-J2 on proteasome. Biochemistry 42(47):13960–13968

    Article  PubMed  CAS  Google Scholar 

  30. Levonen AL, Landar A, Ramachandran A, Ceaser EK, Dickinson DA, Zanoni G, Morrow JD, Darley-Usmar VM (2004) Cellular mechanisms of redox cell signaling: the role of cysteine modification in controlling antioxidant defenses in response to electrophilic lipid oxidation products. Biochem J 378:373–382

    Article  PubMed  CAS  Google Scholar 

  31. Sanchez-Gomez FJ, Cernuda-Morollon E, Stamatakis K, Perez-Sala D (2004) Protein thiol modification by 15-deoxy-Δ12, 14-prostaglandin J2 addition in mesangial cells: role in the inhibition of pro-inflammatory genes. Mol Pharmacol 66(5):1349–1358

    Article  PubMed  CAS  Google Scholar 

  32. Lorente M, Mirapeix RM, Miguel M, Longmei W, Volk D, Cervós-Navarro J (2002) Chronici hypoxia induced ultrastructural changes in the rat adrenal zona glomerulosa. Histol Histophathol 17(1):185–190

    CAS  Google Scholar 

  33. Welt K, Fitzl G, Schepper A (2001) Experimental hypoxia of STZ-diabetic rat myocardium and protective effects of Ginkgo biloba extrac. II. Ultrastructura investigation of microvascular endothelium. Exp Toxicol Pathol 52(6):503–512

    PubMed  CAS  Google Scholar 

  34. Massey A, Kiffin R, Cuervo AM (2004) Pathophysiology of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2420–2434

    Article  PubMed  CAS  Google Scholar 

  35. Agarraberes F, Dice J (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114:2491–2499

    PubMed  CAS  Google Scholar 

  36. Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15:4829–4840

    Article  PubMed  CAS  Google Scholar 

  37. Katschinsk D, Le L, Schindler S, Thomas T, Voss A, Wenger R (2004) Interaction of the PAS B Domain with HSP90 Accelerates Hypoxia-Inducible Factor-1α Stabilization. Cell Physiol Biochem 14:4–6

    Google Scholar 

  38. Zheng X, Ruas JL, Cao R, Salomons FA, Cao Y, Poellinger L, Pereira T (2006) Cell-type-specific regulation of degradation of hypoxia-inducible factor 1 alpha: role of subcellular compartmentalization. Mol Cell Biol 26:4628–4641

    Article  PubMed  CAS  Google Scholar 

  39. Khan Z, Michalopoulos GK, Stolz DB (2006) Peroxisomal localization of hypoxia-inducible factors and hypoxia inducible factor regulaoty hydroxylases in primary rat hepatocytes exposed to hypoxia-reoxigenation. Am J Pathol 169(4):1251–1269

    Article  PubMed  CAS  Google Scholar 

  40. Liu Q, Berchner-Pfannschmidt U, Moller U, Brecht M, Wotzlaw C, Acker H, Jungermann K, Kietzmann T (2004) Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci USA 101:4302–4307

    Article  PubMed  CAS  Google Scholar 

  41. Kidane TZ, Sauble E, Linder MC (2006) Release of iron from ferritin requires lysosomal activity. Am J Physiol 291:C445–C455

    Article  CAS  Google Scholar 

  42. Cernuda-Morollon E, Pineda-Molina E, Canada FJ, Perez-Sala D (2001) 15-Deoxy-Delta 12, 14-prostaglandin J2 inhibition of NF-kappaB-DNA binding through covalent modification of the p50 subunit. J Biol Chem 276(38):35530–35536

    Article  PubMed  CAS  Google Scholar 

  43. Strauss DS, Glass CK (2001) Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 21(3):185–210

    Article  Google Scholar 

  44. Liu JD, Tsai SH, Lin SY, Ho YS, Hung LF, Pan S, Ho FM, Lin CM, Liang YC (2004) Thiol antioxidant and thiol-reducing agents attenuate 15-deoxy-delta 12, 14-prostaglandin J2-induced heme oxygenase-1 expression. Life Sci 74:2451–2463

    Article  PubMed  CAS  Google Scholar 

  45. Benesic A, Schwerdt G, Freudinger R, Mildenberger S, Groezinger F, Wollny B, Kirchhoff A, Gekle M (2006) Chloroacetaldehyde as a sulfhydryl reagent: the role of critical thiol groups in ifosfamide nephropathy. Kidney Blood Press Res 29:280–293

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants SAL-0311-2006 from the Comunidad de Madrid, SAF2008-01767 from the Spanish Ministerio de Ciencia e Innovación and CCG08-UAH/BIO-4102 from University of Alcala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Lucio-Cazaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmos, G., Arenas, M.I., Bienes, R. et al. 15-Deoxy-Δ12,14-prostaglandin-J2 reveals a new pVHL-independent, lysosomal-dependent mechanism of HIF-1α degradation. Cell. Mol. Life Sci. 66, 2167–2180 (2009). https://doi.org/10.1007/s00018-009-0039-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0039-x

Keywords

Navigation