Skip to main content

Advertisement

Log in

Apoptosis regulation in the mammary gland

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Epithelial apoptosis has a key role in the development and function of the mammary gland. It is involved with the formation of ducts during puberty and is required to remove excess epithelial cells after lactation so that the gland can be prepared for future pregnancies. Deregulated apoptosis contributes to malignant progression in the genesis of breast cancer. Since epithelial cell apoptosis in the lactating mammary gland can be synchronised by forced weaning, it has been possible to undertake biochemical analysis of the pathways involved. Together with the targeted overexpression or deletion of candidate genes, these approaches have provided a unique insight into the complex mechanisms of apoptosis regulation in vivo. This review explores what is currently known about the triggers for apoptosis in the normal mammary gland, and how they link with the intrinsic apoptotic machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilde C. J., Knight C. H. and Flint D. J. (1999) Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Biol. Neoplasia 4: 129–136

    Article  CAS  PubMed  Google Scholar 

  2. Kratochwil K. (1971) In vitro analysis of the hormonal basis for the sexual dimorphism in the embryonic development of the mouse mammary gland. J. Embryol. Exp. Morphol. 25: 141–153

    CAS  PubMed  Google Scholar 

  3. Humphreys R. C., Krajewska M., Krnacik S., Jaeger R., Weiher H., Krajewski S. et al. (1996) Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 122: 4013–4022

    CAS  PubMed  Google Scholar 

  4. Andres A. C. and Strange R. (1999) Apoptosis in the estrous and menstrual cycles. J. Mammary Gland Biol. Neoplasia 4: 221–228

    Article  CAS  PubMed  Google Scholar 

  5. Potten C. S., Watson R. J., Williams G. T., Tickle S., Roberts S. A., Harris M. et al. (1988) The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br. J. Cancer 58: 163–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Metcalfe A. D., Gilmore A., Klinowska T., Oliver J., Valentijn A. J., Brown R. et al. (1999) Developmental regulation of Bcl2 family protein expression in the involuting mammary gland. J. Cell Sci. 112: 1771–1783

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Lund L. R., Romer J., Thomasset N., Solberg H., Pyke C., Bissell M. J. et al. (1996) Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122: 181–193

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Li M., Liu X., Robinson G., Bar-Peled U., Wagner K. U., Young W S. et al. (1997) Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc. Natl. Acad. Sci. USA 94: 3425–3430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Strange R., Li E, Saurer S., Burkhardt A. and Friis R. R. (1992) Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115: 49–58

    CAS  PubMed  Google Scholar 

  10. Walker N. I, Bennett R. E. and Kerr J. E (1989) Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185: 19–32

    Article  CAS  PubMed  Google Scholar 

  11. Prince J. M., Klinowska T. C., Marshman E., Lowe E. T., Mayer U., Miner J. et al. (2002) Cell-matrix interactions during development and apoptosis of the mouse mammary gland in vivo. Dev. Dyn. 223: 497–516

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Hernandez A., Fink L. M. and Pierce G. B. (1976) Removal of basement membrane in the involuting breast. Lab. Invest. 34: 455–462

    CAS  PubMed  Google Scholar 

  13. Talhouk R. S., Bissell M. J. and Werb Z. (1992) Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol. 118: 1271–1282

    Article  CAS  PubMed  Google Scholar 

  14. Li E, Strange R., Friis R. R., Djonov V., Altermatt H. J., Saurer S. et al. (1994) Expression of stromelysin-1 and TIMP-1 in the involuting mammary gland and in early invasive tumors of the mouse. Int. J. Cancer 59: 560–568

    Article  CAS  PubMed  Google Scholar 

  15. Talhouk R. S., Chin J. R., Unemori E. N., Werb Z. and Bissell M. J. (1991) Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development 112: 439–449

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Sympson C. J., Talhouk R. S., Alexander C. M., Chin J. R., Clift S. M., Bissell M. J. et al. (1994) Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125: 681–693

    Article  CAS  PubMed  Google Scholar 

  17. Alexander C. M., Howard E. W, Bissell M. J. and Werb Z. (1996) Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J. Cell Biol. 135: 1669–1677

    Article  CAS  PubMed  Google Scholar 

  18. Fata J. E., Leco K. J., Voura E. B., Yu H. Y, Waterhouse P, Murphy G. et al. (2001) Accelerated apoptosis in the Timp-3deficient mammary gland. J. Clin. Invest. 108: 831–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lund L. R., Bjorn S. F., Sternlicht M. D., Nielsen B. S., Solberg H., Usher P. A. et al. (2000) Lactational competence and involution of the mouse mammary gland require plasminogen. Development 127: 4481–4492

    CAS  PubMed  Google Scholar 

  20. Schenk S., Hintermann E., Bilban M., Koshikawa N., Hojilla C., Khokha R. et al. (2003) Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J. Cell Biol. 161: 197–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Clarkson R., Wayland M., Lee T., Freeman T. and Watson C. (2004) Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Research 6: R92–R109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Stein T., Morris J., Davies C., Weber-Hall S., Duffy M., Heath V et al. (2004) Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD 14 and STAT3. Breast Cancer Research 6: R75–R91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rudolph M. C., McManaman J. L., Hunter L., Phang T. and Neville M. C. (2003) Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation and involution. J. Mammary Gland Biol. Neoplasia 8: 287–307

    Article  PubMed  Google Scholar 

  24. Monks J., Geske F. J., Lehman L. and Fadok V. A. (2002) Do inflammatory cells participate in mammary gland involution? J. Mammary Gland Biol. Neoplasia 7: 163–176

    Article  PubMed  Google Scholar 

  25. Alexander C. M., Selvarajan S., Mudgett J. and Werb Z. (2001) Stromelysin-1 regulates adipogenesis during mammary gland involution. J. Cell Biol. 152: 693–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Selvarajan S., Lund L. R., Takeuchi T., Craik C. S. and Werb Z. (2001) A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nat. Cell Biol. 3: 267–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Marti A., Feng Z., Altermatt H. J. and Jaggi R. (1997) Milk accumulation triggers apoptosis of mammary epithelial cells. Eur. J. Cell Biol. 73: 158–165

    CAS  PubMed  Google Scholar 

  28. Hakansson A., Zhivotovsky B., Orrenius S., Sabharwal H. and Svanborg C. (1995) Apoptosis induced by a human milk protein. Proc. Natl. Acad. Sci. USA 92: 8064–8068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hakansson A., Andreasson J., Zhivotovsky B., Karpman D., Orrenius S. and Svanborg C. (1999) Multimeric alpha-lactalbumin from human milk induces apoptosis through a direct effect on cell nuclei. Exp. Cell Res. 246: 451–460

    Article  CAS  PubMed  Google Scholar 

  30. Wernig F., Mayr M. and Xu Q. (2003) Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by beta lintegrin signaling pathways. Hypertension 41: 903–911

    Article  CAS  PubMed  Google Scholar 

  31. Boussadia O., Kutsch S., Hierholzer A., Delmas V. and Kemler R. (2002) E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev. 115: 53–62

    Article  CAS  PubMed  Google Scholar 

  32. Zettl K. S., Sjaastad M. D., Riskin P M., Parry G., Machen T. E. and Firestone G. L. (1992) Glucocorticoid-induced formation of tight junctions in mouse mammary epithelial cells in vitro. Proc. Natl. Acad. Sci. USA 89: 9069–9073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Feng Z., Marti A., Jehn B., Altermatt H. J., Chicaiza G. and Jaggi R. (1995) Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J. Cell Biol. 131: 1095–1103

    Article  CAS  PubMed  Google Scholar 

  34. Hadsell D. L., Greenberg N. M., Fligger J. M., Baumrucker C. R. and Rosen J. M. (1996) Targeted expression of des(1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 137: 321–330

    CAS  PubMed  Google Scholar 

  35. LeRoith D., Neuenschwander S., Wood T. L. and Henninghausen L. (1995) Insulin-like growth factor-I and insulin-like growth factor binding protein-3 inhibit involution of the mammary gland following lactation: studies in transgenic mice. Prog. Growth Factor Res. 6: 433–436

    Article  CAS  PubMed  Google Scholar 

  36. Neuenschwander S., Schwartz A., Wood T. L., Roberts C. T. Jr, Henninghausen L. and LeRoith D. (1996) Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J. Clin. Invest. 97: 2225–2232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Moorehead R. A., Fata J. E., Johnson M. B. and Khokha R. (2001) Inhibition of mammary epithelial apoptosis and sustained phosphorylation of Akt/PKB in MMTV IGF-II transgenic mice. Cell Death Differ. 8: 16–29

    Article  CAS  PubMed  Google Scholar 

  38. Schwertfeger K. L., Richert M. M. and Anderson S. M. (2001) Mammary gland involution is delayed by activated Akt in transgenic mice. Mol. Endocrinol. 15: 867–881

    Article  CAS  PubMed  Google Scholar 

  39. Ackler S., Ahmad S., Tobias C., Johnson M. D. and Glazer R. I. (2002) Delayed mammary gland involution in MMTV AKT1 transgenic mice. Oncogene 21: 198–206

    Article  CAS  PubMed  Google Scholar 

  40. Dupont J., Renou J. P., Sham M., Hennighausen L. and LeRoith D. (2002) PTEN overexpression suppresses proliferation and differentiation and enhances apoptosis of the mouse mammary epithelium. J. Clin. Invest. 110: 815–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Li G., Robinson G. W., Lesche R., Martinez-Diaz H., Jiang Z., Rozengurt N. et al. (2002) Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129: 4159–4170

    CAS  PubMed  Google Scholar 

  42. Farrelly N., Lee Y. J., Oliver J., Dive C. and Streuli C. H. (1999) Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J. Cell Biol. 144: 1337–1348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Gilmore A. P., Valentijn A. J., Wang P., Ranger A. M., Bundred N., O'Hare M. J. et al. (2002) Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. J. Biol. Chem. 277: 27643–27650

    Article  CAS  PubMed  Google Scholar 

  44. Marshman E., Green K. A., Flint D. J., White A., Streuli C. H. and Westwood M. (2003) Insulin-like growth factor binding protein 5 and apoptosis in mammary epithelial cells. J. Cell Sci. 116: 675–682

    Article  CAS  PubMed  Google Scholar 

  45. Zheng W. H., Kar S. and Quirion R. (2002) Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRLI is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol. Pharmacol. 62: 225–233

    Article  CAS  PubMed  Google Scholar 

  46. Lee Y. J. and Streuli C. H. (1999) Extracellular matrix selectively modulates the response of mammary epithelial cells to different soluble signaling ligands. J. Biol. Chem. 274: 22401–22408

    Article  CAS  PubMed  Google Scholar 

  47. Pullan S., Wilson J., Metcalfe A., Edwards G. M., Goberdhan N., Tilly J. et al. (1996) Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J. Cell Sci. 109: 631–642

    CAS  PubMed  Google Scholar 

  48. Brakebusch C. and Fassler R. (2003) The integrin-actin connection, an eternal love affair. EMBO J. 22: 2324–2333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Humphries M. J., McEwan P A., Barton S. J., Buckley P. A., Bella J. and Paul Mould A. (2003) Integrin structure: heady advances in ligand binding, but activation still makes the knees wobble. Trends Biochem. Sci. 28: 313–320

    Article  CAS  PubMed  Google Scholar 

  50. Guilherme A., Torres K. and Czech M. P. (1998) Cross-talk between insulin receptor and integrin alpha5 beta1 signaling pathways. J. Biol. Chem. 273: 22899–22903

    Article  CAS  PubMed  Google Scholar 

  51. Guilherme A. and Czech M. P. (1998) Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by beta1-integrin signaling in rat adipocytes. J. Biol. Chem. 273: 33119–33122

    Article  CAS  PubMed  Google Scholar 

  52. Tonner E., Quarrie L., Travers M., Barber M., Logan A., Wilde C. et al. (1995) Does an IGF-binding protein (IGFBP) present in involuting rat mammary gland regulate apoptosis? Prog. Growth Factor Res. 6: 409–414

    Article  CAS  PubMed  Google Scholar 

  53. Tonner E., Barber M. C., Travers M. T., Logan A. and Flint D. J. (1997) Hormonal control of insulin-like growth factor-binding protein-5 production in the involuting mammary gland of the rat. Endocrinology 138: 5101–5107

    CAS  PubMed  Google Scholar 

  54. Tonner E., Barber M. C., Allan G. J., Beattie J., Webster J., Whitelaw C. B. et al. (2002) Insulin-like growth factor binding protein-5 (IGFBP-5) induces premature cell death in the mammary glands of transgenic mice. Development 129: 4547–4557

    CAS  PubMed  Google Scholar 

  55. Philp J. A., Burdon T. G. and Watson C. J. (1996) Differential regulation of members of the family of signal transducers and activators of transcription during mammary gland development. Biochem. Soc. Trans. 24: 370S

    Article  CAS  PubMed  Google Scholar 

  56. Chapman R. S., Lourenco P. C., Tonner E., Flint D. J., Selbert S., Takeda K. et al. (1999) Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 13: 2604–2616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Humphreys R. C., Bierie B., Zhao L., Raz R., Levy D. and Hennighausen L. (2002) Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology 143: 3641–3650

    Article  CAS  PubMed  Google Scholar 

  58. Iavnilovitch E., Groner B. and Barash I. (2002) Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation and delays postlactational apoptosis. Mol. Cancer Res. 1: 32–47

    CAS  PubMed  Google Scholar 

  59. Kritikou E. A., Sharkey A., Abell K., Came P J., Anderson E., Clarkson R. W et al. (2003) A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 130: 3459–3468

    Article  CAS  PubMed  Google Scholar 

  60. Schere-Levy C., Buggiano V., Quaglino A., Gattelli A., Cirio M. C., Piazzon I. et al. (2003) Leukemia inhibitory factor induces apoptosis of the mammary epithelial cells and participates in mouse mammary gland involution. Exp. Cell Res. 282: 35–47

    Article  CAS  PubMed  Google Scholar 

  61. Hengartner M. O. (2000) The biochemistry of apoptosis. Nature 407: 770–776

    Article  CAS  PubMed  Google Scholar 

  62. Zhao L., Melenhorst J. J. and Hennighausen L. (2002) Loss of interleukin 6 results in delayed mammary gland involution: a possible role for mitogen-activated protein kinase and not signal transducer and activator of transcription 3. Mol. Endocrinol. 16: 2902–2912

    Article  CAS  PubMed  Google Scholar 

  63. Nguyen A. V. and Pollard J. W (2000) Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 127: 3107–3118

    CAS  PubMed  Google Scholar 

  64. Yang Y. A., Tang B., Robinson G., Hennighausen L., Brodie S. G., Deng C. X. et al. (2002) Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-beta. Cell Growth Differ. 13: 123–130

    CAS  PubMed  Google Scholar 

  65. Ito Y. and Miyazono K. (2003) RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr. Opin. Genet. Dev. 13: 43–47

    Article  CAS  PubMed  Google Scholar 

  66. Song J., Sapi E., Brown W., Nilsen J., Tartaro K., Kacinski B. M. et al. (2000) Roles of Fas and Fas ligand during mammary gland remodeling. J. Clin. Invest. 106: 1209–1220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ashkenazi A. and Dixit V. M. (1999) Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11: 255–260

    Article  CAS  PubMed  Google Scholar 

  68. Sohn B. H., Moon H. B., Kim T. Y., Kang H. S., Bae Y. S., Lee K. K. et al. (2001) Interleukin-10 up-regulates tumour-necrosis-factor-alpha-related apoptosis-inducing ligand (TRAIL) gene expression in mammary epithelial cells at the involution stage. Biochem. J. 360: 31–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Boudreau N., Sympson C. J., Werb Z. and Bissell M. J. (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267: 891–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Faraldo M. M., Deugnier M. A., Lukashev M., Thiery J. P. and Glukhova M. A. (1998) Perturbation of beta1-integrin function alters the development of murine mammary gland. EMBO J. 17: 2139–2147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Weaver V., Lelievre S., Lakins J., Chrenek M., Jones J., Giancotti F. et al. (2002) beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2: 205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Klinowska T. C., Alexander C. M., Georges-Labouesse E., Van der Neut R., Kreidberg J. A., Jones C. J. et al. (2001) Epithelial development and differentiation in the mammary gland is not dependent on alpha 3 or alpha 6 integrin subunits. Dev. Biol. 233: 449–467

    Article  CAS  PubMed  Google Scholar 

  73. Faraldo M. M., Deugnier M. A., Thiery J. P and Glukhova M. A. (2001) Growth defects induced by perturbation of beta1-integrin function in the mammary gland epithelium result from a lack of MAPK activation via the She and Akt pathways. EMBO Rep. 2: 431–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Nikolova Z., Djonov V, Zuercher G., Andres A. C. and Ziemiecki A. (1998) Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis. J. Cell Sci. 111: 2741–2751

    CAS  PubMed  Google Scholar 

  75. Munarini N., Jager R., Abderhalden S., Zuercher G., Rohrbach V, Loercher S. et al. (2002) Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J. Cell Sci. 115: 25–37

    CAS  PubMed  Google Scholar 

  76. Nemade R. V., Bierie B., Nozawa M., Bry C., Smith G. H., Vasioukhin V et al. (2004) Biogenesis and function of mouse mammary epithelium depends on the presence of functional alpha-catenin. Mech. Dev. 121: 91–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Tepera S. B., McCrea P. D. and Rosen J. M. (2003) A betacatenin survival signal is required for normal lobular development in the mammary gland. J. Cell Sci. 116: 1137–1149

    Article  CAS  PubMed  Google Scholar 

  78. Lacher M. D., Siegenthaler A., Jager R., Yan X., Hett S., Xuan L. et al. (2003) Role of DDC-4/sFRP-4, a secreted Frizzledrelated protein, at the onset of apoptosis in mammary involution. Cell Death Differ. 10: 528–538

    Article  CAS  PubMed  Google Scholar 

  79. Wolf V., Ke G., Dharmarajan A. M., Bielke W, Artuso L., Saurer S. et al. (1997) DDC-4, an apoptosis-associated gene, is a secreted frizzled relative. FEBS Lett. 417: 385–389

    Article  CAS  PubMed  Google Scholar 

  80. Lockshin R. A. and Zakeri Z. (2002) Caspase-independent cell deaths. Curr. Opin. Cell Biol. 14: 727–733

    Article  CAS  PubMed  Google Scholar 

  81. Shi Y. (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell. 9: 459–470

    Article  CAS  PubMed  Google Scholar 

  82. Adams J. M. and Cory S. (2002) Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol. 14: 715–720

    Article  CAS  PubMed  Google Scholar 

  83. Kaufinann S. H. and Hengartner M. O. (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol. 11: 526–534

    Article  Google Scholar 

  84. Marti A., Graber H., Lazar H., Ritter P. M., Baltzer A., Srinivasan A. et al. (2000) Caspases: decoders of apoptotic signals during mammary involution. Caspase activation during involution. Adv. Exp. Med. Biol. 480: 195–201

    Article  CAS  PubMed  Google Scholar 

  85. Engels I. H., Stepczynska A., Stroh C., Lauber K., Berg C., Schwenzer R. et al. (2000) Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene 19: 4563–4573

    Article  CAS  PubMed  Google Scholar 

  86. Marti A., Ritter P. M., Jager R., Lazar H., Baltzer A., Schenkel J. et al. (2001) Mouse mammary gland involution is associated with cytochrome c release and caspase activation. Mech. Dev. 104: 89–98

    Article  CAS  PubMed  Google Scholar 

  87. Devarajan E., Sahin A. A., Chen J. S., Krishnamurthy R. R., Aggarwal N., Brun A. M. et al. (2002) Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21: 8843–8851

    Article  CAS  PubMed  Google Scholar 

  88. Kischkel F. C., Lawrence D. A., Tinel A., LeBlanc H., Virmani A., Schow P et al. (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276: 46639–46646

    Article  CAS  PubMed  Google Scholar 

  89. Los M., Wesselborg S. and Schulee-Osthoff K. (1999) The role of caspases in development, immunity and apoptotic signal transduction: lessons from knockout mice. Immunity 10: 629–639

    Article  CAS  PubMed  Google Scholar 

  90. Salvesen G. S. and Duckett C. S. (2002) IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell. Biol. 3: 401–410

    Article  CAS  PubMed  Google Scholar 

  91. Walton K. D., Wagner K. U., Rucker E. B. 3rd, Shillingford J. M., Miyoshi K. and Hennighausen L. (2001) Conditional deletion of the bcl-x gene from mouse mammary epithelium results in accelerated apoptosis during involution but does not compromise cell function during lactation. Mech. Dev. 109: 281–293

    Article  CAS  PubMed  Google Scholar 

  92. Jager R., Herzer U., Schenkel J. and Weiher H. (1997) Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates c-myc-induced tumorigenesis of the mammary gland in transgenic mice. Oncogene 15: 1787–1795

    Article  CAS  PubMed  Google Scholar 

  93. Heermeier K., Benedict M., Li M., Furth P., Nunez G. and Hennighausen L. (1996) Bax and Bcl-xs are induced at the onset of apoptosis in involuting mammary epithelial cells. Mech. Dev. 56: 197–207

    Article  CAS  PubMed  Google Scholar 

  94. Gilmore A. P., Metcalfe A. D., Romer L. H. and Streuli C. H. (2000) Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J. Cell Biol. 149: 431–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Wang P., Valentijn A. J., Gilmore A. P. and Streuli C. H. (2003) Early events in the anoikis program occur in the absence of caspase activation. J. Biol. Chem. 278: 19917–19925

    Article  CAS  PubMed  Google Scholar 

  96. Valentijn A. J., Metcalfe A. D., Kott J., Streuli C. H. and Gilmore A. P. (2003) Spatial and temporal changes in Bax subcellular localization during anoikis. J. Cell Biol. 162: 599–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Lindsten T., Ross A. J., King A., Zong W. X., Rathmell J. C., Shiels H. A. et al. (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6: 1389–1399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Coultas L., Pellegrini M., Visvader J. E., Lindeman G. J., Chen L., Adams J. M. et al. (2003) Blk: a novel weakly proapoptotic member of the Bcl-2 protein family with a BH3 and a BH2 region. Cell Death Differ. 10: 185–192

    Article  CAS  PubMed  Google Scholar 

  99. Reginato M. J., Mills K. R., Paulus J. K., Lynch D. K., Sgroi D. C., Debnath J. et al. (2003) Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat. Cell. Biol. 5: 733–740

    Article  CAS  PubMed  Google Scholar 

  100. Ranger A. M., Zha J., Harada H., Datta S. R., Danial N. N., Gilmore A. P. et al. (2003) Bad-deficient mice develop diffuse large B cell lymphoma. Proc. Nad. Acad. Sci. USA 100: 9324–9329

    Article  Google Scholar 

  101. Gilley J., Coffer P. J. and Ham J. (2003) FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J. Cell Biol. 162: 613–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Li M., Hu J., Heermeier K., Hennighausen L. and Furth P. A. (1996) Apoptosis and remodeling of mammary gland tissue during involution proceeds through p53-independent pathways. Cell Growth Differ. 7: 13–20

    CAS  PubMed  Google Scholar 

  103. Jerry D. J., Kuperwasser C., Downing S. R., Pinkas J., He C., Dickinson E. et al. (1998) Delayed involution of the mammary epithelium in BALB/c-p53null mice. Oncogene 17: 2305–2312

    Article  CAS  PubMed  Google Scholar 

  104. Jeffers J. R., Parganas E., Lee Y, Yang C., Wang J., Brennan J. et al. (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4: 321–328

    Article  CAS  PubMed  Google Scholar 

  105. Shibue T., Takeda K., Oda E., Tanaka H., Murasawa H., Takaoka A. et al. (2003) Integral role of Noxa in p53-mediated apoptotic response. Genes Dev. 17: 2233–2238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Chipuk J. E., Maurer U., Green D. R. and Schuler M. (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4: 371–381

    Article  CAS  PubMed  Google Scholar 

  107. Grimm S. L. and Rosen J. M. (2003) The role of C/EBPbeta in mammary gland development and breast cancer. J. Mammary Gland Biol. Neoplasia 8: 191–204

    Article  PubMed  Google Scholar 

  108. Gigliotti A. P. and DeWille J. W (1998) Lactation status influences expression of CCAAT/enhancer binding protein isoform mRNA in the mouse mammary gland. J. Cell Physiol. 174: 232–239

    Article  CAS  PubMed  Google Scholar 

  109. Gigliotti A. P., Johnson P. F., Sterneck E. and DeWille J. W (2003) Nulliparous CCAAT/enhancer binding proteindelta (C/EBPdelta) knockout mice exhibit mammary gland ductal hyperlasia. Exp. Biol. Med. (Maywood) 228: 278–285

    CAS  Google Scholar 

  110. Marti A., Jehn B., Costello E., Keon N., Ke G., Martin F. et al. (1994) Protein kinase A and AP-1 (c-Fos/JunD) are induced during apoptosis of mouse mammary epithelial cells. Oncogene 9: 1213–1223

    CAS  PubMed  Google Scholar 

  111. Bagheri-Yarmand R., Vadlamudi R. K. and Kumar R. (2003) Activating transcription factor 4 overexpression inhibits proliferation and differentiation of mammary epithelium result ing in impaired lactation and accelerated involution. J. Biol. Chem. 278: 17421–17429

    Article  CAS  PubMed  Google Scholar 

  112. Neve R., Chang C. H., Scott G. K., Wong A., Friis R. R., Hynes N. E. et al. (1998) The epithelium-specific ets transcription factor ESX is associated with mammary gland development and involution. FASEB J. 12: 1541–1550

    CAS  PubMed  Google Scholar 

  113. Furlong E. E., Keon N. K., Thornton F. D., Rein T. and Martin E (1996) Expression of a 74-kDa nuclear factor 1 (NF1) protein is induced in mouse mammary gland involution. Involution-enhanced occupation of a twin NF1 binding element in the testosterone-repressed prostate message-2/clusterin promoter. J. Biol. Chem. 271: 29688–29697

    Article  CAS  PubMed  Google Scholar 

  114. Kane R., Murtagh J., Finlay D., Marti A., Jaggi R., Blatchford D. et al. (2002) Transcription factor NFIC undergoes N-glycosylation during early mammary gland involution. J. Biol. Chem. 277: 25893–25903

    Article  CAS  PubMed  Google Scholar 

  115. Raman V., Martensen S. A., Reisman D., Evron E., Odenwald W. F., Jaffee E. et al. (2000) Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405: 974–978

    Article  CAS  PubMed  Google Scholar 

  116. Brantley D. M., Yull F. E., Muraoka R. S., Hicks D. J., Cook C. M. and Kerr L. D. (2000) Dynamic expression and activity of NF-kappaB during post-natal mammary gland morphogenesis. Mech. Dev. 97: 149–155

    Article  CAS  PubMed  Google Scholar 

  117. Clarkson R. W., Heeley J. L., Chapman R., Aillet F., Hay R. T., Wyllie A. et al. (2000) NF-kappaB inhibits apoptosis in murine mammary epithelia. J. Biol. Chem. 275: 12737–12742

    Article  CAS  PubMed  Google Scholar 

  118. Gordon K. E., Binas B., Wallace R., Clark A. J. and Watson C. J. (1996) Derivation of conditionally immortal mammary epithelial cell lines. Biochem. Soc. Trans. 24: 371S

    Article  CAS  PubMed  Google Scholar 

  119. Cao Y., Bonizzi G., Seagroves T. N., Greten F. R., Johnson R., Schmidt E. V et al. (2001) IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107: 763–775

    Article  CAS  PubMed  Google Scholar 

  120. Chapman R. S., Duff E. K., Lourenco P. C., Tonner E., Flint D. J., Clarke A. R. et al. (2000) A novel role for IRF-1 as a suppressor of apoptosis. Oncogene 19: 6386–6391

    Article  CAS  PubMed  Google Scholar 

  121. Green K. A., Naylor M. J., Lowe E. T., Wang P., Marshman E., Streuli C. H. (2004) Caspase-mediated cleavage of insulin receptor substrate. J. Biol. Chem. 279: in press (PMID: 15069074).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Streuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, K.A., Streuli, C.H. Apoptosis regulation in the mammary gland. Cell. Mol. Life Sci. 61, 1867–1883 (2004). https://doi.org/10.1007/s00018-004-3366-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-004-3366-y

Key words

Navigation