Skip to main content

Advertisement

Log in

Curcumin inhibits the pruritus in mice through mast cell MrgprB2 receptor

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Curcumin is a diketone compound extracted from the rhizomes of some plants in the Zingiberaceae and Araceae family. It possesses a variety of biological activities, including antioxidant, anti-inflammatory and anti-cancer properties. However, the cellular and molecular antipruritic mechanisms of curcumin remain to be explored.

Objective

Our objective was to study the role of curcumin in pruritus and determine whether its antipruritic effect is related to MrgprB2 receptor.

Methods

The effect of curcumin on pruritus in mice was examined by scratching behavior test. The antipruritic mechanism of curcumin was explored by using transgenic mice (MrgprB2−/− mice, MrgprB2CreTd/tomato mice), histological analysis, western blot and immunofluorescence. In addition, the relationship between curcumin and MrgprB2/X2 receptor was studied in vitro by using calcium imaging, plasmid transfection and molecular docking

Results

In the current study, we found that curcumin had obvious antipruritic effect. Its antipruritic effect was related to the regulation of MrgprB2 receptor activation and mast cells tryptase release. In vitro, mouse peritoneal mast cells activated by compound 48/80 could be inhibited by curcumin. In addition, curcumin was also found to suppress the calcium flux in MrgprX2 or MrgprB2-overexpression HEK cells induced by compound 48/80, substance P, and PAMP 9-20, displaying the specific relation with the MrgprB2/X2 receptor. Moreover, molecular docking results showed that curcumin had affinity to MrgprX2 protein.

Conclusions

Overall, these results indicated that curcumin has the potential to treat pruritus induced by mast cell MrgprB2 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data relevant to the study are included in the article or uploaded as supplementary information. Data is available upon request.

References

  1. Akpinar A, Calisir M, Cansın Karakan N, Lektemur Alpan A, Goze F, Poyraz O. Effects of curcumin on alveolar bone loss in experimental periodontitis in rats: a morphometric and histopathologic study. Int J Vitam Nutr Res. 2017;87(5–6):262–70. https://doi.org/10.1024/0300-9831/a000243.

    Article  CAS  PubMed  Google Scholar 

  2. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18. https://doi.org/10.1021/mp700113r.

    Article  CAS  PubMed  Google Scholar 

  3. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8:183–92. https://doi.org/10.1038/nri2254. (Epub 2008 Feb 15).

    Article  CAS  PubMed  Google Scholar 

  4. Callahan BN, Kammala AK, Syed M, Yang C, Occhiuto CJ, Nellutla R, Chumanevich AP, Oskeritzian CA, Das R, Subramanian H. Osthole, a natural plant derivative inhibits MRGPRX2 induced mast cell responses. Front Immunol. 2020;11:703. https://doi.org/10.3389/fimmu.2020.00703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi YH, Yan GH, Chai OH, Song CH. Inhibitory effects of curcumin on passive cutaneous anaphylactoid response and compound 48/80-induced mast cell activation. Anat Cell Biol. 2010;43(1):36–43. https://doi.org/10.5115/acb.2010.43.1.36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dong XT, Dong XZ. Peripheral and central mechanisms of itch. Neuron. 2018;98:482–94. https://doi.org/10.1016/j.neuron.2018.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Erickson S, Nahmias Z, Rosman IS, Kim BS. Immunomodulating agents as antipruritics [J]. Dermatol Clin. 2018;36:325–34. https://doi.org/10.1016/j.det.2018.02.014.

    Article  CAS  PubMed  Google Scholar 

  8. Foster B, Schwartz LB, Devouassoux G, Metcalfe DD, Prussin C. Characterization of mast-cell tryptase-expressing peripheral blood cells as basophils. J Allergy Clin Immunol. 2002;109(2):287–93. https://doi.org/10.1067/mai.2002.121454.

    Article  CAS  PubMed  Google Scholar 

  9. Fu M, Fu S, Ni S, Wang D, Hong T. Inhibitory effects of bisdemethoxycurcumin on mast cell-mediated allergic diseases. Int Immunopharmacol. 2018;65:182–9. https://doi.org/10.1016/j.intimp.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  10. Fujisawa D, Kashiwakura J, Kita H, Kikukawa Y, Fujitani Y, Sasaki-Sakamoto T, Kuroda K, Nunomura S, Hayama K, Terui T, Ra C, Okayama Y. Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticarial. J Allergy Clin Immunol. 2014;134:622-633.e9. https://doi.org/10.1016/j.jaci.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  11. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18:693–704. https://doi.org/10.1038/nm.2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaudenzio N, Sibilano R, Marichal T, Starkl P, Reber LL, Cenac N, McNeil BD, Dong X, Hernandez JD, Sagi-Eisenberg R, Hammel I, Roers A, Valitutti S, Tsai M, Espinosa E, Galli SJ. Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest. 2016;126:3981–98. https://doi.org/10.1172/JCI85538.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron. 2019;101(3):412-420.e3. https://doi.org/10.1016/j.neuron.2019.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gupta K, Harvima IT. Mast cell-neural interactions contribute to pain and itch. Immunol Rev. 2018;282:168–87. https://doi.org/10.1111/imr.12622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamed AMR, Abdel-Shafi IR, Elsayed MDA, Mahfoz AM, Tawfeek SE, Abdeltawab MSA. Investigation of the effect of curcumin on oxidative stress, local inflammatory response, COX-2 expression, and microvessel density in trichinella spiralis induced enteritis. Myosit Myocard Mice Helminthol. 2022;59(1):18–36. https://doi.org/10.2478/helm-2022-0002.

    Article  CAS  Google Scholar 

  16. Hao Y, Peng B, Che D, Zheng Y, Kong S, Liu R, Shi J, Han H, Wang J, Cao J, Zhang Y, Gao J, He L, Geng S. Imiquimod-relateddermatitisismainlymediatedbymastcelldegranulationviaMas-relatedG-proteincoupledreceptorB2. IntImmunopharmacol. 2020;81:106258. https://doi.org/10.1016/j.intimp.2020.106258.

    Article  CAS  Google Scholar 

  17. He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules. 2015;20:9183–213. https://doi.org/10.3390/molecules20059183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hellman L, Akula S, Fu Z, Wernersson S. Mast cell and basophil granule proteases-in vivo targets and function. Front Immunol. 2022;13:918305. https://doi.org/10.3389/fimmu.2022.918305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heppner TJ, Fiekers JF. Compound 48/80 blocks transmission and increases the excitability of ganglion neurons. Eur J Pharmacol. 1992;213(3):427–34. https://doi.org/10.1016/0014-2999(92)90632-e.

    Article  CAS  PubMed  Google Scholar 

  20. Ipar VS, Dsouza A, Devarajan PV. Enhancing curcumin oral bioavailability through nanoformulations. Eur J Drug Metab Pharmacokinet. 2019;44(4):459–80. https://doi.org/10.1007/s13318-019-00545-z.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang Y, Ye F, Du Y, Zong Y, Tang Z. P2X7R in mast cells is a potential target for salicylic acid and aspirin in treatment of inflammatory pain. J Inflamm Res. 2021;14:2913–31. https://doi.org/10.2147/JIR.S313348.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kang D, Li B, Luo L, Jiang W, Lu Q, Rong M, Lai R. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie. 2016;123:73–80. https://doi.org/10.1016/j.biochi.2016.01.013.

    Article  CAS  PubMed  Google Scholar 

  23. Khatri DK, Juvekar AR. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease. Pharmacol Biochem Behav. 2016;150–151:39–47. https://doi.org/10.1016/j.pbb.2016.09.002.

    Article  CAS  PubMed  Google Scholar 

  24. Kim HS, Kawakami Y, Kasakura K, Kawakami T. Recent advances in mast cell activation and regulation. F1000Res. 2020;9:196.

    Article  Google Scholar 

  25. Kinney SR, Carlson L, Ser-Dolansky J, Thompson C, Shah S, Gambrah A, Xing W, Schneider SS, Mathias CB. Curcumin ingestion inhibits mastocytosis and suppresses intestinal anaphylaxis in a murine model of food allergy. PLoS ONE. 2015;10(7):0132467. https://doi.org/10.1371/journal.pone.0132467.

    Article  CAS  Google Scholar 

  26. Kong ZL, Sudirman S, Lin HJ, Chen WN. In vitro anti-inflammatory effects of curcumin on mast cell-mediated allergic responses via inhibiting FcεRI protein expression and protein kinase C delta translocation. Cytotechnology. 2020;72(1):81–95. https://doi.org/10.1007/s10616-019-00359-6.

    Article  CAS  PubMed  Google Scholar 

  27. Kühn H, Kolkhir P, Babina M, Düll M, Frischbutter S, Fok JS, Jiao Q, Metz M, Scheffel J, Wolf K, Kremer AE, Maurer M. Mas-related G protein-coupled receptor X2 and its activators in dermatologic allergies. J Allergy Clin Immunol. 2021;147(2):456–69. https://doi.org/10.1016/j.jaci.2020.08.027.

    Article  CAS  PubMed  Google Scholar 

  28. Kurd SK, Smith N, VanVoorhees A, Troxel AB, Badmaev V, Seykora JT, Gelfand JM. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: a prospective clinical trial. J Am Acad Dermatol. 2008;58:625–31. https://doi.org/10.1016/j.jaad.2007.12.035.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee JH, Kim JW, Ko NY, Mun SH, Her E, Kim BK, Han JW, Lee HY, Beaven MA, Kim YM, Choi WS. Curcumin, a constituent of curry, suppresses IgE-mediated allergic response and mast cell activation at the level of Syk. J Allergy Clin Immunol. 2008;121(5):1225–31. https://doi.org/10.1016/j.jaci.2007.12.1160.

    Article  CAS  PubMed  Google Scholar 

  30. Lestari ML, Indrayanto G. Curcumin. Profiles Drug Subst Excip Relat Methodol. 2014;39:113–204. https://doi.org/10.1016/B978-0-12-800173-8.00003-9.

    Article  CAS  PubMed  Google Scholar 

  31. Manorak W, Idahosa C, Gupta K, Roy S, Panettieri R Jr, Ali H. Upregulation of Mas-related G Protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1. Respir Res. 2018;19:1. https://doi.org/10.1186/s12931-017-0698-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin SF. New concept in cutaneous allergy. Contact Dermatitis. 2015;72:2–10. https://doi.org/10.1111/cod.12311.

    Article  PubMed  Google Scholar 

  33. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519:237–41. https://doi.org/10.1038/nature14022.

    Article  CAS  PubMed  Google Scholar 

  34. Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, Oetjen LK, Wang F, Kim BS, Dong X. Activation of mast-cell-expressed mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity. 2019;50:1163–71. https://doi.org/10.1016/j.immuni.2019.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105–25. https://doi.org/10.1007/978-0-387-46401-5_3.

    Article  PubMed  Google Scholar 

  36. Muto Y, Wang Z, Vanderberghe M, Two A, Gallo RL, Di Nardo A. Mast cells are key mediators of cathelicidin-initiated skin inflammation in rosacea. J Invest Dermatol. 2014;134:2728–36. https://doi.org/10.1038/jid.2014.222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and humans. J Basic Clin Pharm. 2016;7(2):27–31. https://doi.org/10.4103/0976-0105.177703.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nugroho AE, Ikawati Z, Sardjiman Maeyama K. Effects of benzylidenecyclopentanone analogues of curcumin on histamine release from mast cells. Biol Pharm Bull. 2009;32(5):842–9. https://doi.org/10.1248/bpb.32.842.

    Article  CAS  PubMed  Google Scholar 

  39. Otsuka A, Kabashima K. Mast cells and basophils in cutaneous immune responses. Allergy. 2015;70:131–40. https://doi.org/10.1111/all.12526.

    Article  CAS  PubMed  Google Scholar 

  40. Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr. 2020;60:887–939. https://doi.org/10.1080/10408398.2018.1552244.

    Article  CAS  PubMed  Google Scholar 

  41. Pundir P, Liu R, Vasavda C, Serhan N, Limjunyawong N, Yee R, Zhan Y, Dong X, Wu X, Zhang Y, Snyder SH, Gaudenzio N, Vidal JE, Dong X. A connective tissue mast-cell-specific receptor detects bacterial quorum-sensing molecules and mediates antibacterial immunity. Cell Host Microbe. 2019;26:114-122.e8. https://doi.org/10.1016/j.chom.2019.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salehi B, Stojanović-Radić Z, Matejić J, Sharifi-Rad M, Anil Kumar NV, Martins N, Sharifi-Rad J. The therapeutic potential of curcumin: a review of clinical trials. Eur J Med Chem. 2018;163:527–45. https://doi.org/10.1016/j.ejmech.2018.12.016.

    Article  CAS  PubMed  Google Scholar 

  43. Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, Grundy D. The mast cell degranulator compound 48/80 directly activates neurons. PLoS ONE. 2012;7(12):e52104. https://doi.org/10.1371/journal.pone.0052104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Silvestre MC, Sato MN, Reis VMSD. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis. An Bras Dermatol. 2018;93:242–50. https://doi.org/10.1590/abd1806-4841.20186340.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Steinhoff M, Buddenkotte J, Lerner EA. Role of mast cells and basophils in pruritus. Immunol Rev. 2018;282:248–64. https://doi.org/10.1111/imr.12635.

    Article  CAS  PubMed  Google Scholar 

  46. Tatemoto K, Nozaki Y, Tsuda R, Kaneko S, Tomura K, Furuno M, Ogasawara H, Edamura K, Takagi H, Iwamura H, Noguchi M, Naito T. Endogenous protein and enzyme fragments induce immunoglobulin E-independent activation of mast cells via a G protein-coupled receptor, MRGPRX2. Scand J Immunol. 2018;87:e12655. https://doi.org/10.1111/sji.12655.

    Article  CAS  PubMed  Google Scholar 

  47. Thapaliya M, Chompunud Na Ayudhya C, Amponnawarat A, Roy S, Ali H. Mast cell-specific MRGPRX2: a key modulator of neuro-immune interaction in allergic diseases. Curr Allergy Asthma Rep. 2021;21:3. https://doi.org/10.1007/s11882-020-00979-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trinh HT, Bae EA, Lee JJ, Kim DH. Inhibitory effects of curcuminoids on passive cutaneous anaphylaxis reaction and scratching behavior in mice. Arch Pharm Res. 2019;32:1783–7. https://doi.org/10.1007/s12272-009-2217-7.

    Article  CAS  Google Scholar 

  49. Tsuda T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 2018;9(2):705–14. https://doi.org/10.1039/c7fo01242j.

    Article  CAS  PubMed  Google Scholar 

  50. Uddin SJ, Hasan MF, Afroz M, Sarker DK, Rouf R, Islam MT, Shilpi JA, Mubarak MS. Curcumin and its multi-target function against pain and inflammation: an update of pre-clinical data. Curr Drug Targets. 2021;22(6):656–71. https://doi.org/10.2174/1389450121666200925150022.

    Article  CAS  PubMed  Google Scholar 

  51. Vaughn AR, Branum A, Sivamani RK. Effects of turmeric (curcuma longa) on skin health: a systematic review of the clinical evidence. Phytother Res. 2016;30:1243–64. https://doi.org/10.1002/ptr.5640.

    Article  CAS  PubMed  Google Scholar 

  52. Vollono L, Falconi M, Gaziano R, Iacovelli F, Dika E, Terracciano C, Bianchi L, Campione E. Potential of curcumin in skin disorders. Nutrients. 2019;11:2169. https://doi.org/10.3390/nu11092169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald HR. Human mast cell proteome reveals unique lineage, putative functions, and structural basis for cell ablation. Immunity. 2020;52(2):404-416.e5. https://doi.org/10.1016/j.immuni.2020.01.012.

    Article  CAS  PubMed  Google Scholar 

  54. Weber FC, Németh T, Csepregi JZ, Dudeck A, Roers A, Ozsvári B, Oswald E, Puskás LG, Jakob T, Mócsai A, Martin SF. Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. J Exp Med. 2015;212:15–22. https://doi.org/10.1084/jem.20130062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ye F, Jiang Y, Zong Y, Zhang J, Zhu C, Yang Y, Tang Z. PLC-IP3-ORAI pathway participates in the activation of the MRGPRB2 receptor in mouse peritoneal mast cells. Immunol Lett. 2022;2022(248):37–44. https://doi.org/10.1016/j.imlet.2022.06.006.

    Article  CAS  Google Scholar 

  56. Zhao J, Munanairi A, Liu XY, Zhang J, Hu L, Hu M, Bu D, Liu L, Xie Z, Kim BS, Yang Y, Chen ZF. PAR2 mediates Itch via TRPV3 signaling in keratinocytes. J Invest Dermatol. 2020;140(8):1524–32. https://doi.org/10.1016/j.jid.2020.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu Y, Pan WH, Wang XR, Liu Y, Chen M, Xu XG, Liao WQ, Hu JH. Tryptase and protease-activated receptor-2 stimulate scratching behavior in a murine model of ovalbumin-induced atopic-like dermatitis. Int Immunopharmacol. 2015;28(1):507–12. https://doi.org/10.1016/j.intimp.2015.04.047.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dong in Johns Hopkins for kindly providing the MrgprB2−/−, MrgprB2-Cre and lsl-Tdtomato animals.

Funding

This work was supported by the Project of National Natural Science Foundation of China (No. 31771163) and the key project of science and technology development plan of traditional Chinese medicine in Jiangsu Province (No. ZD202001).

Author information

Authors and Affiliations

Authors

Contributions

ZT: designed and wrote the paper, YJ, YZ and YD: performed experiments, analyzed the data, and wrote part of the paper. All authors read and approved the final manuscript. YJ, YZ and YD: made equal contributions to this work.

Corresponding author

Correspondence to Zongxiang Tang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: Bernhard Gibbs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1054 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zong, Y., Du, Y. et al. Curcumin inhibits the pruritus in mice through mast cell MrgprB2 receptor. Inflamm. Res. 72, 933–945 (2023). https://doi.org/10.1007/s00011-023-01724-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01724-0

Keywords

Navigation