Skip to main content

Advertisement

Log in

Vascular endothelium dysfunction: a conservative target in metabolic disorders

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aim

Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in metabolic disorders.

Methods

The endothelium maintains the balance between vasodilatation and vasoconstriction, procoagulant and anticoagulant, prothrombotic and antithrombotic mechanisms.

Results

Diabetes mellitus causes the activation of aldose reductase, polyol pathway and advanced glycation-end-product formation that collectively affect the phosphorylation status and expression of endothelial nitric oxide synthatase (eNOS) and causes vascular endothelium dysfunction. Elevated homocysteine levels have been associated with increase in LDL oxidation, generation of hydrogen peroxides, superoxide anions that increased oxidative degradation of nitric oxide. Hyperhomocysteinemia has been reported to increase the endogenous competitive inhibitors of eNOS viz L-N-monomethyl arginine (L-NMMA) and asymmetric dimethyl arginine (ADMA) that may contribute to vascular endothelial dysfunction. Hypercholesterolemia stimulates oxidation of LDL cholesterol, release of endothelins, and generation of ROS. The increased cholesterol and triglyceride level and decreased protective HDL level, decreases the activity and expression of eNOS and disrupts the integrity of vascular endothelium, due to oxidative stress. Hypertension also stimulates release of endothelins, vasoconstrictor prostanoids, angiotensin II, inflammatory cytokines, xanthine oxidase and, thereby, reduces bioavailability of nitric oxide.

Conclusion

Thus, the cellular and molecular mechanisms underlying diabetes mellitus, hyperhomocysteinemia, hypercholesterolemia hypertension and hyperuricemia leads to an imbalance of phosphorylation and dephosphorylation status of lipid and protein kinase that cause modulation of vascular endothelial L-arginine/nitric oxide synthetase (eNOS), to produce vascular endothelium dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92.

    Article  CAS  PubMed  Google Scholar 

  2. Janus A, et al., Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators Inflamm, 2016

  3. Hilfiker-Kleiner D, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007;128(3):p. 589–600.

    Article  CAS  PubMed  Google Scholar 

  4. Khan S, Arakawa O, Onoue Y. Neurotoxin production by a chloromonad Fibrocapsa japonica (Raphidophyceae). Oceanogr Lit Rev. 1997;4(44):345.

    Google Scholar 

  5. Rubanyi GM. Endothelium-derived relaxing and contracting factors. J Cell Biochem. 1991;46(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  6. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integrative Compar Physiol. 2003;284(1):R1–R12.

    Article  CAS  Google Scholar 

  7. Tsutsumi Y, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Investig. 1999;104(7):925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sandoo A, et al., The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4(1).

  9. Tomanek RJ, Busch TL. Coordinated capillary and myocardial growth in response to thyroxine treatment. Anatomical Record. 1998;251(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  10. Tirziu D, et al. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J Clin Investig. 2007;117(11):3188–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dallabrida SM, et al. Adipose tissue growth and regression are regulated by angiopoietin-1. Biochem Biophys Res Commun. 2003;311(3):563–71.

    Article  CAS  PubMed  Google Scholar 

  12. Sunshine SB, et al., Endostatin lowers blood pressure via nitric oxide and prevents hypertension associated with VEGF inhibition. Proceedings of the National Academy of Sciences, 2012. 109(28): p. 11306–11311.

  13. Martin JN, et al. Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med. 1998;338(14):948–54.

    Article  CAS  PubMed  Google Scholar 

  14. Greene AK, Puder M. Partial hepatectomy in the mouse: technique and perioperative management. J Invest Surg. 2003;16(2):99–102.

    Article  PubMed  Google Scholar 

  15. Lerman A, Burnett J Jr. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86(6 Suppl):III12–I19.

    CAS  PubMed  Google Scholar 

  16. Hadi HA, Carr CS, Suwaidi JA. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vascular Health Risk Manag. 2005;1(3):183.

    CAS  Google Scholar 

  17. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813–23.

    Article  PubMed  Google Scholar 

  18. Miller C, et al. Tumor necrosis factor-α levels in adipose tissue of lean and obese cats. J Nutr. 1998;128(12):2751S–2752S.

    Article  CAS  PubMed  Google Scholar 

  19. Fernandes G, et al. Immune response in the mutant diabetic C57BL/Ks-dt + mouse. Discrepancies between in vitro and in vivo immunological assays. J Clin Investig. 1978;61(2):243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chandra R. Cell-mediated immunity in genetically obese C57BL/6J ob/ob) mice. Am J Clin Nutr. 1980;33(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  21. Khovidhunkit W, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004;45(7):1169–96.

    Article  CAS  PubMed  Google Scholar 

  22. Rosenson RS, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13(1):48–60.

    Article  CAS  PubMed  Google Scholar 

  23. Goffredo M, et al. Role of TM6SF2 rs58542926 in the pathogenesis of nonalcoholic pediatric fatty liver disease: a multiethnic study. Hepatology. 2016;63(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  24. Huang A, et al. Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem. 2000;275(23):17399–406.

    Article  CAS  PubMed  Google Scholar 

  25. Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology. 2003;144(6):2195–200.

    Article  CAS  PubMed  Google Scholar 

  26. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction a marker of atherosclerotic risk. Arteriosclerosis, thrombosis, and vascular biology. 2003. 23(2):168–75.

  27. Chatrchyan S, et al., The CMS experiment at the CERN LHC. 2008.

  28. Ventura A, et al., Cre-lox-regulated conditional RNA interference from transgenes. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(28): p. 10380–10385.

  29. Boldyrev A. Molecular mechanisms of homocysteine toxicity. Biochemistry. 2009;74(6):589–98.

    CAS  PubMed  Google Scholar 

  30. Muravyov A, Tikhomirova I. Role Ca2+ in mechanisms of the red blood cells microrheological changes, in Calcium Signaling. 2012, Springer. 1017–38.

  31. PINO P, et al., Redox-dependent apoptosis in human endothelial cells after adhesion of plasmodium falciparum-infected erythrocytes. Annals of the New York Academy of Sciences, 2003. 1010(1):582–6.

  32. Pepys MB, Baltz ML. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol. 1983;34:141–212.

    Article  CAS  PubMed  Google Scholar 

  33. Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem. 2004;279(47):48487–90.

    Article  CAS  PubMed  Google Scholar 

  34. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Investig. 2003;111(12):1805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ridker PM, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347(20):1557–65.

    Article  CAS  PubMed  Google Scholar 

  36. Ridker PM, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation. 1999;100(3):p. 230–5.

    Article  CAS  PubMed  Google Scholar 

  37. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004;116(6):9–16.

    Article  Google Scholar 

  38. Nissen SE, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  39. Ridker PM, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  40. Ignarro LJ, Napoli C. Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diabetes Rep. 2005;5(1):17–23.

    Article  CAS  Google Scholar 

  41. Valle I, et al. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66(3):562–73.

    Article  CAS  PubMed  Google Scholar 

  42. Zimmet P, Alberti K, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J. 2005;172(2):213–26.

    Article  Google Scholar 

  44. Guillausseau P-J, et al. Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 2008;34:p. S43-S48.

    Article  Google Scholar 

  45. Min-Jean Y, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IkappaB kinase-beta. Nature. 1998;396(6706):77.

    Article  CAS  Google Scholar 

  46. Aguirre V, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2000;275(12):9047–54.

    Article  CAS  PubMed  Google Scholar 

  47. Hotamisligil GS, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science. 1996;271(5249):665.

    Article  CAS  PubMed  Google Scholar 

  48. Aguirre V, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531–7.

    Article  CAS  PubMed  Google Scholar 

  49. Paz K, et al. A Molecular Basis for Insulin Resistance elevated serine/threonine phosphorylation of irs-1 and irs-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272(47):29911–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vascular health risk management. 2007;3(6):p. 853.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Muntean C, et al. Biochemistry of hyperglycemia induced vascular dysfunction. Roman J Diabet Nutr Metab Dis. 2013;20(4):419–25.

    CAS  Google Scholar 

  52. Ishii H, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272(5262):728.

    Article  CAS  PubMed  Google Scholar 

  53. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(1):46–56.

    Article  CAS  PubMed  Google Scholar 

  55. Schoch CL, et al., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 2012. 109(16): p. 6241–6246.

  56. Headley CA, et al. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells. Biochem Pharmacol. 2016;104:108–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabetic Med. 2009;26(12):1185–92.

    Article  PubMed  CAS  Google Scholar 

  58. Musicki B, et al., Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(33): p. 11870–11875.

  59. McGowan TA, et al. Stimulation of urinary TGF-β and isoprostanes in response to hyperglycemia in humans. Clin J Am Soc Nephrol. 2006;1(2):263–8.

    Article  CAS  PubMed  Google Scholar 

  60. Gabriely I, et al. Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis. 2002;160(1):115–22.

    Article  CAS  PubMed  Google Scholar 

  61. Gage MC, et al. Endothelium-specific insulin resistance leads to accelerated atherosclerosis in areas with disturbed flow patterns: a role for reactive oxygen species. Atherosclerosis. 2013;230(1):131–9.

    Article  CAS  PubMed  Google Scholar 

  62. Hançer NJ, et al. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J Biol Chem. 2014;289(18):12467–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kaplan M, Aviram M, Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: Role of insulin therapy. Pharmacology therapeutics. 2012;136(2):p. 175–85.

    Article  CAS  PubMed  Google Scholar 

  64. Wende AR, Symons JD, Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertension Rep. 2012;14(6):517–31.

    Article  CAS  Google Scholar 

  65. Li H, et al. Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-κB pathway in rat aorta. Int J Cardiol. 2011;152(2):218–24.

    Article  PubMed  Google Scholar 

  66. Inoguchi T, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.

    Article  CAS  PubMed  Google Scholar 

  67. Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol. 2010;9(1):1.

    Article  CAS  Google Scholar 

  68. Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164(2):213–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Beral V, et al. Ovarian cancer and hormone replacement therapy–Authors’ reply. The Lancet. 2007;370(9591):932–3.

    Article  Google Scholar 

  70. Casadei B. The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp Physiol. 2006;91(6):943–55.

    Article  CAS  PubMed  Google Scholar 

  71. Tan KC, et al. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes/Metab Res Rev. 2002;18(1):71–6.

    Article  CAS  Google Scholar 

  72. Kim J-a, et al. Reciprocal relationships between insulin resistance and endothelial dysfunction. Circulation. 2006;113(15):1888–904.

    Article  PubMed  Google Scholar 

  73. Williams SB, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567–74.

    Article  CAS  PubMed  Google Scholar 

  74. Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Investig. 1991;87(5):1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Title LM, et al. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol. 2000;36(7):2185–91.

    Article  CAS  PubMed  Google Scholar 

  76. Pieper GM, Moore-Hilton G, Roza AM. Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat. Life Sci. 1996;58(9):PL147–PL152.

    Article  CAS  PubMed  Google Scholar 

  77. Du XL, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig. 2001;108(9):1341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Veves A, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998;47(3):457–63.

    Article  CAS  PubMed  Google Scholar 

  79. Boudi BF. Noncoronary Atherosclerosis. Medscape.

  80. Brustolin S, Giugliani R, Félix T. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res. 2010;43(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  81. Jayaraman A, Pike CJ. Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Current diabetes reports. 2014;14(4):1–9.

    Article  CAS  Google Scholar 

  82. Huang T, et al. Cardiovascular pathogenesis in hyperhomocysteinemia. Asia Pacific J Clin Nutr. 2008;17(1):8–16.

    Google Scholar 

  83. Corretti MC, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–65.

    Article  PubMed  Google Scholar 

  84. Tasatargil A, Sadan G, Karasu E. Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulmonary pharmacology & therapeutics, 2007. 20(3):265–72.

  85. Yan TT, et al. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling. Clin Exp Pharmacol Physiol. 2010;37(11):1071–7.

    Article  CAS  PubMed  Google Scholar 

  86. Lima CP, et al. Vitamin B-6 deficiency suppresses the hepatic transsulfuration pathway but increases glutathione concentration in rats fed AIN-76A or AIN-93G diets. J Nutr. 2006;136(8):2141–7.

    Article  CAS  PubMed  Google Scholar 

  87. Jahangir E, et al. The effect of L-arginine and creatine on vascular function and homocysteine metabolism. Vascular Med. 2009;14(3):239–48.

    Article  Google Scholar 

  88. Lentz SR, Rodionov RN, Dayal S. Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atherosclerosis Supplements. 2003;4(4):61–5.

    Article  CAS  PubMed  Google Scholar 

  89. Sydow K, et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovascular Res. 2003;57(1):244–52.

    Article  CAS  Google Scholar 

  90. Tawakol A, et al. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation. 1997;95(5):1119–21.

    Article  CAS  PubMed  Google Scholar 

  91. Tyagi N, et al. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol. 2005;289(6):H2649-H2656.

    Article  CAS  Google Scholar 

  92. Skolnick HS, et al. The natural history of peanut allergy. J Allergy Clin Immunol. 2001;107(2):367–74.

    Article  CAS  PubMed  Google Scholar 

  93. Lacy P. Secretion of cytokines and chemokines by innate immune cells. 2015: Frontiers Media SA.

  94. Dong Y, et al. Nitrative stress participates in endothelial progenitor cell injury in hyperhomocysteinemia. PloS One. 2016;11(7):e0158672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Hong S-Y, Yang D-H, Chang S-K. The relationship between plasma homocysteine and amino acid concentrations in patients with end-stage renal disease. J Renal Nutr. 1998;8(1):34–9.

    Article  CAS  Google Scholar 

  96. van Dijk SC, et al., Effect of vitamin B12 and folic acid supplementation on biomarkers of endothelial function and inflammation among elderly individuals with hyperhomocysteinemia. Vascular Medicine, 2016;1358863 × 15622281.

  97. Wang X-C, et al. ER stress mediates homocysteine-induced endothelial dysfunction: Modulation of IK Ca and SK Ca channels. Atherosclerosis. 2015;242(1):191–8.

    Article  CAS  PubMed  Google Scholar 

  98. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertension. 2008;21(5):500–8.

    Article  Google Scholar 

  99. Sarnak MJ, et al. Kidney disease as a risk factor for development of cardiovascular disease a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation. 2003;108(17):2154–69.

    Article  PubMed  Google Scholar 

  100. Arora P, Arora A, Sharma S. Vascular endothelium dysfunction and hypertension: insight on molecular basics.

  101. Kitada K, et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Investig. 2017;127(5):1944–59.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Uehata M, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4.

    Article  CAS  PubMed  Google Scholar 

  103. Dzau VJ. Implications of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol. 1987;59(2):A59–A65.

    Article  Google Scholar 

  104. Nishiyama A, et al. New approaches to blockade of the renin-angiotensin-aldosterone system: mineralocorticoid-receptor blockers exert antihypertensive and renoprotective effects independently of the renin-angiotensin system. J Pharmacol Sci. 2010;113(4):310–4.

    Article  CAS  PubMed  Google Scholar 

  105. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4.

    Article  CAS  PubMed  Google Scholar 

  106. Nishimura H, et al. The effects of angiotensin metabolites on the regulation of coagulation and fibrinolysis in cultured rat aortic endothelial cells. Thrombosis Haemostasis. 1999;82(5):1516–21.

    CAS  PubMed  Google Scholar 

  107. Nishimura H, et al. Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thrombosis Haemostasis. 1997;77(6):1189–95.

    Article  CAS  PubMed  Google Scholar 

  108. Ishida M, et al. Angiotensin II activates pp60c-src in vascular smooth muscle cells. Circ Res. 1995;77(6):1053–9.

    Article  CAS  PubMed  Google Scholar 

  109. Badyal D, Lata H, Dadhich A. Animal models of hypertension and effect of drugs. Indian J Pharmacol. 2003;35(6):349–62.

    CAS  Google Scholar 

  110. Griendling KK, et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141–8.

    Article  CAS  PubMed  Google Scholar 

  111. Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame a decade of hypertrophic signaling hits. Circ Res. 2006;98(6):730–42.

    Article  CAS  PubMed  Google Scholar 

  112. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972;24(3):509–81.

    CAS  PubMed  Google Scholar 

  113. Vecchione C, et al. Protection from angiotensin II–mediated vasculotoxic and hypertensive response in mice lacking PI3Kγ. J Exp Med. 2005;201(8):1217–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rubattu S, Stanzione R, Volpe M. Mitochondrial dysfunction contributes to hypertensive target organ damage: lessons from an animal model of human disease. Oxidative Medicine and Cellular Longevity, 2016.

  115. Maury E, Brichard S. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  116. Harrington EO, et al. Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: a possible role of p38α. Am J Physiol Lung Cell Mol Physiol. 2000;279(4):L733–L742.

    Article  CAS  PubMed  Google Scholar 

  117. Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxidants Redox Signal. 2005;7(9–10):1302–14.

    Article  CAS  Google Scholar 

  118. Bendall JK, et al. Tetrahydrobiopterin in cardiovascular health and disease. Antioxidants redox signaling. 2014;20(18):p. 3040–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hausding M, et al., Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species—Studies in White Blood Cells and in Animal Models.

  120. Jin M, et al., Uric acid, hyperuricemia and vascular diseases. Frontiers in bioscience: a journal and virtual library. 2012. 17:656.

  121. Chaudhary K, et al. Uric Acid-key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013;3(3):208–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Su J, et al. Anti-hyperuricemic and nephroprotective effects of Rhizoma Dioscoreae septemlobae extracts and its main component dioscin via regulation of mOAT1, mURAT1 and mOCT2 in hypertensive mice. Arch Pharmacal Res. 2014;37(10):1336–44.

    Article  CAS  Google Scholar 

  123. Wu X-H, et al. Riparoside B and timosaponin J, two steroidal glycosides from Smilax riparia, resist to hyperuricemia based on URAT1 in hyperuricemic mice. Phytomedicine. 2014;21(10):1196–201.

    Article  CAS  PubMed  Google Scholar 

  124. Matsuo H, et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci Rep. 2014;4:3755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Puddu P, et al. The relationships among hyperuricemia, endothelial dysfunction, and cardiovascular diseases: molecular mechanisms and clinical implications. J Cardiol. 2012;59(3):235–42.

    Article  PubMed  Google Scholar 

  126. Puddu P, et al. The molecular sources of reactive oxygen species in hypertension. Blood Pressure. 2008;17(2):70–7.

    Article  CAS  PubMed  Google Scholar 

  127. Stocker R, Keaney J. New insights on oxidative stress in the artery wall. J Thromb Haemost. 2005;3(8):1825–34.

    Article  CAS  PubMed  Google Scholar 

  128. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Investig. 1993;91(6):2546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation. 2002;9(3):161–75.

    Article  CAS  PubMed  Google Scholar 

  130. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555(3):589–606.

    Article  CAS  PubMed  Google Scholar 

  131. George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag. 2009;5(1):265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Feig DI, Kang D-H, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Panis C, et al. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treatment. 2012;133(1):89–97.

    Article  CAS  Google Scholar 

  134. Edwards NL. The role of hyperuricemia in vascular disorders. Curr Opin Rheumatol. 2009;21(2):132–7.

    Article  PubMed  Google Scholar 

  135. Kanellis J, Kang D-H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. In: Seminars in nephrology. 2005. Elsevier.

  136. Kanellis J, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41(6):1287–93.

    Article  CAS  PubMed  Google Scholar 

  137. Castillo-Martínez D, et al. Levels of uric acid may predict the future development of pulmonary hypertension in systemic lupus erythematosus: a seven-year follow-up study. Lupus. 2016;25(1):61–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Sharma.

Additional information

Responsible Editor: Bernhard Gibbs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamwal, S., Sharma, S. Vascular endothelium dysfunction: a conservative target in metabolic disorders. Inflamm. Res. 67, 391–405 (2018). https://doi.org/10.1007/s00011-018-1129-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-018-1129-8

Keywords

Navigation