Skip to main content

Advertisement

Log in

Increased Th17 cell frequency concomitant with decreased Foxp3+ Treg cell frequency in the peripheral circulation of patients with carotid artery plaques

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

We investigated a possible imbalance between T helper (Th)17 and CD4+ CD25+ forkhead/winged helix transcription factor (Foxp3) T regulatory (Treg) cells in patients with carotid artery plaques.

Material or subjects

From November 2009 to September 2010, we enrolled 126 males and 104 females with mean age 68.24 ± 6.71 years.

Treatment

Based on carotid artery sonography, the 230 subjects were categorized into three groups: plaque negative; stable plaques; and unstable plaques.

Methods

Th17 and Treg cell frequencies, relevant plasma cytokines (IL-17, IL-6, IL-23, and TNF-α), and RORγt mRNA levels were determined.

Results

Compared to plaque negative, Th17 cells, Th17-related cytokines (IL-17, IL-6, IL-23, and TNF-α), and RORγt mRNA levels were higher with stable plaques, and highest with unstable plaques. The opposite trend was found for Treg cells, Treg-related cytokines (IL-10 and TGF-β1), and Foxp3 mRNA. Th17 cell frequencies were significantly negatively correlated with Treg cell frequencies.

Conclusions

Our investigation demonstrated that there is a Th17/Treg functional imbalance in patients with unstable carotid atherosclerotic plaques. Th17 cells may promote atherogenesis, while Treg cells may have a protective role against atherosclerosis plaques. An imbalance of Th17/Treg cells may offer a new direction for the treatment of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  PubMed  CAS  Google Scholar 

  2. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.

    Article  PubMed  CAS  Google Scholar 

  3. de Boer OJ, Becker AE, van der Wal AC. T lymphocytes in atherogenesis—functional aspects and antigenic repertoire. Cardiovasc Res. 2003;60:78–86.

    Article  PubMed  Google Scholar 

  4. Daugherty A, Rateri DL. T Lymphocytes in atherosclerosis: the ying-yang of Th1 and Th2 influence on lesion formation. Circ Res. 2002;90:1039–40.

    Article  PubMed  CAS  Google Scholar 

  5. Taleb S, Tedgui A, Mallat Z. Adaptive T cell immune responses and atherogenesis. Curr Opin Pharmacol. 2010;10:197–202.

    Article  PubMed  CAS  Google Scholar 

  6. Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145:33–43.

    Article  PubMed  CAS  Google Scholar 

  7. Cheng X, Chen Y, Xie JJ, Yao R, Yu X, Liao MY, et al. Suppressive oligodeoxynucleotides inhibit atherosclerosis in ApoE(-/-) mice through modulation of Th1/Th2 balance. J Mol Cell Cardiol. 2008;45:168–75.

    Article  PubMed  CAS  Google Scholar 

  8. Methe H, Brunner S, Wiegand D, Nabauer M, Koglin J, Edelman ER. Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. J Am Coll Cardiol. 2005;45:1939–45.

    Article  PubMed  CAS  Google Scholar 

  9. Cheng X, Liao YH, Ge H, Li B, Zhang J, Yuan J, et al. TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol. 2005;25:246–53.

    Article  PubMed  CAS  Google Scholar 

  10. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy HTL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  PubMed  CAS  Google Scholar 

  11. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008;105:7797–802.

    Article  PubMed  CAS  Google Scholar 

  12. Arun KV, Talwar A, Kumar TSS. T-helper cells in the etiopathogenesis of periodontal disease: a mini review. J Indian Soc Periodontol. 2011;15:4–10.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang J, Hua G, Zhang X, Tong R, Du X, Li Z, et al. Regulatory T cells/T-helper cell 17 functional imbalance in uraemic patients on maintenance haemodialysis: a pivotal link between microinflammation and adverse cardiovascular events. Nephrology. 2010;15:33–41.

    Article  PubMed  CAS  Google Scholar 

  14. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52.

    Article  PubMed  CAS  Google Scholar 

  15. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–50.

    Article  PubMed  CAS  Google Scholar 

  16. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of pro-inflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  PubMed  CAS  Google Scholar 

  17. Taleb S, Tedgui A, Mallat Z. Interleukin-17: friend or foe in atherosclerosis? Curr Opin Lipidol. 2010;21:404–8.

    Article  PubMed  CAS  Google Scholar 

  18. Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34:149–62.

    Article  PubMed  CAS  Google Scholar 

  19. Muller YD, Seebach JD, Bühler LH, Pascual M, Colshayan D. Transplantation tolerance: clinical potential of regulatory T cells. Self-Nonself. 2011;2:26–34.

    PubMed  Google Scholar 

  20. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007;44:771–5.

    Article  Google Scholar 

  21. Sakaguchi S. Regulatory T cells: history and perspective. Methods Mol Biol. 2011;707:3–17.

    Article  PubMed  CAS  Google Scholar 

  22. Venuprasad K, Kong YC, Farrar MA. Control of Th2-mediated imflammation by regulatory T cells. Am J Pathol. 2010;177:525–31.

    Article  PubMed  CAS  Google Scholar 

  23. Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000;101:455–8.

    Article  PubMed  CAS  Google Scholar 

  24. Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007;8:191–7.

    Article  PubMed  CAS  Google Scholar 

  25. Yang J, Chu YW, Yang X, Gao K, Zhu LB, Yang XR, Wan LL, Li M. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 2009;60:1472–83.

    Article  PubMed  Google Scholar 

  26. Oukka M. Interplay between pathogenic Th17 and regulatory T cells. Ann Rheum Dis. 2007; 66 (Suppl III):87–90.

    Google Scholar 

  27. Locke NR, Patterson SJ, Hamilton MJ, Sly LM, Krystal G, Lewvings MK. SHIP regulates the reciprocal development of T regulatory and Th17 cells. J Immunol. 2009;183:975–83.

    Article  PubMed  CAS  Google Scholar 

  28. Pejnovic N, Vratimos A, Lee SH, Popadic D, Takeda K, Akira S, Chan WL. Increased atherosclerotic lesions and Th17 in interleukin-18 deficient apolipoprotein E-knockout mice fed high-fat diet. Mol Immunol. 2009;47:37–45.

    Article  PubMed  CAS  Google Scholar 

  29. Smith E, Prasad KM, Butcher M, Dobrian A, Kolls JK, Lev K, Galkina E. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2010;121:1746–55.

    Article  PubMed  CAS  Google Scholar 

  30. Xie JJ, Wang J, Tang TT, Chen J, Gao XL, Yuan J, Zhou ZH, Liao MY, Yao R, Yu X, Wang K, Cheng Y, Liao YH, Cheng X. The Th17/Treg functional imbalance during atherogenesis in ApoE-/- mice. Cytokine. 2010;49:185–93.

    Article  PubMed  CAS  Google Scholar 

  31. Li Q, Wang Y, Chen K, Zhou Q, Wei W, Wang Y. The role of oxidized low-density lipoprotein in breaking peripheral Th17/Treg balance in patients with acute coronary syndrome. Biochem Biophys Res Commun. 2010;394:836–42.

    Article  PubMed  CAS  Google Scholar 

  32. Cheng X, Yu X, King YJ, Fu QQ, Xie JJ, Tang TT, Yao R, Chen Y, Liao YH. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol. 2008;127:89–97.

    Article  PubMed  CAS  Google Scholar 

  33. Salonen JT, Salonen R. Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation. 1993;87(2):S56–65.

    Google Scholar 

  34. Preston E, Ellis MR, Kulinskaya E, Davies AH, Brown EA. Association between carotid artery intima-media thickness and cardiovascular risk factors in CKD. Am J Kidney Dis. 2005;46:856–62.

    Article  PubMed  Google Scholar 

  35. Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness consensus (2004–2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 2007; 23:75–80.

  36. Suh SY, Han SW, Kim SH, Kim HJ, Chung SM, Ryu KH. Carotid intima-media thickness and plaque as a predictor for ischemic etiology in patients with severe left ventricular systolic dysfunction. Korean Circ J. 2010;40:665–70.

    Article  PubMed  Google Scholar 

  37. Reilly LM, Lusby RJ, Hughes L, Ferrell LD, Stoney RJ, Ehrenfeld WK. Carotid plaque histology in real time ultrasonography. Am J Surg. 1983;146:188–93.

    Article  PubMed  CAS  Google Scholar 

  38. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  PubMed  CAS  Google Scholar 

  39. Wanderlaan PA, Reardon CA. Thematic review series: the immune system and atherogenesis. The unusual suspects: an overview of the minor leukocyte populations in atherosclerosis. J Lipid Res. 2005;46:829–38.

    Article  Google Scholar 

  40. Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature. 2007;445:766–70.

    Article  PubMed  CAS  Google Scholar 

  41. Chen S, Crother TR, Arditi M. Emerging role of IL-17 in atherosclerosis. J Innate Immunol. 2010;2:325–33.

    Article  CAS  Google Scholar 

  42. Miyamoto M, Prause O, Sjostrand M, Laan M, Lotvall J, Linden A. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol. 2003;170:4665–72.

    PubMed  CAS  Google Scholar 

  43. Xu F, Ji J, Li L, Chen R, Hu WC. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem Biophys Res Commun. 2007;352:681–8.

    Article  PubMed  CAS  Google Scholar 

  44. Hoogeveen RC, Morrison A, Boerwinkle E, Miles JS, Rhodes CE, Sharrett AR, Ballantyne CM. Plasma MCP-1 level and risk for peripheral arterial disease and incident coronary heart disease: Atherosclerosis Risk in Communities study. Atherosclerosis. 2005;183:301–7.

    Article  PubMed  CAS  Google Scholar 

  45. von Vietinghoff S, Ley K. Interleukin 17 in vascular inflammation. Cytokine Growth Factor Rev. 2010;21:463–9.

    Article  Google Scholar 

  46. Erbel C, Chen L, Bea F, Wangler S, Celik S, Lasitschka F, Wang Y, Böckler D, Katus HA, Dengler TJ. Inhibition of IL-17A attenuates atherosclerotic lesion development in ApoE-deficient mice. J Immunol. 2009;183:8167–75.

    Article  PubMed  CAS  Google Scholar 

  47. Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O, Esposito B, Perez N, Yasukawa H, Van Snick J, Yoshimura A, Tedgui A, Mallat Z. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med. 2009;206:2067–77.

    Article  PubMed  CAS  Google Scholar 

  48. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal Malefyt R. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8:950–7.

    Article  PubMed  CAS  Google Scholar 

  49. Chen Z, Tato CM, Muul L, Laurence A, O’Shea JJ. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 2007;56:2936–46.

    Article  PubMed  CAS  Google Scholar 

  50. Csiszar A, Ungvari Z. Synergistic effects of vascular IL-17 and TNF-a may promote coronary artery disease. Med Hypotheses. 2004;63:696–8.

    Article  PubMed  CAS  Google Scholar 

  51. Sakaguchi S, Setoguchi R, Yagi H, Nomura T. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in self-tolerance and autoimmune disease. Curr Top Microbiol Immunol. 2006;305:51–66.

    Article  PubMed  CAS  Google Scholar 

  52. Schubert LA, Jeffery E, Zhang Y. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. Biol Chem. 2001;276:37672–9.

    Article  CAS  Google Scholar 

  53. George J. Mechanisms of disease: the evolving role of regulatory T cells in atherosclerosis. Nat Clin Pract Cardiovasc Med. 2008;5:531–40.

    Article  PubMed  CAS  Google Scholar 

  54. Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, Phillips LK, Goldstein MJ, Bhat R, Raine CS, et al. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci USA. 2009;106:14948–53.

    Article  PubMed  CAS  Google Scholar 

  55. Tao R, de Zoeten EF, Ozkaynak E, Chen C, Wang L, Porrett PM, Li B, Turka LA, Olson EN, Greene MI, et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007;13:1299–307.

    Article  PubMed  CAS  Google Scholar 

  56. Mor A, Planer D, Luboshits G, Afek A, Metzger S, Chajek-Shaul T, et al. Role of naturally occurring CD4 + CD25 + regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:893–900.

    Article  PubMed  CAS  Google Scholar 

  57. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med. 2006;12:178–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province, China (No. ZR2009CL029 and NO. ZR2011HQ053), and by the Shandong Science and Technology Development Program, China (No. 2011GSF11822).

Conflict of interest

The authors have no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Additional information

Responsible Editor: Andras Falus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Zd., Wang, L., Lu, Fh. et al. Increased Th17 cell frequency concomitant with decreased Foxp3+ Treg cell frequency in the peripheral circulation of patients with carotid artery plaques. Inflamm. Res. 61, 1155–1165 (2012). https://doi.org/10.1007/s00011-012-0510-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0510-2

Keywords

Navigation