Skip to main content

Advertisement

Log in

Rosiglitazone inhibits angiotensin II-induced C-reactive protein production in human aortic endothelial cells through regulating AT1–ROS–MAPK signal pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Objective

Atherosclerosis is an inflammatory disease. As an inflammatory molecule, C-reactive protein (CRP) plays a direct role in atherogenesis. Our previous study confirmed that angiotensin II (Ang II) is capable of inducing CRP generation in human aortic endothelial cells (HAECs). The present study observed the effect of rosiglitazone on Ang II-induced CRP expression in HAECs and molecular mechanisms.

Methods

HAECs were cultured, and Ang II (10−6 M) was used as a stimulant for the generation of CRP and reactive oxygen species (ROS). HAECs were preincubated with rosiglitazone at 1, 10, 100 µM for 18 h prior to the stimulation. mRNA and protein expressions were identified by reverse transcription polymerase chain reaction and Western blot, respectively. ROS production was observed by a fluorescence microscope.

Results

Pretreatment of HAECs with rosiglitazone prior to Ang II stimulation markedly downregulated Ang II-induced mRNA and protein expressions of CRP (maximal inhibition of 55.2 and 99.1 %, P < 0.001 vs. Ang II alone) and AT1 (maximal inhibition of 66.4 and 90.5 %, P < 0.001 vs. Ang II alone) in a concentration-dependent manner, inhibited Ang II-stimulated ROS production (P < 0.01 vs. Ang II alone), and attenuated Ang II-induced phosphorylation of ERK1/2 and JNK (P < 0.001 vs. Ang II alone). Meanwhile, AT1 receptor blocker losartan also reduced Ang II-stimulated ROS generation in HAECs (P < 0.001 vs. Ang II alone).

Conclusions

Rosiglitazone at the concentrations used in the present experiment is able to inhibit Ang II-induced CRP generation in HAECs by regulating AT1–ROS–MAPK signal pathway. These results strengthen our understanding of the anti-inflammatory and anti-atherosclerotic effects of rosiglitazone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2001;105:1135–43.

    Article  Google Scholar 

  2. Jialal I, Devaraj S, Venugopal SK. C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension. 2004;44:6–11.

    Article  PubMed  CAS  Google Scholar 

  3. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–9.

    Article  PubMed  Google Scholar 

  4. Kibayashi E, Urakaze M, Kobashi C, Kishida M, Takata M, Sato A, Yamazaki K, et al. Inhibitory effect of pitavastatin (NK-104) on the C-reactive-protein-induced interleukin-8 production in human aortic endothelial cells. Clin Sci. 2005;108:515–21.

    Article  PubMed  CAS  Google Scholar 

  5. Li L, Roumeliotis N, Sawamura T, Renier G. C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction. Circ Res. 2004;95:877–83.

    Article  PubMed  CAS  Google Scholar 

  6. Pasceri V, Cheng JS, Willerson JT, Yeh ET. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation. 2001;103:2531–4.

    Article  PubMed  CAS  Google Scholar 

  7. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 2001;106:1439–41.

    Article  Google Scholar 

  8. Venugopal SK, Devaraj S, Jialal I. C-reactive protein decreases prostacyclin release from human aortic endothelial cells. Circulation. 2003;108:1676–8.

    Article  PubMed  CAS  Google Scholar 

  9. Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation. 2003;108:1930–2.

    Article  PubMed  CAS  Google Scholar 

  10. Singh P, Hoffmann M, Wolk R, Shamsuzzaman AS, Somers VK. Leptin induces C-reactive protein expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27:E302–7.

    Article  PubMed  CAS  Google Scholar 

  11. Venugopal SK, Devaraj S, Jialal I. Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects. Am J Pathol. 2005;166:1265–71.

    Article  PubMed  CAS  Google Scholar 

  12. Yasojima K, Schwab C, McGeer EG, McGeer PL. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am J Pathol. 2001;158:1039–51.

    Article  PubMed  CAS  Google Scholar 

  13. Han C, Liu J, Liu X, Li M. Angiotensin II induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells. Atherosclerosis. 2010;212:206–12.

    Article  PubMed  CAS  Google Scholar 

  14. Lee CH, Olson P, Evans RM. Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology. 2003;144:2201–7.

    Article  PubMed  CAS  Google Scholar 

  15. Yano Y, Hoshide S, Ishikawa J, Noguchi C, Tukui D, Takanori H, Tada M, et al. The differential effects of angiotensin II type 1 receptor blockers on microalbuminuria in relation to low-grade inflammation in metabolic hypertensive patients. Am J Hypertens. 2007;20:565–72.

    Article  PubMed  CAS  Google Scholar 

  16. Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J. PPAR gamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPAR gamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol. 1999;19:546–51.

    Article  PubMed  CAS  Google Scholar 

  17. Gao DF, Niu XL, Hao GH, Peng N, Wei J, Ning N, Wei J, et al. Rosiglitazone inhibits angiotensin II-induced CTGF expression in vascular smooth muscle cells—role of PPAR-gamma in vascular fibrosis. Biochem Pharmacol. 2007;73:185–97.

    Article  PubMed  CAS  Google Scholar 

  18. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391:79–82.

    Article  PubMed  CAS  Google Scholar 

  19. Abdelrahman M, Sivarajah A, Thiemermann C. Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovasc Res. 2005;65:772–81.

    Article  PubMed  CAS  Google Scholar 

  20. Goetze S, Xi XP, Graf K, Fleck E, Hsueh WA, Law RE. Troglitazone inhibits angiotensin II-induced extracellular signal-regulated kinase 1/2 nuclear translocation and activation in vascular smooth muscle cells. FEBS Lett. 1999;452:277–82.

    Article  PubMed  CAS  Google Scholar 

  21. Ishibashi M, Egashira K, Hiasa K, Inoue S, Ni WH, Zhao QW, Usui M, et al. Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension. 2002;40:687–93.

    Article  PubMed  CAS  Google Scholar 

  22. Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD. PPAR (gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension. 2004;43:661–6.

    Article  PubMed  CAS  Google Scholar 

  23. Wang TD, Chen WJ, Lin JW, Chen MF, Lee YT. Effects of rosiglitazone on endothelial function, C-reactive protein, and components of the metabolic syndrome in nondiabetic patients with the metabolic syndrome. Am J Cardiol. 2004;93:362–5.

    Article  PubMed  CAS  Google Scholar 

  24. Parinandi NL, Kleinberg MA, Usatyuk PV, Cummings RJ, Pennathur A, Cardounel AJ, Zweier JL, et al. Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2003;284:L26–38.

    PubMed  CAS  Google Scholar 

  25. Ayabe N, Babaev VR, Tang Y, Tanizawa T, Fogo AB, Linton MF, Ichikawaa I, et al. Transiently heightened angiotensin II has distinct effects on atherosclerosis and aneurysm formation in hyperlipidemic mice. Atherosclerosis. 2006;184:312–21.

    Article  PubMed  CAS  Google Scholar 

  26. da Cunha V, Tham DM, Martin-McNulty B, Deng G, Ho JJ, Wilson DW, Rutledge JC, et al. Enalapril attenuates angiotensin II-induced atherosclerosis and vascular inflammation. Atherosclerosis. 2005;178:9–17.

    Article  PubMed  Google Scholar 

  27. Kumar HAS, Ramarao P. Saga of renin-angiotensin system and calcium channels in hypertensive diabetics: does it have a therapeutic edge? Cardiovasc Drug Rev. 2005;23:99–114.

    Article  PubMed  Google Scholar 

  28. Min Q, Bai YT, Jia G, Wu J, Xiang JZ. High glucose enhances angiotensin-II-mediated peroxisome proliferation-activated receptor-gamma inactivation in human coronary artery endothelial cells. Exp Mol Pathol. 2010;88:133–7.

    Article  PubMed  CAS  Google Scholar 

  29. Takeda K, Ichiki T, Tokunou T, Funakoshi Y, Iino N, Hirano K, Kanaide H, et al. Peroxisome proliferator-activated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells. Circulation. 2000;102:1834–9.

    Article  PubMed  CAS  Google Scholar 

  30. Nisbet RE, Bland JM, Kleinhenz DJ, Mitchell PO, Walp ER, Sutliff RL, Hart CM. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Resp Cell Mol Biol. 2010;42:482–90.

    Article  Google Scholar 

  31. Schiffrin EL. Peroxisome proliferator-activated receptors and cardiovascular remodeling. Am J Physiol Heart Circ Physiol. 2005;288:H1037–43.

    Article  PubMed  CAS  Google Scholar 

  32. Chan SHH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JYH. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circ Res. 2005;97:772–80.

    Article  PubMed  CAS  Google Scholar 

  33. Ji Y, Liu J, Wang Z, Liu N, Gou W. PPAR gamma agonist, rosiglitazone, regulates angiotensin II-induced vascular inflammation through the TLR4-dependent signaling pathway. Lab Invest. 2009;89:887–902.

    Article  PubMed  CAS  Google Scholar 

  34. Hsu YH, Chen JJ, Chang NC, Chen CH, Liu JC, Chen TH, Jeng CJ, et al. Role of reactive oxygen species-sensitive extracellular signal-regulated kinase pathway in angiotensin-II-induced endothelin-1 gene expression in vascular endothelial cells. J Vasc Res. 2004;41:64–74.

    Article  PubMed  CAS  Google Scholar 

  35. Orasanu G, Ziouzenkova O, Devchand RP, Nehra V, Hamdy O, Horton SE, Plutzky J. The peroxisome proliferators-activated receptor-γ agonist pioglitazone represses inflammation in a peroxisome proliferators-activated receptor-α dependent manner in vitro and in vivo in mice. J Am Coll Cardiol. 2008;52:869–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Doctoral Fund of the Ministry of Education of China (No. 20100201110053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Tian Liu.

Additional information

Responsible Editor: Ikuo Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, CJ., Liu, JT., Li, M. et al. Rosiglitazone inhibits angiotensin II-induced C-reactive protein production in human aortic endothelial cells through regulating AT1–ROS–MAPK signal pathway. Inflamm. Res. 61, 1031–1037 (2012). https://doi.org/10.1007/s00011-012-0496-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0496-9

Keywords

Navigation