Skip to main content

Advertisement

Log in

Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase A and B/Akt manner

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2019

An Erratum to this article was published on 01 March 2017

This article has been updated

Abstract

Background

Incretin-based therapies in the treatment of type 2 diabetes mellitus are associated with significant improvements in glycemic control, which are accompanied by a beneficial impact on atherosclerosis. Macrophages are essential in the development of atherosclerotic plaques and may develop features that accelerate atherosclerosis (classically activated macrophages) or protect arterial walls against it (alternatively activated macrophages). Therefore, we explored whether beneficial actions of exenatide are connected with the influence on the macrophages’ phenotype and synthesis of inflammatory and anti-inflammatory cytokines.

Methods

Monocytes/macrophages were harvested from 10 healthy subjects. Cells were cultured in the presence of exenatide, exendin 9-39 (GLP-1 antagonist), LPS, IL-4, PKI (PKA inhibitor) and triciribine (PKB/Akt inhibitor). We measured the effects of the above-mentioned compounds on markers of macrophages’ phenotype (inducible nitrous oxide (iNOS), arginase 1 (arg1) and mannose receptors) and concentration of nitrite, IL-1β, TNF-α and IL-10.

Results

Exenatide significantly increased the level of IL-10 and decreased both TNF-α and IL-1β in LPS-treated monocytes/macrophages. Furthermore exenatide increased the expression of arg1-a marker of classical activation and reduced the LPS-induced expression of iNOS-a marker of classical activation. According to experiments with protein kinases inhibitors we found that proinflammatory markers were protein kinase A dependent, whereas the activation of alternative activation was similarly reliant on protein kinase A and B/Akt.

Conclusions

We showed that exenatide skewed the macrophages phenotype toward anti-inflammatory phenotype and this effect is predominantly attributable to protein kinase A and to a less extent to B/Akt activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 30 December 2017

    In this published article, Fig. 3 contained a graphical mistake. The authors would like to apologize for any inconvenience caused.

  • 30 December 2019

    An earlier corrigendum has been published but was found to be incorrect. This replaces it. In order to meet high standards of Pharmacological Reports and to improve the clarity of data presentation we wish to perform a corrigendum of methods of western blotting and graphical representation of Fig. 3. In details, western blotting methodology description was improved and representative blots of Fig. 3 were replaced. On the final steps of figure preparation the graphics technician made an incorrect attachment of blots into Fig. 3. The authors would like to apologize for any inconvenience caused and inform that all made corrections did not affect a scientific merit of the paper.

References

  1. Nagashima M, Watanabe T, Terasaki M, Tomoyasu M, Nohtomi K, Kim-Kaneyama J, et al. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia. 2011;54(10):2649–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Parlevliet ET, Geerling JJ, van der Tuin SJL, Zhang H, Bieghs V, et al. Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration. Br J Pharmacol. 2014; 171(3):723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee Y-S, Park M-S, Choung J-S, Kim S-S, Oh H-H, Choi C-S, et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia. 2012;55(9):2456–68.

    Article  CAS  PubMed  Google Scholar 

  4. Kaplan M, Aviram M, Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: role of insulin therapy. Pharmacol Therapeut. 2012;136(2):175–85.

    Article  CAS  Google Scholar 

  5. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.

    Article  CAS  PubMed  Google Scholar 

  6. Varin A, Gordon S. Alternative activation of macrophages: immune function and cellular biology. Immunobiology. 2009;214(7):630–41.

    Article  CAS  PubMed  Google Scholar 

  7. Okopień B, Krysiak R, Kowalski J, Madej A, Belowski D, Zieliński M, et al. Monocyte release of tumor necrosis factor-alpha and interleukin-1beta in primary type IIa and IIb dyslipidemic patients treated with statins or fibrates. J Cardiovasc Pharmacol. 2005;46(3):377–86.

    Article  PubMed  Google Scholar 

  8. Suchy D, Łabuzek K, Bułdak Ł, Szkudłapski D, Okopień B. Comparison of chosen activation markers of human monocytes/macrophages isolated from the peripheral blood of young and elderly volunteers. Pharmacol Rep. 2014;66(5):759–65.

    Article  CAS  PubMed  Google Scholar 

  9. Chang S-Y, Kim D-B, Ryu GR, Ko S-H, Jeong I-K, Ahn Y-B, et al. Exendin-4 inhibits iNOS expression at the protein level in LPS-stimulated Raw264.7 macrophage by the activation of cAMP/PKA pathway. J Cell Biochem. 2013;114(4):844–53.

    Article  CAS  PubMed  Google Scholar 

  10. Zhai C, Cheng J, Mujahid H, Wang H, Kong J, Yin Y, et al. Selective inhibition of PI3 K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PLoS One 2014;9(3):e90563.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes. 2010;59(4):1030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16(6):276–7.

    Article  CAS  PubMed  Google Scholar 

  13. Bułdak Ł, Labuzek K, Bułdak RJ, Kozłowski M, Machnik G, Liber S, et al. Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages. Pharmacol Rep. 2014;66(3): 418–29.

    Article  PubMed  Google Scholar 

  14. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76(9):4350–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  16. He L, Wong CK, Cheung KK, Yau HC, Fu A, Zhao H-L, et al. Anti-inflammatory effects of exendin-4, a glucagon-like peptide-1 analog, on human peripheral lymphocytes in patients with type 2 diabetes. J Diabetes Investig. 2013;4(4): 382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813–23.

    Article  PubMed  Google Scholar 

  18. Chang G, Zhang D, Liu J, Zhang P, Ye L, Lu K, et al. Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells. Exp. Biol. Med. (Maywood) V 239 2014;(4):414–22.

    Article  Google Scholar 

  19. Xue S, Wasserfall CH, Parker M, Brusko TM, McGrail S, McGrail K, et al. Exendin-4 therapy in NOD mice with new-onset diabetes increases regulatory T cell frequency. Ann N Y Acad Sci. 2008;1150:152–6.

    Article  PubMed  Google Scholar 

  20. Shiraishi D, Fujiwara Y, Komohara Y, Mizuta H, Takeya M. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys Res Commun. 2012;425(2):304–8.

    Article  CAS  PubMed  Google Scholar 

  21. Erdogdu O, Eriksson L, Xu H, Sjöholm A, Zhang Q, Nyström T. Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3 K, eNOS, p38 MAPK, and JNK pathways. J Mol Endocrinol. 2013;50(2):229–41.

    Article  CAS  PubMed  Google Scholar 

  22. Bułdak Ł, Łabuzek K, Bułdak RJ, Machnik G, Bołdys A, Okopień B. Exenatide (a GLP-1 agonist) improves the antioxidative potential of in vitro cultured human monocytes/macrophages. Naunyn Schmiedebergs Arch Pharmacol. 2015; 388(9):905–19.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Garczorz W, Francuz T, Siemianowicz K, Kosowska A, Kłych A, Aghdam MRF, et al. Effects of incretin agonists on endothelial nitric oxide synthase expression and nitric oxide synthesis in human coronary artery endothelial cells exposed to TNFα and glycated albumin. Pharmacol Rep. 2015;67(1): 69–77.

    Article  CAS  PubMed  Google Scholar 

  24. Labuzek K, Liber S, Buldak L, Krupej-Kędzierska J, Machnik G, Bobrzyk M, et al. Eplerenone mimics features of the alternative activation in macrophages obtained from patients with heart failure and healthy volunteers. Eur J Pharmacol. 2014;726C:96–108.

    Article  Google Scholar 

  25. Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014;262(1):153–66.

    Article  CAS  PubMed  Google Scholar 

  26. Shi L, Ji Y, Jiang X, Zhou L, Xu Y, Li Y, et al. Liraglutide attenuates high glucose-induced abnormal cell migration, proliferation, and apoptosis of vascular smooth muscle cells by activating the GLP-1 receptor, and inhibiting ERK1/2 and P13 K/Akt signaling pathways. Cardiovasc Diabetol. 2015;14:18.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brubaker PL, Minireview Drucker DJ. Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology. 2004;145(6):2653–9.

    Article  CAS  PubMed  Google Scholar 

  28. Piro S, Spampinato D, Spadaro L, Oliveri CE, Purrello F, Rabuazzo AM. Direct apoptotic effects of free fatty acids on human endothelial cells. Nutr Metab Cardiovasc Dis. 2008;18(2):96–104.

    Article  CAS  PubMed  Google Scholar 

  29. Barrett JP, Minogue AM, Falvey A, Lynch MA. Involvement of IGF-1 and Akt in M1/M2 activation state in bone marrow-derived macrophages. Exp Cell Res. 2015;335(2):258–68.

    Article  CAS  PubMed  Google Scholar 

  30. Gaspari T, Liu H, Welungoda I, Hu Y, Widdop RE, Knudsen LB, et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model. Diab Vasc Dis Res. 2011;8(2):117–24.

    Article  PubMed  Google Scholar 

  31. Wang C, Chen X, Ding X, He Y, Gu C, Zhou L. Exendin-4 Promotes Beta Cell Proliferation via PI3k/Akt Signalling Pathway. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2015;35(6):2223–32.

    Article  CAS  Google Scholar 

  32. Kodera R, Shikata K, Kataoka HU, Takatsuka T, Miyamoto S, Sasaki M, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54(4):965–78.

    Article  CAS  PubMed  Google Scholar 

  33. Darsalia V, Hua S, Larsson M, Mallard C, Nathanson D, Nyström T, et al. Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization. PloS One. 2014;9(8): e103114.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Bułdak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bułdak, Ł., Machnik, G., Bułdak, R.J. et al. Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase A and B/Akt manner. Pharmacol. Rep 68, 329–337 (2016). https://doi.org/10.1016/j.pharep.2015.10.008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2015.10.008

Keywords

Navigation