Skip to main content

Drug Therapy After Implant

  • Chapter
Imaging of Prosthetic Joints
  • 1302 Accesses

Abstract

Aseptic loosening continues to limit long-term survival of prosthesis implant. The biological pathway leading to osteolysis is not understood completely. Interfacial membranes from clinically failed arthroplasties and in vitro models have demonstrated that macrophages are activated by wear debris and release various potent resorbing mediators. These mediators cause a maturation and stimulation of osteoclasts, resulting in periprosthetic bone resorption and component loosening. Osteocytes and other complex cell interactions are involved as well. There is a potential for the use of pharmacological agents to enhance periprosthetic bone quality and bone mass, thus to present early implant failure. Different therapeutic approaches have been proposed in experimental and clinical studies to improve osseointegration of prosthetic implants. Most of these tested drugs are widely used for treatment of osteoporosis, metabolic bone diseases, and metastatic bone tumors. However, despite the encouraging results obtained to decrease early periprosthetic bone loss after arthroplasty, it improves periprosthetic bone quality and osseous integration using anti-resorptive agents and other compounds; few advances have been made in the pharmacological management of aseptic loosening, which are universally accepted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howie DV, Haynes DR, Rogers SD et al (1993) The response to particulate debris. Orthop Clin North Am 24:571–581

    CAS  PubMed  Google Scholar 

  2. Neale SD, Haynes DR, Howie DV et al (2000) The effect of particle phagocytosis and metallic wear particles on osteoclast formation and bone resorption in vitro. J Arthoplasty 15:654–662

    Article  CAS  Google Scholar 

  3. Gehrke T, Sers C, Morawietz L et al (2003) Receptor activator of nuclear factor \( \kappa \)B ligand is expressed in resident and inflammatory cells in aseptic and septic prosthesis loosening. Scand J Rheumatol 32:287–294

    Google Scholar 

  4. Huiskes R, Weinans H, van Rietnbergen B (1992) The relationship between stress shielding and bone resorption around total hip stem and the effects of flexible materials. Clin Ortop Relat Res 274:124–134

    Google Scholar 

  5. Taylor AF, Saunders MM, Shingle DL et al (2007) Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am J Physiol Cell Physiol 292:545–552

    Article  Google Scholar 

  6. Moustafa A, Sugiyama T, Saxon LK et al (2009) The mouse fibula as a suitable bone for the study of functional adaptation to mechanical loading. Bone 44:930–935

    Article  PubMed Central  PubMed  Google Scholar 

  7. Nunley RM, La Valle CJ, Barrack RI (2009) Is patient selection important for hip resurfacing? Clin Orthop Relat Res 467:56–65

    Article  PubMed Central  PubMed  Google Scholar 

  8. Whang ML, Sharkeyv PF, Tuan RS (2004) Particle bioreactivity and wear-mediated osteolysis. J Arthroplasty 19:1028–1038

    Article  Google Scholar 

  9. Manley MT, D’Antonio JA, Capello WN et al (2002) Osteolysis: a disease of access to fixation interfaces. Clin Orthop Relat Res 405:129–137

    Article  PubMed  Google Scholar 

  10. Fleisch H (2000) Bisphosphonates in bone disease. From the laboratory to the patient. Academic Press, San Diego USA–London UK, p 40

    Google Scholar 

  11. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97(12):2692–2696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shanbhag AS, Hasselman CT, Rubash HE (1997) Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop Rel Res 44:33–43

    Google Scholar 

  13. Millet PJ, Allen MJ, Bostrom MP (2002) Effects of alendronate on particle-induced osteolysis in a rat model. J Bone Joint Surg 84A:236–249

    Google Scholar 

  14. Astrand J, Aspenberg P (1999) Alendronate did not inhibit instability-induced bone resorption. A study in rats. Acta Orthop Scand 70:67–70

    Article  CAS  PubMed  Google Scholar 

  15. Huk O, Zukor DJ, Antoniou J et al (2003) Effect of pamidronate on stimulation of macrophage TNF-α release by ultra-high-molecular-weight polyethylene particle: a role for apoptosis. J Orthop Res 21:81–87

    Article  CAS  PubMed  Google Scholar 

  16. Horowitz SM, Algan SA, Purdon MA (1996) Pharmacological inhibition of particulate-induced bone resorption. J Biomed Mater Res 31:91–96

    Article  CAS  PubMed  Google Scholar 

  17. Bhandari M, Bajammal S, Guyatt GH et al (2005) Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg Am 87:293–301

    Article  PubMed  Google Scholar 

  18. Peter B, Pioletti DP, Laib S et al (2005) Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone 36:52–60

    Article  CAS  PubMed  Google Scholar 

  19. Suratwala SJ, Cho SK, van Raalte JJ et al (2008) Enhancement of periprosthetic bone quality with topical hydroxypatite-bisphosphonate composite. J Bone Joint Surg Am 90(10):2189–2196

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liberman UA, Weiss SR, Broöll J, Minne HV et al (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 333:1437–1443

    Article  CAS  PubMed  Google Scholar 

  21. Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Interv Trial Res. Lancet 348:1541–1553

    Google Scholar 

  22. Cummings SR, Black DM, Thompson DE et al (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the fracture intervention trial. JAMA 280(333):2077–2082

    Article  CAS  PubMed  Google Scholar 

  23. Prieto-Alhambra D, Javaid MK, Judge A et al (2011) Association between bisphosphonate use and implant survival after primary total arthroplasty of the knee or hip: population based retrospective cohort study. BMJ 343:1–9

    Article  Google Scholar 

  24. Thillemann TM, Pedersen AB, Mehnert F, Johnsen SP et al (2010) Postoperative use of bisphosphonate and risk of revision after primary total hip arthroplasty: a nationwide population-based study. Bone 46:946–951

    Article  CAS  PubMed  Google Scholar 

  25. Zeng Y, Lai O, Shen B et al (2011) A systematic review assessing the effectiveness of alendronate in reducing periprosthetic bone loss after cementless primary THA. Orthopedics 34(4):837–848

    Google Scholar 

  26. Lin T, Yan SG, Cai XZ et al (2012) Bisphosphonate for periprosthetic bone loss after joint arthroplasty: a meta-analysis of 14 randomized controlled trials. Osteoporos Int 23(6):1823–1834

    Article  CAS  PubMed  Google Scholar 

  27. Haynes DR, Boyle SJ, Rogers SD et al (1998) Variation in cytokines induced by particles from different prosthetic materials. Clin Orthop 352:223–230

    Article  PubMed  Google Scholar 

  28. Jiranek WA, Machado M, Jasty M et al (1993) Production of cytokines around loosened cemented acetabular components: analysis with immunohistochemical techniques and in situ hybridization. J Bone Joint Surg (Am) 75-A:863–879

    Google Scholar 

  29. Neale SD, Sabokbar A, Howie DW et al (1999) Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption. J Orthop Res 17:686–694

    Article  CAS  PubMed  Google Scholar 

  30. Haynes DR, Crotti TN, Potter AE et al (2001) The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J Bone Joint Surg (Br) 83-B:902–911

    Google Scholar 

  31. Sutton EE, Riche DM (2012) Denosumab, a RANK ligand inhibitor, for postmenopausal women with osteoporosis. Ann Pharmacother 46(7–8):1000–1009

    Article  PubMed  Google Scholar 

  32. Cummings SR, San Martin J, McClung MR et al (2009) FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765

    Article  CAS  PubMed  Google Scholar 

  33. Delmas PD (2008) Clinical potential of RANKL inhibition for the management of postmenopausal osteoporosis and other metabolic diseases. J Clin Densitom 11(2):325–338

    Article  PubMed  Google Scholar 

  34. Gerstenfeld LG, Sacks DJ, Pelis M et al (2009) Comparison effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J bone Min Res 24(2):196–208

    Article  CAS  Google Scholar 

  35. Marie PJ, Ammann P, Boivin G et al (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129

    Article  CAS  PubMed  Google Scholar 

  36. Meunier PJ, Slosman DO, Delmas PD et al (2002) Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis–a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab 87:2060–2066

    CAS  PubMed  Google Scholar 

  37. Brennan TC, Rybchyn MS, Green W et al (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157:1291–1300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Fromigue O, Hay E, Barbara A et al (2009) Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med 13:2189–2199

    Article  PubMed  Google Scholar 

  39. Baron R, Tsouderos Y (2002) In vitro effects of S12911–2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol 450:11–17

    Article  CAS  PubMed  Google Scholar 

  40. Bonnelye E, Chabadel A, Saltel F et al (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138

    Article  CAS  PubMed  Google Scholar 

  41. Bain SD, Jerome C, Shen V et al (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20:1417–1428

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Feng G, Gao Y et al (2010) Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res 28:578–582

    Article  CAS  PubMed  Google Scholar 

  43. Maimoun L, Brennan TC, Badoud I et al (2010) Strontium ranelate improves implant osseointegration. Bone 46(1436–1441):22

    Google Scholar 

  44. Ni GX, Chiu KY, Lu WW et al (2006) Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterial 27:435–438

    Google Scholar 

  45. Blake GM, Fogelman I (2006) Theoretical model for the interpretation of BMD scans in patients stopping strontium ranelate treatment. J Bone Miner Res 21(9):1417–1424

    Article  PubMed  Google Scholar 

  46. Jerome CP, Burr DB, Van BT et al (2001) Treatment with human parathyroid hormone (1–34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 28:150–159

    Article  CAS  PubMed  Google Scholar 

  47. Oxlund H, Dalstra M, Ejersted C et al (2002) Parathyroid hormone induces formation of new cancellous bone with substantial mechanical strength at a site where it had disappeared in old rats. Eur J Endocrinol 146:431–438

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Takahashi HE, Tanizawa T et al (1998) Low dose of human PTH (1–34) improved tibial subcortical bone mass without further cortical bone loss in adult intact beagles. J Bone Miner Metab 16:96–99

    Article  CAS  Google Scholar 

  49. Ejersted C, Andreassen TT, Nilsson MH et al (1994) Human parathyroid hormone (1–34) increases bone formation and strength of cortical bone in aged rats. Eur J Endocrinol 130(2):201–207

    Article  CAS  PubMed  Google Scholar 

  50. Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441

    Article  CAS  PubMed  Google Scholar 

  51. Orwoll ES, Scheele WH, Paul S, Adami S et al (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18(1):9–17

    Article  CAS  PubMed  Google Scholar 

  52. Rejnmark L (2013) Recombinant hormones in osteoporosis. Expert Opin Biol Ther May 7 [Epub ahead of print)

    Google Scholar 

  53. Gabet Y, Muller R, Levy J et al (2006) Parathyroid hormone 1–34 enhances titanium implant anchorage in low-density trabecular bone: a correlative micro-computed tomographic and biomechanical analysis. Bone 39:276–282

    Article  CAS  PubMed  Google Scholar 

  54. Shirota T, Tashiro M, Ohno K et al (2003) Effect of intermittent parathyroid hormone (1–34) treatment on the bone response after placement of titanium implants into the tibia of ovariectomized rats. J Oral Maxillofac Surg 61:471–480

    Article  PubMed  Google Scholar 

  55. Ohkawa Y, Tokunaga K, Endo N (2008) Intermittent administration of human parathyroid hormone (1–34) increases new bone formation on the interface of hydroxyapatite-coated titanium rods implanted into ovariectomized rat femora. J Orthop Sci 13:533–542

    Article  CAS  PubMed  Google Scholar 

  56. Corsini MS, Faraco FN, Castro AA et al (2008) Effect of systemic intermittent administration of human parathyroid hormone (rhPTH [1–34]) on the resistance to reverse torque in rabbit tibiae. J Oral Implantol 34:298–302

    Article  PubMed  Google Scholar 

  57. Mair B, Tangl S, Feierfeil J et al (2009) Age-related efficacy of parathyroid hormone on osseointegration in the rat. Clin Oral Implants Res 20:400–405

    Article  PubMed  Google Scholar 

  58. Daugaard Henrik, Elmengaard Brian, Andreassen Troels Torp et al (2012) Systemic intermittent parathyroid hormone treatment improves osseointegration of press-fit inserted implants in cancellous bone. Canine Study. Acta Orthop 83(4):411–419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlina V. Albanese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Albanese, C.V. (2014). Drug Therapy After Implant. In: Albanese, C.V., Faletti, C. (eds) Imaging of Prosthetic Joints. Springer, Milano. https://doi.org/10.1007/978-88-470-5483-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5483-7_14

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5482-0

  • Online ISBN: 978-88-470-5483-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics