Skip to main content

Advertisement

Log in

Inflammatory responses improve with milk ribonuclease-enriched lactoferrin supplementation in postmenopausal women

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

A 6-month, randomized clinical study was conducted to evaluate the effect of a ribonuclease-enriched lactoferrin (R-ELF) supplement on the circulating cytokine levels and bone health of postmenopausal women.

Subjects

Thirty-eight healthy postmenopausal women, aged 45–60 years, were randomized into placebo and R-ELF groups.

Treatment

The R-ELF group was supplemented with R-ELF (2 × 125 mg/day) and calcium (100% RDA), while the placebo group received only the calcium supplement.

Methods

Serum levels of receptor activator for NF-κB ligand (RANKL), C-reactive protein (CRP) and various pro- and anti-inflammatory cytokines were determined by ELISA.

Results

Pro-inflammatory cytokines IL-6 and TNF-α decreased significantly (−44 and −10%, respectively) while anti-inflammatory IL-10 increased (140%) due to R-ELF supplementation at the end of study. RANKL and CRP were modestly reduced (−50%) relative to their placebo levels, although RANKL elevated initially.

Conclusions

R-ELF supplementation showed beneficial effects towards improvement of inflammatory status in postmenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Garnero P, Somay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11:337–49.

    Article  PubMed  CAS  Google Scholar 

  2. Chlebowski RT, Hendrix SL, Langer RD, Stefanick ML, Gass M, Lane D, for WHI Investigators, et al. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative Randomized Trial. JAMA. 2003;289:3243–53.

    Article  PubMed  CAS  Google Scholar 

  3. Banks E, Beral V, Bull D, Reeves G. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet. 2003;362:419–27.

    Article  Google Scholar 

  4. Erlandsson MC, Gomori E, Taube M, Carlsten H. Effects of Raloxifene, a selective estrogen receptor modulator, on thymus, T cell reactivity, and inflammation in mice. Cell Immunol. 2000;205:103–9.

    Article  PubMed  CAS  Google Scholar 

  5. Makins R, Ballinger A. Gastrointestinal side effects of drugs. Expert Opin Drug Safety. 2003;2:421–9.

    Article  CAS  Google Scholar 

  6. Meunier PJ, Slosman DO, Delmas PD, Sebert JL, Brandi ML, Albanese C, et al. Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis—a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab. 2002;87:2060–6.

    Article  PubMed  CAS  Google Scholar 

  7. Jamal SA, Cummings SR, Hawker GA. Isosorbide mononitrate increases bone formation and decreases bone resorption in postmenopausal women: a randomized trial. J Bone Miner Res. 2004;19:1512–7.

    Article  PubMed  CAS  Google Scholar 

  8. Cosman F. Anabolic therapy for osteoporosis: parathyroid hormone. Curr Rheumatol Rep. 2006;8:63–9.

    Article  PubMed  CAS  Google Scholar 

  9. Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev. 2005;26:688–703.

    Article  PubMed  CAS  Google Scholar 

  10. Bharadwaj S, Naidu AGT, Betageri GV, Prasadarao NV, Naidu AS. Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women. Osteoporos Int. 2009;20:1603–11.

    Article  PubMed  CAS  Google Scholar 

  11. Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408:535–6.

    Article  PubMed  CAS  Google Scholar 

  12. Goldring SR. Inflammatory mediators as essential elements in bone remodeling. Calcif Tissue Int. 2003;73:97–100.

    Article  PubMed  CAS  Google Scholar 

  13. De Martinis M, Franceschi C, Monti D, Ginaldi L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 2005;579:2035–9.

    Article  PubMed  CAS  Google Scholar 

  14. Bruunsgaard H. The clinical impact of systemic low-level inflammation in elderly populations. With special reference to cardiovascular disease, dementia and mortality. Dan Med Bull. 2006;53:285–309.

    PubMed  Google Scholar 

  15. Koh JM, Khang YH, Jung CH, Bae S, Kim DJ, Chung YE, Kim GS. Higher circulating hsCRP levels are associated with lower bone mineral density in healthy pre- and postmenopausal women: evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int. 2005;89:735–42.

    Google Scholar 

  16. Naidu AS. Lactoferrin—natural, multifunctional, antimicrobial. Boca Raton: CRC Press; 2000.

    Book  Google Scholar 

  17. Machnicki M, Zimecki M, Zagulski T. Lactoferrin regulates the release of tumor necrosis factor alpha and interleukin 6 in vivo. Int J Exp Pathol. 1993;74:433–9.

    PubMed  CAS  Google Scholar 

  18. Kruzel ML, Harari Y, Mailman D, Actor JK, Zimecki M. Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin Exp Immunol. 2002;130:25–31.

    Article  PubMed  CAS  Google Scholar 

  19. Legrand D, Elass E, Carpentier M, Mazurier J. Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci. 2005;62:2549–59.

    Article  PubMed  CAS  Google Scholar 

  20. Hayashida K, Kaneko T, Takeuchi T, Shimizu H, Ando K, Harada E. Oral administration of lactoferrin inhibits inflammation and nociception in rat adjuvant-induced arthritis. J Vet Med Sci. 2004;66:149–54.

    Article  PubMed  CAS  Google Scholar 

  21. Naidu AS. Angiogenin complexes (ANGex) and uses thereof. US Patent No. 7601689 (2009).

  22. Naidu AS. Immobilized angiogenin mixtures and uses thereof. US Patent Application No. 20080254018 (2008).

  23. Zar JH. Biostatistical analysis. 4th ed. New Jersey: Prentice Hall; 1999. p. 475–8.

    Google Scholar 

  24. Ziegenhagen MW, Benner UK, Zissel G, Zabel P, Schlaak M, Müller-Quernheim J. Sarcoidosis: TNF-alpha release from alveolar macrophages and serum level of sIL-2R are prognostic markers. Am J Respir Crit Care Med. 1997;156:1586–92.

    PubMed  CAS  Google Scholar 

  25. Buyan N, Ozkaya O, Bideci A, Soylemezoglu O, Cinaz P, Gonen S, et al. Leptin, soluble leptin receptor, and transforming growth factor-β1 levels in minimal change nephrotic syndrome. Pediatr Nephrol. 2003;18:1009–14.

    Article  PubMed  Google Scholar 

  26. Bamba T, Yoshioka U, Inoue H, Iwasaki Y, Hosoda S. Serum levels of interleukin-lβ and interleukin-6 in patients with chronic pancreatitis. J Gastroenterol. 1994;29:314–9.

    Article  PubMed  CAS  Google Scholar 

  27. Cioffi M, Esposito K, Vietri MT, Gazzerro P, D’Auria A, Ardovino I, Puca GA, Molinari AM. Cytokine pattern in postmenopause. Maturitas. 2002;41:187–92.

    Article  PubMed  CAS  Google Scholar 

  28. Fiorito S, Magrini L, Goalard C. Pro-inflammatory and anti-inflammatory circulating cytokines and periprosthetic osteolysis. J Bone Joint Surg Br. 2003;85-B:1202–6.

    Article  Google Scholar 

  29. Andersson PO, Stockelberg D, Jacobsson S, Wadenvik H. A transforming growth factor-beta1-mediated bystander immune suppression could be associated with remission of chronic idiopathic thrombocytopenic purpura. Ann Hematol. 2000;79:507–13.

    Article  PubMed  CAS  Google Scholar 

  30. Hinke V, Seck T, Clanget C, Scheidt-Nave C, Ziegler R, Pfeilschifter J. Association of transforming growth factor-β1 (TGFβ1) T29 → C gene polymorphism with bone mineral density (BMD), changes in BMD, and serum concentrations of TGF-β1 in a population-based sample of postmenopausal German women. Calcif Tissue Int. 2001;69:315–20.

    Article  PubMed  CAS  Google Scholar 

  31. Anandarajah AP. Role of RANKL in bone diseases. Trends Endocrinol Metab. 2009;20:88–94.

    Article  PubMed  CAS  Google Scholar 

  32. Lacey DL, Timms E, Tan H-L, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulated osteoclast differentiation and activation. Cell. 1998;93:165–76.

    Article  PubMed  CAS  Google Scholar 

  33. Geusens P. Emerging treatments for postmenopausal osteoporosis–focus on denosumab. Clin Interv Aging. 2009;4:241–50.

    Article  PubMed  CAS  Google Scholar 

  34. Theoleyre S, Wittrant Y, Kwan Tat S, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004;15:457–76.

    Article  PubMed  CAS  Google Scholar 

  35. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANKL ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 2003;111:1221–30.

    PubMed  CAS  Google Scholar 

  36. D’Amelio P, Grimaldi A, Di Bella S, Brianza SZM, Cristofaro MA, Tamoneet C, et al. Estrogen deficiency increases osteolcastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone. 2008;43:92–100.

    Article  PubMed  CAS  Google Scholar 

  37. Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest. 2006;116:1186–94.

    Article  PubMed  CAS  Google Scholar 

  38. Abrahamsen B, Bonnevie-Nielsen V, Ebbesen EN, Gram J, Beck-Nielsen H. Cytokines and bone loss in a 5-year longitudinal study–Hormone replacement therapy suppresses serum soluble interleukin-6 receptor and increases interleukin-1–receptor antagonist: The Danish Osteoporosis Prevention Study. J Bone Miner Res. 2000;15:1545–54.

    Article  PubMed  CAS  Google Scholar 

  39. Cohen-Solal ME, Graulet AM, Denne MA, Gueris J, Baylink D, De Vernejoul MC. Peripheral monocyte culture supernatants of menopausal women can induce bone resorption: involvement of cytokines. J Clin Endocrinol Metab. 1993;77:1648–53.

    Article  PubMed  CAS  Google Scholar 

  40. Rogers A, Eastell R. Effects of estrogen therapy of postmenopausal women on cytokines measured in peripheral blood. J Bone Miner Res. 1998;13:1577–86.

    Article  PubMed  CAS  Google Scholar 

  41. Rogers A, Eastell R. Circulating osteoprotegerin and receptor activator for nuclear factor κB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab. 2005;90:6323–31.

    Article  PubMed  CAS  Google Scholar 

  42. Fernandez-Garcia D, Munoz-Torres M, Mezquita-Raya P, de la Higuera M, Alonso G, Reyes-Garcia R, Ochoa AS, Ruiz-Requena ME, Dios Luna J, Escobar-Jimenez F. Effects of raloxifene therapy on circulating osteoprotegerin and RANK ligand levels in post-menopausal osteoporosis. J Endocrinol Invest. 2008;31:416–21.

    PubMed  CAS  Google Scholar 

  43. Reyes-Garcia R, Munoz-Torres M, Garcia DF, Mezquita-Raya P, Garcia Salcedo JA, de Dios Luna J. Effects of alendronate treatment on serum levels of osteoprotegerin and total receptor activator of nuclear factor κB in women with postmenopausal osteoporosis. Menopause, 2010;17:140–144.

    Google Scholar 

  44. Gao Y, Grassi F, Robbie Ryan M, Terauchi M, Page K, Yang X, Weitzmann MN, Pacifici R. IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 2007;117:122–32.

    Article  PubMed  CAS  Google Scholar 

  45. Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23:279–302.

    Article  PubMed  CAS  Google Scholar 

  46. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21:115–37.

    Article  PubMed  CAS  Google Scholar 

  47. Pacifici R. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res. 1996;11:1043–51.

    Article  PubMed  CAS  Google Scholar 

  48. Gowen M, Wood DD, Ihrie EJ, McGuire MK, Russell RG. An interleukin-1 like factor stimulates bone resorption in vitro. Nature. 1983;306:378–80.

    Article  PubMed  CAS  Google Scholar 

  49. Horwood NJ, Elliott J, Martin TJ, Gillespie MT. IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol. 2001;166:4915–21.

    PubMed  CAS  Google Scholar 

  50. Yoshimatsu M, Kitaura H, Fujimura Y, Eguchi T, Kohara H, Morita Y, et al. IL-12 inhibits TNF-α induced osteoclastogenesis via a T cell-independent mechanism in vivo. Bone. 2009;45:1010–6.

    Article  PubMed  CAS  Google Scholar 

  51. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292:490–5.

    Article  PubMed  CAS  Google Scholar 

  52. Gao Y, Qian W, Dark K, Toraldo G, Lin ASP, Guldberg RE, Flavell RA, Weitzmann MN, Pacifici R. Estrogen prevents bone loss through transforming growth factor beta signaling in T cells. Proc Natl Acad Sci USA. 2004;101:16618–23.

    Article  PubMed  CAS  Google Scholar 

  53. Xu LX, Kukita T, Kukita A, Otsuka T, Niho Y, Iijima T. Interleukin-10 selectively inhibits osteoclastogenesis by inhibiting differentiation of osteoclast progenitors into preosteoclast-like cells in rat bone marrow culture system. J Cell Physiol. 1995;165:624–9.

    Article  PubMed  CAS  Google Scholar 

  54. Kumru S, Yildiz FM, Gurates B, Godekmerdan A, Kutlu S, Yilmaz B. Effects of raloxifene and hormone replacement therapy on serum Th2 and Th3 type cytokine concentrations in healthy postmenopausal women: a randomized controlled trial. Arch Gynecol Obstet. 2008;277:489–93.

    Article  PubMed  CAS  Google Scholar 

  55. Walsh BW, Cox DA, Sashegyi A, Dean RA, Tracy RP, Anderson PW. Role of Tumor Necrosis Factor-α and Interleukin-6 in the effects of hormone replacement therapy and Raloxifene on C-Reactive Protein in Postmenopausal Women. Am J Cardiol. 2001;88:825–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tiffani Davis (phlebotomist), Natver Patel, and Sreus AG Naidu for coordinating with the clinical study. This project was funded by N-terminus Research Laboratory, Pomona, CA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Satyanarayan Naidu.

Additional information

Responsible Editor: Ian Ahnfelt-Rønne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharadwaj, S., Naidu, T.A.G., Betageri, G.V. et al. Inflammatory responses improve with milk ribonuclease-enriched lactoferrin supplementation in postmenopausal women. Inflamm. Res. 59, 971–978 (2010). https://doi.org/10.1007/s00011-010-0211-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0211-7

Keywords

Navigation