Skip to main content

Advertisement

Log in

Immune depression in musculoskeletal trauma

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

The immune responses after musculoskeletal trauma are physiological reactions of the organism to restore homeostasis. An imbalance between the early systemic inflammatory response syndrome and the later compensatory anti-inflammatory response syndrome may be responsible for organ dysfunction and increased susceptibility to infections. Cytokines are known to be integral components of the immune response, and the balance or imbalance of the different cytokines partly controls the clinical course in the patients. The major pro-inflammatory cytokines include tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), IL-6, and IL-8. These cytokines are predominantly produced by monocytes and macrophages, they mediate overlapping effects, and their actions can be additive. TNF-α and IL-1β are early regulators of the immune response, and both induce the release of secondary pro-inflammatory cytokines. IL-10 is an anti-inflammatory cytokine which reduces the synthesis of pro-inflammatory mediators. The extent of traumatic damage correlates with the immunological changes and determines a graded depression of leucocytes to express cytokines on edotoxin exposure. Correspondingly, it has become clinically evident that in unstable traumatised patients, the recommendation today is damage control orthopaedics, i.e. initial stabilisation of long bone fractures by external fixation followed by definitive stabilisation at about 1 week.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ege T, Us MH, Sungun M, Duran E. Cytokine response in lower extremity ischemia/reperfusion. J Int Med Res. 2004;32:124–31.

    CAS  PubMed  Google Scholar 

  2. Goris RJA. Local versus systemic inflammatory responses in shock, trauma and sepsis. Int J Intensive Care. 1999;6:81–92.

    Google Scholar 

  3. Huda R, Solanki DR, Mathru M. Inflammatory and redox responses to ischaemia/reperfusion in human skeletal muscle. Clin Sci (Lond). 2004;107:497–503.

    Article  CAS  Google Scholar 

  4. Seekamp A, Jochum M, Ziegler M. Cytokines and adhesion molecules in elective and accidental trauma-related ischaemia/reperfusion. J Trauma. 1998;44:874–82.

    Article  CAS  PubMed  Google Scholar 

  5. Walley KR, Lukacs NW, Standiford TJ. Balance of inflammatory cytokines related to severity and mortality of murine sepsi. Infect Immun. 1996;64:4733–8.

    CAS  PubMed  Google Scholar 

  6. Remick DG, Newcomb DE, Bolgos GL, Call DR. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide versus cecal ligation and puncture. Shock. 2000;13:110–6.

    Article  CAS  PubMed  Google Scholar 

  7. Remick DG, Bolgos GR, Siddiqui J. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock. 2002;17:463–7.

    Article  PubMed  Google Scholar 

  8. Rankin JA. Biological mediators of acute inflammation. AACN Clin Issues. 2004;15:3–17.

    Article  PubMed  Google Scholar 

  9. Abraham E, Jesmok G, Tuder R. Contribution of tumor necrosis factor-alpha to pulmonary cytokine expression and lung injury after hemorrhage and resuscitation. Crit Care Med. 1995;23:1319–26.

    Article  CAS  PubMed  Google Scholar 

  10. Waydhas C, Nast-Kolb D, Jochum M. Inflammatory mediators, infection, sepsis and multiple organ failure after severe trauma. Arch Surg. 1992;127:460–4.

    CAS  PubMed  Google Scholar 

  11. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138–50.

    Article  CAS  PubMed  Google Scholar 

  12. Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediate, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364:545–8.

    Article  PubMed  Google Scholar 

  13. Rensing H, Bauer M. Multiple organ failure. Mechanisms, clinical manifestation and therapeutical strategies. Anaesthetist. 2001;50:819–41.

    Article  CAS  Google Scholar 

  14. Talmor M, Hydo L, Barie PS. Relationship of systemic inflammatory response syndrome to organ dysfunction, length of stay, and mortality in critical surgical illness. Arch Surg. 1999;134:81–7.

    Article  CAS  PubMed  Google Scholar 

  15. Roumen RM, Hendriks T, van der Ven-Jongekrijg J. Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann Surg. 1993;218:769–76.

    Article  CAS  PubMed  Google Scholar 

  16. Dinarello CA. Proinflammatory cytokines. Chest 118 2000; 118:503–508.

  17. Aggarwal BB. Signalling pathays of the TNF superfamily: a double edged sword. Nat Rev Immunol. 2003;3:745–56.

    Article  CAS  PubMed  Google Scholar 

  18. Zingarelli B, Squadrito F, Altavilla D, Calapai G, Di Rosa M, Caputi AP. Role of tumor necrosis factor-alpha in acute hypovolemic hemorrhagic shock in rats. Am J Physiol. 1994;266:H1512–5.

    CAS  PubMed  Google Scholar 

  19. Rhee P, Waxman K, Clark L, Kaupke CJ, Vaziri ND, Tominaga G, et al. Tumor necrosis factor and monocytes are released during hemorrhagic shock. Resuscitation. 1993;25:249–55.

    Article  CAS  PubMed  Google Scholar 

  20. Stylianos S, Wakabayashi G, Gelfand JA, Harris BH. Experimental hemorrhage and blunt trauma do not increase circulating tumor necrosis factor. J Trauma. 1991;31:1063–7.

    CAS  PubMed  Google Scholar 

  21. Endo S, Inada K, Yamada Y. Plasma endotoxin and cytokine concentrations in patients with hemorrhagic shock. Crit Care Med. 1994;22:949–55.

    Article  CAS  PubMed  Google Scholar 

  22. Foex BA, Lamb WR, Roberts TE. Early cytokine response to multiple injury. Injury. 1993;24:373–6.

    Article  CAS  PubMed  Google Scholar 

  23. Bone RC, Balk RA, Cerra FB. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.

    Article  CAS  PubMed  Google Scholar 

  24. Schlag G, Redl H, Bahrami S. Trauma and cytokines. In: Schlag G, Redl H, Traber DL (eds) Shock, sepsis, and organ failure. Springer, Heidelberg, 1993; 128–155.

  25. Ferguson KL, Taheri P, Rodriguez J. Tumor necrosis factor activity increases in the early response to trauma. Acad Emerg Med. 1997;4:1035–40.

    Article  CAS  PubMed  Google Scholar 

  26. Rabinovici R, John R, Esser KM. Serum tumor necrosis factor-alpha profile in trauma patients. J Trauma. 1993;35:698–702.

    CAS  PubMed  Google Scholar 

  27. Yao YM, Redl H, Bahrami S, Schlag G. The inflammatory basis of trauma/shock- associated multiple organ failure. Inflamm Res. 1998;47:201–10.

    Article  CAS  PubMed  Google Scholar 

  28. Martin C, Boisson C, Haccoun H. Patterns of cytokine evolution (tumor necrosis factor alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit Care Med. 1997;25:1813–9.

    Article  CAS  PubMed  Google Scholar 

  29. Suter PM, Suter S, Girardin E, Roux-Lombard P, Grau GE, Dayer JM. High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon, and elastase, in patients with adult respiratory distress syndrome after trauma, shock, or sepsis. Am Rev Respir Dis. 1992;145:1016–22.

    CAS  PubMed  Google Scholar 

  30. Nast-Kolb D, Waydhas C, Gippner-Steppert C. Indicators of the posttraumatic inflammatory response correlate with organ failure in patients with multiple injuries. J Trauma. 1994;42:446–54.

    Article  Google Scholar 

  31. Partrick DA, Moore FA, Moore EE. The inflammatory profile of interleukin-6, interleukin-8, and soluble intercellular adhesion molecule-1 in postinjury multiple organ failure. Am J Surg. 1996;172:425–31.

    Article  CAS  PubMed  Google Scholar 

  32. Ensenauer R, Püuttmann M, Quintel M. Comparison of serum phospholipase A2, polymorphonuclear granulocyte elastase, C-reactive protein and serum amyloid A with the APACHE II score in the prognosis of multiple injured patients. Clin Investig. 1994;72:843–9.

    Article  CAS  PubMed  Google Scholar 

  33. Cas MT, Coen D, Simic D. Serum amyloid A protein in the prediction of postburn complications and fatal outcome in patients with severe burns. Eur J Clin Biochem. 1996;34:1–35.

    Google Scholar 

  34. Dehne MG, Sablotzki A, Hoffmann A. Alterations of acute phase reaction and cytokine production in patients following severe burn injury. Burns. 2002;28:535–42.

    Article  PubMed  Google Scholar 

  35. Spies M, Wolf SE, Barrow RE. Modulation of types I and II acute phase reactants with insulin-like growth factor-1/binding protein-3 complex in severely burned children. Crit Care Med. 2002;30:83–8.

    Article  CAS  PubMed  Google Scholar 

  36. Biffl WL, Moore EE, Moore FA, Peterson VM. Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann Surg. 1996;224:647–64.

    Article  CAS  PubMed  Google Scholar 

  37. Pape HC, Tsukamoto T, Kobbe P. Assessment of the clinical course with inflammatory parameters. Injury. 2007;38:1358–64.

    Article  PubMed  Google Scholar 

  38. Ensenauer R, Püuttmann M, Quintel M. Comparison of serum phospholipase A2, polymorphonuclear granulocyte elastase, C-reactive protein and serum amyloid A with the APACHE II score in the prognosis of multiple injured patients. Clin Invest. 1994;72:843–9.

    Article  CAS  Google Scholar 

  39. Williams MA, Cave CM, Quaid G, Solomkin JAS. Chemokine regulation of neutrophil function in surgical inflammation. Arch Surg. 1999;134:1360–6.

    Article  CAS  PubMed  Google Scholar 

  40. Stegmaier JC, Kirchhoff C, Bogner V, Matzl M, Kanzl K-G, Mutschler W, et al. Dynamics of neutrophilic NF-kB translocation in relation to IL-8 mRNA expression after major trauma. Inflamm Res. 2008;57:547–54.

    Article  CAS  PubMed  Google Scholar 

  41. Miller J, Cohen AB, Nagao S. Elevated levels of NAP-1/interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality. Am Rev Respir Dis. 1992;146:427–31.

    CAS  PubMed  Google Scholar 

  42. DeLong WG Jr, Born CT. Cytokines in patients with polytrauma. Clin Orthop Relat Res. 2004;422:57–65.

    Article  PubMed  Google Scholar 

  43. Donnelly SC, Strieter RM, Kunkel SL. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet. 1993;341:643–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bone BC. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med. 1996;125:680–7.

    CAS  PubMed  Google Scholar 

  45. Mannick JA, Rodrick ML, Lederer JA. The immunologic response to injury. J Am Coll Surg. 2001;193:237–44.

    Article  CAS  PubMed  Google Scholar 

  46. Mokart D, Capo C, Blanche JL. Early postoperative compensatory anti-inflammatory response syndrome is associated with septic complications after major surgical trauma in patients with cancer. Br J Surg. 2002;89:1450–6.

    Article  CAS  PubMed  Google Scholar 

  47. Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996;24:1125–8.

    Article  CAS  PubMed  Google Scholar 

  48. Tilg H, Trehu E, Atkins MB, Dinarello CA, Mier JW. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood. 1994;83:113–8.

    CAS  PubMed  Google Scholar 

  49. Sheeran P, Hall GM. Cytokines in anaesthesia. Br J Anaesth. 1997;78:201–19.

    CAS  PubMed  Google Scholar 

  50. Collighan N, Giannoudis PV, Kourgeraki O. Interleukin 13 and inflammatory markers in human sepsis. Br J Surg. 2004;91:762–8.

    Article  CAS  PubMed  Google Scholar 

  51. Giannoudis PV, Smith RM, Perry SL. Immediate IL-10 expression following major orthopaedic trauma: relationship to anti-inflammatory response and subsequent development of sepsis. Intensive Care Med. 2000;26:1076–81.

    Article  CAS  PubMed  Google Scholar 

  52. Lyons A, Kelly JL, Rodrick ML. Major injury induces increased production of interleukin-10 by cells of the immune system with a negative impact on resistance to infection. Ann Surg. 1997;226:450–8.

    Article  CAS  PubMed  Google Scholar 

  53. Klava A, Windsor AC, Farmery SM, Woodhouse LF, Reynolds JV, Ramsden CW, et al. Interleukin-10. A role in the development of postoperative immunosuppression. Arch Surg. 1997;132:425–9.

    CAS  PubMed  Google Scholar 

  54. Wichmann MW, Ayala A, Chaudry IH. Severe depression of host immune functions following closed-bone fracture, soft-tissue trauma, and hemorrhagic shock. Crit Care Med. 1998;26:1372–8.

    Article  CAS  PubMed  Google Scholar 

  55. Moore FA. The role of the gastrointestinal tract in postinjury multiple organ failure. Am J Surg. 1999;178:449–53.

    Article  CAS  PubMed  Google Scholar 

  56. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med. 1993;119:771–8.

    CAS  PubMed  Google Scholar 

  57. Michie HR, Manogue KR, Spriggs DR. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med. 1988;318:1481–6.

    Article  CAS  PubMed  Google Scholar 

  58. Wright SD, Ramos RA, Tobias PS. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249:1431–3.

    Article  CAS  PubMed  Google Scholar 

  59. Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and Toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol. 2002;165:3541–4.

    Google Scholar 

  60. Schwandne R, Dziarski R, Wesche H. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem. 1999;274:17406–9.

    Article  Google Scholar 

  61. Dimofte G, Alexander A, Carlson G. TNF alpha and IL-6 involvement in surgical trauma. II. In vitro cytokine production. Rev Med Chir Soc Med Nat Iasi. 2001;105:493–8.

    CAS  PubMed  Google Scholar 

  62. Hassett S, Moynagh P, Reen D. TNF-alpha is a mediator of the anti-inflammatory response in a human neonatal model of the non-septic shock syndrome. Pediatr Surg Int. 2006;22:24–30.

    Article  CAS  PubMed  Google Scholar 

  63. Ertel W, Kremer JP, Kenney J. Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood. 1995;85:1341–4.

    CAS  PubMed  Google Scholar 

  64. Bulger EM, Cuschieri, Warner K, Maier RV. Hypertonic resuscitation modulates the inflammatory response in patients with traumatic hemorrhagic shock. Ann Surg. 2007; 245:635–641.

  65. Nau R, Eiffert H. Modulation of release of proinflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome in sepsis and meningitis. Clin Microbiol Rev. 2002;15:95–110.

    Article  CAS  PubMed  Google Scholar 

  66. Huynh T, Baker CC, Bracey LW, Lemasters JJ. Adaptive Kupffer cell alterations after fracture trauma in rats. Am J Physiol. 1997;272:G1457–62.

    CAS  PubMed  Google Scholar 

  67. Reikerås O, Sun J, Wang JE, Aasen AO. Postoperative serum attenuates LPS-induced release of TNF-alpha in orthopaedic surgery. J Orthop Res. 2007;25:1395–400.

    Article  PubMed  CAS  Google Scholar 

  68. Flohé SB, Bangen JM, Flohé S. Origin of immunomodulation after soft tissue trauma: potential involvement of extracellular heat-shock proteins. Shock. 2007;27:494–502.

    Article  PubMed  Google Scholar 

  69. Rifkin IR, Leadbetter EA, Busconi L. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev. 2005;204:27–42.

    Article  CAS  PubMed  Google Scholar 

  70. Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol. 2004;172:20–4.

    CAS  PubMed  Google Scholar 

  71. Kitchens RL, Thompson PA. Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J Endotoxin Res. 2005;11:225–9.

    CAS  PubMed  Google Scholar 

  72. Dziarski R. Peptidoglycan recognition proteins (PGRPs). Mol Immunol. 2004;40:877–86.

    Article  CAS  PubMed  Google Scholar 

  73. Giannoudis PV, Smith RM, Bellamy MC, Morrison JF, Dickson RA, Guillou PJ. Stimulation of the inflammatory system by reamed and unreamed nailing of femoral fractures: an analysis of the second hit. J Bone Joint Surg Br. 1999;81:356–61.

    Article  CAS  PubMed  Google Scholar 

  74. Lee CC, Marill KA, Carter WA, Crupi RS. A current concept of trauma-induced multiorgan failure. Ann Emerg Med. 2001;38:170–6.

    Article  CAS  PubMed  Google Scholar 

  75. Pape HC, Auf’m’kolk M, Paffrath T, Regel G, Sturm JA, Tscherne H. Primary intramedullary femur fixation in multiple trauma patients with associated lung contusion: a cause of posttraumatic ARDS? J Trauma. 1993;34:540–7.

    Article  CAS  PubMed  Google Scholar 

  76. Tscherne H, Regel G, Pape HC, Pohlemann T, Krettek C. Internal fixation of multiple fractures in patients with polytrauma. Clin Orthop Relat Res. 1998;347:62–78.

    Google Scholar 

  77. Pape HC, Gruner A, Wittke M. Impact of the method of initial stabilizationof femoral fractures in polytrauma patients at risk for complications (borderline patients)––a prospective randomized controlled analysis. Ann Surg. 2007;246:491–9.

    Article  PubMed  Google Scholar 

  78. Waydhas C, Nast-Kolb D, Trupka A, et al. Posttraumatic inflammatory response, secondary operations and late multiple organ failure. J Trauma. 1996;40:624–31.

    Article  CAS  PubMed  Google Scholar 

  79. Pape HC, Stalp M, van Griensven M. Optimal timing for secondary surgery in polytrauma patitens: an evaluation of 4314 seriously injury cases. Chirurg. 1999;70:1287–93.

    Article  CAS  PubMed  Google Scholar 

  80. Reikerås O, Sun J, Krohn CD. Reduced capacity of whole blood lecucocytes to express tumor necrosis factor α and interleukin-10 following major orthopaedic surgery. Eur Surg Res. 2005;37:210–5.

    Article  CAS  Google Scholar 

  81. Giannoudis PV. Current concepts of the inflammatory response after major trauma: An update. Injury. 2003;34:397–404.

    CAS  PubMed  Google Scholar 

  82. Mimasaka S, Funayama M, Hashiyada M, Nata M, Tsunenari S. Significance of levels of IL-6 and IL-8 after trauma: A study of 11 cytokines post-mortem using multiplex immunoassay. Injury. 2007;38:1047–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Reikerås.

Additional information

Responsible Editor: A. Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reikerås, O. Immune depression in musculoskeletal trauma. Inflamm. Res. 59, 409–414 (2010). https://doi.org/10.1007/s00011-010-0167-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0167-7

Keywords

Navigation