Skip to main content

Luteolin protects rat PC 12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keapl-Nrf2-ARE pathway

  • Conference paper
Neuropsychiatric Disorders An Integrative Approach

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 72))

Abstract

Oxidative stress is central to neuronal damage in neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. In consequence, activation of the cerebral oxidative stress defence is considered as a promising strategy of therapeutic intervention. Here we demonstrate that the flavone luteolin confers neuroprotection against oxidative stress via activation of the nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor central to the maintenance of the cellular redox homeostasis. Luteolin protects rat neural PC12 and glial C6 cells from N-methyl-4-phenyl-pyridinium (MPP+) induced toxicity in vitro and effectively activates Nrf2 as shown by ARE-reporter gene assays. This protection critically depends on the activation of Nrf2 since downregulation of Nrf2 by shRNA completely abrogates the protection of luteolin in vitro. Furthermore, the neuroprotective effect of luteolin is abolished by the inhibition of the luteolininduced ERK1 /2-activation. Our results highlight the relevance of Nrf2 for neural cell survival conferred by flavones. In particular, we identified luteolin as a promising lead for the search of orally available, blood brain barrier permeable compounds to support the therapy of neurodegenerative disorders.

Authors contributed equally to the study

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Wahab MH (2005) Potential neuroprotective effect of t-butylhydroquinone against neurotoxicity — induced by l-methyl-4-(2′methylphenyl)-l,2,3,6-tetrahydropyridine (2′-methyl-MPTP) in mice. J Biochem Mol Toxicol 19: 32–41

    Article  PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10 Suppl: S18–S25

    Article  PubMed  Google Scholar 

  • Arora A, Nair MG, Strasburg GM (1998) Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Free Radic Biol Med 24: 1355–1363

    Article  PubMed  CAS  Google Scholar 

  • Boerboom A-MJF, Vermeulen M, van der Woude H, Bremer BI, Lee-Hilz YY, Kampman E, van Bladeren PJ, Rietjens IMCM, Aarts JMMJG (2006) Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity. Biochem Pharmacol 72: 217–226

    Article  PubMed  CAS  Google Scholar 

  • Burton NC, Kensler TW, Guilarte TR (2006) In vivo modulation of the Parkinsonian phenotype by Nrf2. NeuroToxicology 27: 1094–1100

    Article  PubMed  CAS  Google Scholar 

  • Dajas F, Rivera-Megret F, Blasina F, Arredondo F, Abin-Carriquiry JA, Costa G, Echeverry C, Lafon L, Heizen H, Ferreira M, Morquio A (2003) Neuroprotection by flavonoids. Braz J Med Biol Res 36: 1613–1620

    Article  PubMed  CAS  Google Scholar 

  • Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT (2001) Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. NeuroReport 12: 3871–3875

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease. An empirical comparison with the phenomenology of the disease in man. J Neural Transm 103: 987–1041

    Article  PubMed  CAS  Google Scholar 

  • Götz ME, Kiinig G, Riederer P, Youdim MBH (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Therapeut 63: 37–122

    Article  Google Scholar 

  • Götz ME, Double K, Gerlach M, Youdim MBH, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann NY Acad Sci 1012: 193–208

    Article  PubMed  Google Scholar 

  • Hara H, Ohta M, Ohta K, Kuno S, Adachi T (2003) Increase of antioxidative potential by tert-butylhydroquinone protects against cell death associated with 6-hydroxydopamine-induced oxidative stress in neuroblastoma SH-SY5Y cells. Mol Brain Res 119: 125–131

    Article  PubMed  CAS  Google Scholar 

  • Haridas V, Hanausek M, Nishimura G, Soehnge H, Gaikwad A, Narog M, Spears E, Zoltaszek R, Walaszek Z, Gutterman JU (2004) Triterpenoid electrophiles (avicins) activate the innate stress response by redox regulation of a gene battery. J Clin Invest 113: 65–73

    Article  PubMed  CAS  Google Scholar 

  • Im H-I, Joo WS, Nam E, Lee ES, Hwang YJ, Kim YS (2005) Baicalein prevents 6-hydroxydopamine-induced dopaminergic dysfunction and lipid peroxidation in mice. J Pharmacol Sci 98: 185–189

    Article  PubMed  CAS  Google Scholar 

  • Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radie Biol Med 30: 433–446

    Article  CAS  Google Scholar 

  • Jakel RJ, Kern JT, Johnson DA, Johnson JA (2005) Induction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicol Sci 87: 176–186

    Article  PubMed  CAS  Google Scholar 

  • Kawanishi S, Oikawa S, Murata M (2005) Evaluation for safety of antioxidant chemopreventive agents. Antioxid Redox Signal 7: 1728–1739

    Article  PubMed  CAS  Google Scholar 

  • Langsten JW, Ballard P, Tetrad JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980

    Article  Google Scholar 

  • Langsten JW, Irwin I, Langston EB, Forno LS (1984) Pargyline prevents MPTP-induced parkinsonism in primates. Science 225: 1480–1482

    Article  Google Scholar 

  • Lee HI, Noh YH, Lee DY, Kim Y, Kim KY, Chung YH, Lee WB, Kim SS (2005b) Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol 84: 897–905

    Article  PubMed  CAS  Google Scholar 

  • Lee J-M, Moehlenkamp JD, Hanson JM, Johnson JA (2001) Nrf2-dependent activation of the antioxidant responsive element by tert-butylhydroquinone is independent of oxidative stress in IMR-32 human neuroblastoma cells. Biochem Biophys Res Commun 280: 286–292

    Article  PubMed  CAS  Google Scholar 

  • Lee J-M, Calkins M, Chan K, Kan YW, Johnson JA (2003a) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278: 12029–12038

    Article  PubMed  CAS  Google Scholar 

  • Lee J-M, Shih AY, Murphy TH, Johnson JA (2003b) NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278: 37948–37956

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37: 139–143

    PubMed  CAS  Google Scholar 

  • Lee JM, Li J, Johnson DA, Stein TD, Kraft AD, Calkins MI, Jakel RJ, Johnson JA (2005a) Nrf2, a multi-organ protector ? FASEB J 19: 1061–1066

    Article  PubMed  Google Scholar 

  • Lee-Hilz YY, Boerboom A-MJF, Westphal AH, van Berkel WJH, Aarts JMMJG, Rietjens IMCM (2006) Pro-oxidant activity of flavonoids induces EpRE-mediated gene expression. Chem Res Toxicol 19: 1499–1505

    Article  PubMed  CAS  Google Scholar 

  • Lestienne P, Nelson J, Riederer P, Jellinger K, Reichmann H (1990) Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J Neurochem 55: 1810–1812

    Article  PubMed  CAS  Google Scholar 

  • Manach C, Scalbert C, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79: 727–747

    PubMed  CAS  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MBH (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (—)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 89: 1555–1569

    Article  Google Scholar 

  • Manfredi G, Xu Z (2005) Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 5: 77–87

    Article  PubMed  CAS  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827: 65–75

    Article  PubMed  CAS  Google Scholar 

  • Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28: 57–87

    Article  PubMed  CAS  Google Scholar 

  • Nagao A, Seki M, Kobayashi H (1999) Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem 63: 1787–1790

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Huang HC, Pickett CB (2000) Transcriptional regulation of the antioxidant response element. J Biol Chem 275: 15466–15473

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43: 233–260

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Nioi P, Yang CS, Pickett CB (2005) Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keapl. J Biol Chem 280: 32485–32492

    Article  PubMed  CAS  Google Scholar 

  • Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40: 721–729

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, Tieu K, Perier C, Vila M (2004) MPTP as a mitochondrial neurotoxic model of parkinson’s disease. J Bioenerg Biomembr 36: 375–379

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7: 685–693

    Article  PubMed  CAS  Google Scholar 

  • Reichmann H, Riederer P, Seufert S (1990) Disturbances of the respiratory chain in brain from patients with Parkinson’s disease. Mov Disord 5: 28

    Google Scholar 

  • Riederer P, Sofic’ E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54: 823–827

    Article  PubMed  CAS  Google Scholar 

  • Shen G, Hebbar V, Nair S, Xu C, Li W, Lin W, Keum Y-S, Han J, Gallo MA, Kong A-NT (2004) Regulation of Nrf2 transactivation domain activity. J Biol Chem 279: 23052–23060

    Article  PubMed  CAS  Google Scholar 

  • Shih AY, Li P, Murphy TH (2005) A small-molecule-inducible Nrf2mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25: 10321–10335

    Article  PubMed  CAS  Google Scholar 

  • Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of parkinsonism. Ann Neurol 44: S160–S166

    PubMed  CAS  Google Scholar 

  • Tanner CM (1989) The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci 12: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langsten JW (1999) Parkinson disease in twins: an etiologic study. JAMA 281: 341–346

    Article  PubMed  CAS  Google Scholar 

  • van Muiswinkel FL, Kuiperij HB (2005) The Nrf2-ARE Signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord 4: 267–281

    Article  PubMed  Google Scholar 

  • Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keapl sensor modified by inducers. Proc Natl Acad Sci USA 101: 2040–2045

    Article  PubMed  CAS  Google Scholar 

  • Wright AF, Jacobson SG, Cideciyan AV, Roman AJ, Shu X, Vlachantoni D, Mclnnes RR, Riemersma RA (2004) Lifespan and mitochondrial control of neurodegeneration. Nat Genet 36: 1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5: 863–873

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Wruck, C.J. et al. (2007). Luteolin protects rat PC 12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keapl-Nrf2-ARE pathway. In: Gerlach, M., Deckert, J., Double, K., Koutsilieri, E. (eds) Neuropsychiatric Disorders An Integrative Approach. Journal of Neural Transmission. Supplementa, vol 72. Springer, Vienna. https://doi.org/10.1007/978-3-211-73574-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73574-9_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73573-2

  • Online ISBN: 978-3-211-73574-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics