Skip to main content
Log in

Neutrophil generation of inflammatory precursors is not modulated by docosahexaenoic acid

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

It is believed that correction of membrane fatty acid deficiency in cystic fibrosis (CF) downregulates the synthesis of proinflammatory mediators. We tested the hypothesis that an increase of the proportion of docosahexaenoic acid (DHA) in the membrane in vitro changes the neutrophil response to Pseudomonas aeruginosa lipopolysaccharide (LPS).

Results

Treatment with DHA increased the secretion of interleukin(IL)-1|*alpha*| by CF neutrophils, but the secretion of other cytokines, CD11b expression, and arachidonic acid (AA) release were not affected either in CF or control (CT) neutrophils. Both with and without DHA, only one out of eight CF neutrophils responded to LPS with an increase of released AA, while five out of seven CT cells released more AA (CF vs. CT P < 0.05 by Fisher test).

Conclusions

These results indicate that in neutrophils the beneficial effects of DHA on immune response are not directly related to the generation of proinflammatory precursors, and suggest that in CF the lower neutrophil AA generation in response to activation could cause insufficient production of lipid mediators involved in the resolution of lung inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

CF:

Cystic fibrosis

CT:

Control

cPLA2:

Cytosolic phospholipase A2

DHA:

Docosahexaenoic acid

FBS:

Fetal bovine serum

IL-:

Interleukin

PBS:

Phosphate-buffered saline

PUFA:

Polyunsaturated fatty acids

LPS:

Pseudomonas aeruginosa lipopolysaccharide

References

  1. Schwartz J. Role of polyunsaturated fatty acids in lung disease. Am J Clin Nutr. 2000;71:393S–6S.

    PubMed  CAS  Google Scholar 

  2. De Pablo MA, Alvarez de Cienfuegos G. Modulatory effects of dietary lipids on immune system functions. Immunol Cell Biol. 2000;78:31–9.

    Article  PubMed  Google Scholar 

  3. Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995;151:1075–82.

    PubMed  CAS  Google Scholar 

  4. Berger M. Inflammation in cystic fibrosis: a vicious cycle that does more harm than good? Clin Rev Allergy. 1991;9:119–42.

    PubMed  CAS  Google Scholar 

  5. Freedman SD, Blanco PG, Zaman MM, Shea JC, Ollero M, Hopper IK, et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med. 2004;350:560–9.

    Article  PubMed  CAS  Google Scholar 

  6. Strandvik B, Gronowitz E, Enlund F, Martinsson T, Wahlström J. Essential fatty acid deficiency in relation to genotype in patients with cystic fibrosis. J Pediat. 2001;139:650–5.

    Article  PubMed  CAS  Google Scholar 

  7. Strandvik B, Brönnegård M, Gilljam H, Carlstedt-Duke J. Relation between defective regulation of arachidonic acid release and symptoms in cystic fibrosis. Scand J Gastroenterol Suppl. 1988;143:1–4.

    Article  PubMed  CAS  Google Scholar 

  8. Bhura Bandali F, Suh M, Man SFP, Clandinin MT. The DF508 mutation in the cystic fibrosis transmembrane conductance regulator alters control of essential fatty acid utilization in epithelial cells. J Nutr. 2000;130:2870–5.

    PubMed  CAS  Google Scholar 

  9. Keicher U, Koletzko B, Reinhardt D. Omega-3 fatty acids suppress the enhanced production of 5-lipoxygenase products from polymorph neutrophil granulocytes in cystic fibrosis. Eur J Clin Invest. 1995;25:915–9.

    Article  PubMed  CAS  Google Scholar 

  10. Panchaud A, Sauty A, Kernen Y, Decosterd LA, Buclin T, Boulat O, et al. Biological effects of a dietary omega-3 polyunsaturated fatty acids supplementation in cystic fibrosis patients: a randomized, crossover placebo-controlled trial. Clin Nutr. 2006;25:418–27.

    Article  PubMed  CAS  Google Scholar 

  11. Kuehl FA, Egan RW. Prostaglandins, arachidonic acid, and inflammation. Science. 1980;210:978–84.

    Article  PubMed  CAS  Google Scholar 

  12. Del Castillo IC, Alvarez JG, Freedman SD, Ollero M, Claros L, Song JC, et al. Docosahexaenoic acid selectively augments muscarinic stimulation of epithelial Cl-secretion. J Surg Res. 2003;110:338–43.

    Article  PubMed  CAS  Google Scholar 

  13. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89.

    PubMed  CAS  Google Scholar 

  14. DiPersio JF, Billing P, Williams R, Gasson JC. Human granulocyte-macrophage colony-stimulating factor and other cytokines prime human neutrophils for enhanced arachidonic acid release and leukotriene B4 synthesis. J Immunol. 1988;140:4315–22.

    PubMed  CAS  Google Scholar 

  15. Chilton FH, Connell TR. 1-ether-linked phosphoglycerides. Major endogenous sources of arachidonate in the human neutrophil. J Biol Chem. 1988;263:5260–5.

    PubMed  CAS  Google Scholar 

  16. Takenawa T, Homma Y, Nagai Y. Role of Ca2+ in phosphatidylinositol response and arachidonic acid release in formylated tripeptide- or Ca2+ ionophore A23187-stimulated guinea pig neutrophils. J Immunol. 1983;130:2849–55.

    PubMed  CAS  Google Scholar 

  17. Bravo E, Cantafora A, Marinelli T, Avella M, Mayes PA, Botham KM. Differential effects of chylomicron remnants derived from corn oil or palm oil on bile acid synthesis and very low density lipoprotein secretion in cultured rat hepatocytes. Life Sci. 1996;59:331–7.

    Article  PubMed  CAS  Google Scholar 

  18. Leslie CC. Properties and regulation of cytosolic phospholipase A2. J Biol Chem. 1997;272:16709–12.

    Article  PubMed  CAS  Google Scholar 

  19. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest. 2000;80:617–53.

    PubMed  CAS  Google Scholar 

  20. Cassatella MA. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol. 1999;73:309–69.

    Google Scholar 

  21. Coste TC, Armand M, Lebacq J, Lebecque P, Wallemacq P, Leal T. An overview of monitoring and supplementation of omega 3 fatty acids in cystic fibrosis. Clin Biochem. 2007;40:511–20.

    Article  PubMed  CAS  Google Scholar 

  22. Vaisman N, Kaysar N, Zaruk-Adasha Y, Pelled D, Brichon G, Zwingelstein G, et al. Correlation between changes in blood fatty acid composition and visual sustained attention performance in children with inattention: effect of dietary n-3 fatty acids containing phospholipids. Am J Clin Nutr. 2008;87:1170–80.

    PubMed  CAS  Google Scholar 

  23. Carlstedt-Duke J, Brönnegard M, Strandvik B. Pathological regulation of arachidonic acid release in cystic fibrosis: the putative basic defect. Proc Natl Acad Sci USA. 1986;83:9202–6.

    Article  PubMed  CAS  Google Scholar 

  24. Miele L, Cordella-Miele E, Xing M, Frizzell R, Mukherjee AB. Cystic fibrosis gene mutation (deltaF508) is associated with an intrinsic abnormality in Ca2+-induced arachidonic acid release by epithelial cells. DNA Cell Biol. 1997;16:749–59.

    PubMed  CAS  Google Scholar 

  25. Kirschnek S, Gulbins E. Phospholipase A2 functions in Pseudomonas aeruginosa-induced apoptosis. Infect Immun. 2006;74:850–60.

    Article  PubMed  CAS  Google Scholar 

  26. Samuelsson B, Dahlén SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987;237:1171–6.

    Article  PubMed  CAS  Google Scholar 

  27. Karp CL, Flick LM, Park KW, Softic S, Greer TM, Keledjian R, et al. Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol. 2004;5:388–92.

    Article  PubMed  CAS  Google Scholar 

  28. Kimura T, Iwase M, Kondo G, Watanabe H, Ohashi M, Ito D, et al. Suppressive effect of selective cyclooxygenase-2 inhibitor on cytokine release in human neutrophils. Int Immunopharmacol. 2003;3:1519–28.

    Article  PubMed  CAS  Google Scholar 

  29. Ristimaki AS, Garfinkel J, Wessendorf T, Maciag T, Hla T. Induction of cyclooxygenase-2 by interleukin-1: evidence for post-transcriptional regulation. J Biol Chem. 1994;269:11769–75.

    PubMed  CAS  Google Scholar 

  30. Machida T, Hiramatsu M, Hamaue N, Minami M, Hirafuji M. Docosahexaenoic acid enhances cyclooxygenase-2 induction by facilitating p44/42, but not p38, mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J Pharmacol Sci. 2005;99:113–6.

    Article  PubMed  CAS  Google Scholar 

  31. Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, et al. Differential modulation of toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res. 2003;44:479–86.

    Article  PubMed  CAS  Google Scholar 

  32. Burns AB, Takei F, Doerschuk CM. Quantitation of ICAM-1 expression in mouse lung during pneumonia. J Immunol. 1994;153:3189–98.

    PubMed  CAS  Google Scholar 

  33. De Vizia B, Raia V, Spano C, Pavlidis C, Coruzzo A. Alessio M Effect of an 8-month treatment with omega-3 fatty acids (eicosapentaenoic and docosahexaenoic) in patients with cystic fibrosis. JPEN J Parenter Enteral Nutr.. 2003;27:52–7.

    Article  PubMed  Google Scholar 

  34. Sethi S, Ziouzenkova O, Ni H, Wagner DD, Plutzky J, Mayadas TN. Oxidized omega-3 fatty acids in fish oil inhibit leukocyte–endothelial interactions through activation of PPAR alpha. Blood. 2002;100:1340–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our gratitude to La Lega Italiana per la lotta alla Fibrosi Cistica which has supported this work. We are thankful for Dr. Mauro Biffoni’s excellent collaboration. We would like to thank Dr. Emanuele Bernardi for his technical help and Dr. E. Fanales Belasio for his scientific advice. We are grateful to Prof. K.M. Botham who has contributed to the improvement of the manuscript with scientific advice and revision of the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bravo.

Additional information

Responsible Editor: M. J. Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quattrucci, S., Napolitano, M., Valentini, S.B. et al. Neutrophil generation of inflammatory precursors is not modulated by docosahexaenoic acid. Inflamm. Res. 58, 677–685 (2009). https://doi.org/10.1007/s00011-009-0035-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0035-5

Keywords

Navigation