Skip to main content

Advertisement

Log in

Expansion of CD14+CD16+ peripheral monocytes among patients with aseptic loosening

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

In this study, we have investigated the relevance of peripheral blood inflammatory CD14+CD16+ monocytes phenotype to patients with aseptic loosening (AL).

Material and treatment

Immunophenotypes of monocytes were examined among patients with AL (n = 43), patients with mechanical loosening (ML, n = 30), patients with stable implant (SI, n = 16), and patients with osteoarthritis (OA, n = 17) using flow cytometry.

Methods

Immunological assay was used to measure TNF-α and IL-1β levels in both sera and culture media of implant wear stimulated CD14+CD16+ and CD14++CD16 monocytes. Periprosthetic tissues were collected during surgery for histological assessment.

Results

The frequency of CD14+CD16+ monocytes showed significant increase in AL patients than in ML, SI, and OA patients. A positive association was found between the subpopulation of CD14+CD16+ monocytes and plasma TNF-α and IL-1β level in AL patients. Furthermore, a positive correlation existed between the subpopulation of CD14+CD16+ monocytes and the total histopathology score.

Conclusion

The results indicate that CD14+CD16+ monocytes represent a sensitive marker for the disease activity of AL, and may serve as an effective prognostic index to identify total joint replacement recipients who are at increased risk for osteolysis and progression of AL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keener JD, Callaghan JJ, Goetz DD, Pederson DR, Sullivan PM, Johnston RC. Twenty-five-year results after Charnley total hip arthroplasty in patients less than fifty years old: a concise follow-up of a previous report. J Bone Joint Surg Am. 2003;85-A:1066–72.

    PubMed  Google Scholar 

  2. Sabokbar A, Fujikawa Y, Neale S, Murray DW, Athanasou NA. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells. Ann Rheum Dis. 1997;56:414–20.

    Article  PubMed  CAS  Google Scholar 

  3. Lee SH, Brennan FR, Jacobs JJ, Urban RM, Ragasa DR, Glant TT. Human monocyte/macrophage response to cobalt-chromium corrosion products and titanium particles in patients with total joint replacements. J Orthop Res. 1997;15:40–9.

    Article  PubMed  CAS  Google Scholar 

  4. Granchi D, Ciapetti G, Stea S, Savarino L, Filippini F, Sudanese A, et al. Cytokine release in mononuclear cells of patients with Co–Cr hip prosthesis. Biomaterials. 1999;20:1079–86.

    Article  PubMed  CAS  Google Scholar 

  5. Matthews JB, Besong AA, Green TR, Stone MH, Wroblewski BM, Fisher J, et al. Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose. J Biomed Mater Res. 2000;52:296–307.

    Article  PubMed  CAS  Google Scholar 

  6. Sethi RK, Neavyn MJ, Rubash HE, Shanbhag AS. Macrophage response to cross-linked and conventional UHMWPE. Biomaterials. 2003;24:2561–73.

    Article  PubMed  CAS  Google Scholar 

  7. Wooley PH, Nasser S, Fitzgerald RH Jr. The immune response to implant materials in humans. Clin Orthop Relat Res. 1996;326:63–70.

    Article  PubMed  Google Scholar 

  8. Wooley PH, Petersen S, Song Z, Nasser S. Cellular immune responses to orthopaedic implant materials following cemented total joint replacement. J Orthop Res. 1997;15:874–80.

    Article  PubMed  CAS  Google Scholar 

  9. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74:2527–34.

    PubMed  CAS  Google Scholar 

  10. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249:1431–3.

    Article  PubMed  CAS  Google Scholar 

  11. Unkeless JC. Function and heterogeneity of human Fc receptors for immunoglobulin G. J Clin Invest. 1989;83:355–61.

    Article  PubMed  CAS  Google Scholar 

  12. Ziegler-Heitbrock HW, Fingerle G, Strobel M, Schraut W, Stelter F, Schutt C, et al. The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. Eur J Immunol. 1993;23:2053–8.

    Article  PubMed  CAS  Google Scholar 

  13. Fingerle G, Pforte A, Passlick B, Blumenstein M, Strobel M, Ziegler-Heitbrock HW. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood. 1993;82:3170–6.

    PubMed  CAS  Google Scholar 

  14. Skinner NA, MacIsaac CM, Hamilton JA, Visvanathan K. Regulation of Toll-like receptor (TLR)2 and TLR4 on CD14dimCD16 + monocytes in response to sepsis-related antigens. Clin Exp Immunol. 2005;141:270–8.

    Article  PubMed  CAS  Google Scholar 

  15. Skrzeczynska J, Kobylarz K, Hartwich Z, Zembala M, Pryjma J. CD14+ CD16+ monocytes in the course of sepsis in neonates and small children: monitoring and functional studies. Scand J Immunol. 2002;55:629–38.

    Article  PubMed  CAS  Google Scholar 

  16. Kawanaka N, Yamamura M, Aita T, Morita Y, Okamoto A, Kawashima M, et al. CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum. 2002;46:2578–86.

    Article  PubMed  CAS  Google Scholar 

  17. Baeten D, Boots AM, Steenbakkers PG, Elewaut D, Bos E, Verheijden GF, et al. Human cartilage gp-39+, CD16+ monocytes in peripheral blood and synovium: correlation with joint destruction in rheumatoid arthritis. Arthritis Rheum. 2000;43:1233–43.

    Article  PubMed  CAS  Google Scholar 

  18. Carracedo J, Merino A, Nogueras S, Carretero D, Berdud I, Ramirez R, et al. On-line hemodiafiltration reduces the proinflammatory CD14+ CD16+ monocyte-derived dendritic cells: a prospective, crossover study. J Am Soc Nephrol. 2006;17:2315–21.

    Article  PubMed  CAS  Google Scholar 

  19. Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N. CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol. 1995;25:3418–24.

    Article  PubMed  CAS  Google Scholar 

  20. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS. Unique monocyte subset in patients with AIDS dementia. Lancet. 1997;349:692–5.

    Article  PubMed  CAS  Google Scholar 

  21. Frankenberger M, Sternsdorf T, Pechumer H, Pforte A, Ziegler-Heitbrock HW. Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. Blood. 1996;87:373–7.

    PubMed  CAS  Google Scholar 

  22. Broker BM, Edwards JC, Fanger MW, Lydyard PM. The prevalence and distribution of macrophages bearing Fc gamma R I, Fc gamma R II, and Fc gamma R III in synovium. Scand J Rheumatol. 1990;19:123–35.

    Article  PubMed  CAS  Google Scholar 

  23. Athanasou NA. Synovial macrophages. Ann Rheum Dis. 1995;54:392–4.

    Article  PubMed  CAS  Google Scholar 

  24. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol. 1996;14:397–440.

    Article  PubMed  CAS  Google Scholar 

  25. Maguire JK Jr, Coscia MF, Lynch MH. Foreign body reaction to polymeric debris following total hip arthroplasty. Clin Orthop Relat Res. 1987;216:213–23.

    PubMed  Google Scholar 

  26. Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al. The proinflammatory CD14+ CD16+ DR++ monocytes are a major source of TNF. J Immunol. 2002;168:3536–42.

    PubMed  CAS  Google Scholar 

  27. Randolph GJ, Sanchez-Schmitz G, Liebman RM, Schakel K. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med. 2002;196:517–27.

    Article  PubMed  CAS  Google Scholar 

  28. Harris WH, McGann WA. Loosening of the femoral component after use of the medullary-plug cementing technique. Follow-up note with a minimum five-year follow-up. J Bone Joint Surg Am. 1986;68:1064–6.

    PubMed  CAS  Google Scholar 

  29. Engh CA, Massin P, Suthers KE. Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin Orthop Relat Res. 1990;257:107–28.

    PubMed  Google Scholar 

  30. Mjoberg B, Selvik G, Hansson LI, Rosenqvist R, Onnerfalt R. Mechanical loosening of total hip prostheses. A radiographic and roentgen stereophotogrammetric study. J Bone Joint Surg Br. 1986;68:770–4.

    PubMed  CAS  Google Scholar 

  31. Ryd L, Albrektsson BE, Carlsson L, Dansgard F, Herberts P, Lindstrand A, et al. Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg Br. 1995;77:377–83.

    PubMed  CAS  Google Scholar 

  32. Doorn PF, Mirra JM, Campbell PA, Amstutz HC. Tissue reaction to metal on metal total hip prostheses. Clin Orthop Relat Res. 1996;329S:S187–205.

    Article  Google Scholar 

  33. Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006;77:177–97.

    Article  PubMed  Google Scholar 

  34. Bi Y, Seabold JM, Kaar SG, Ragab AA, Goldberg VM, Anderson JM, et al. Adherent endotoxin on orthopedic wear particles stimulates cytokine production and osteoclast differentiation. J Bone Miner Res. 2001;16:2082–91.

    Article  PubMed  CAS  Google Scholar 

  35. Algan SM, Purdon M, Horowitz SM. Role of tumor necrosis factor alpha in particulate-induced bone resorption. J Orthop Res. 1996;14:30–5.

    Article  PubMed  CAS  Google Scholar 

  36. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005;115:282–90.

    PubMed  CAS  Google Scholar 

  37. Hundric-Haspl Z, Pecina M, Haspl M, Tomicic M, Jukic I. Plasma cytokines as markers of aseptic prosthesis loosening. Clin Orthop Relat Res. 2006;453:299–304.

    Article  PubMed  Google Scholar 

  38. Rader CP, Sterner T, Jakob F, Schutze N, Eulert J. Cytokine response of human macrophage-like cells after contact with polyethylene and pure titanium particles. J Arthroplasty. 1999;14:840–8.

    Article  PubMed  CAS  Google Scholar 

  39. Blumenstein M, Boekstegers P, Fraunberger P, Andreesen R, Ziegler-Heitbrock HW, Fingerle-Rowson G. Cytokine production precedes the expansion of CD14+ CD16+ monocytes in human sepsis: a case report of a patient with self-induced septicemia. Shock. 1997;8:73–5.

    Article  PubMed  CAS  Google Scholar 

  40. Fingerle-Rowson G, Angstwurm M, Andreesen R, Ziegler-Heitbrock HW. Selective depletion of CD14+ CD16+ monocytes by glucocorticoid therapy. Clin Exp Immunol. 1998;112:501–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for Shanghai Key Laboratory of Orthopaedic Implant (08DZ2230330). We would like to thank Dr. John Cuckler, University of Alabama, Birmingham, AL for providing us UHMWPE particles. Thanks also to Dr. Peng Xiaochun for his kind help during patients recruitment and clinical specimen retrieval. And to Prof. Wang Lizhen and Prof. Li Jiang for their kind help in histological assessment of tissue sections.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Ren or K. Dai.

Additional information

Responsible Editor: J. A. Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Zhang, X., Zhang, C. et al. Expansion of CD14+CD16+ peripheral monocytes among patients with aseptic loosening. Inflamm. Res. 58, 561–570 (2009). https://doi.org/10.1007/s00011-009-0020-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0020-z

Keywords

Navigation