Skip to main content
Log in

The formal translation equation for iteration groups of type II

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We investigate the translation equation

$$F(s+t, x) = F(s, F(t, x)),\quad \quad s,t\in{\mathbb{C}},\qquad\qquad\qquad\qquad({\rm T})$$

in \({\mathbb{C}\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right]}\), the ring of formal power series over \({\mathbb{C}}\). Here we restrict ourselves to iteration groups of type II, i.e. to solutions of (T) of the form \({F(s, x) \equiv x + c_k(s)x^k {\rm mod} x^{k + 1}}\), where k ≥ 2 and c k ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions c n (s) of

$$F(s, x) = x + \sum_{n \ge q k}c_n(s)x^n$$

are polynomials in c k (s). It is possible to replace this additive function c k by an indeterminate. In this way we obtain a formal version of the translation equation in the ring \({(\mathbb{C}[y])\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right]}\). We solve this equation in a completely algebraic way, by deriving formal differential equations or an Aczél–Jabotinsky type equation. This way it is possible to get the structure of the coefficients in great detail which are now polynomials. We prove the universal character (depending on certain parameters, the coefficients of the infinitesimal generator H of an iteration group of type II) of these polynomials. Rewriting the solutions G(y, x) of the formal translation equation in the form \({\sum_{n\geq 0}\phi_n(x)y^n}\) as elements of \({(\mathbb{C}\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right])\left[\kern-0.15em\left[{y}\right]\kern-0.15em\right]}\), we obtain explicit formulas for \({\phi_n}\) in terms of the derivatives H (j)(x) of the generator \({H}\) and also a representation of \({G(y, x)}\) as a Lie–Gröbner series. Eventually, we deduce the canonical form (with respect to conjugation) of the infinitesimal generator \({H}\) as x k + hx 2k-1 and find expansions of the solutions \({G(y, x) = \sum_{r\geq 0} G_r(y, x)h^r}\) of the above mentioned differential equations in powers of the parameter h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fripertinger H., Reich L.: The formal translation equation and formal cocycle equations for iteration groups of type I. Aequat. Math. 76, 54–91 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gröbner, W.: Die Lie-Reihen und ihre Anwendungen. 2., überarb. und erweit. Aufl. VEB Deutscher Verlag der Wissenschaften, Berlin (1967)

  3. Gröbner, W., Knapp, H.: Contributions to the method of Lie series. B.I.-Hochschulskripten. 802/802a. Mannheim etc.: Bibliographisches Institut (1967)

  4. Gronau D.: Two iterative functional equations for power series. Aequat. Math. 25(2/3), 233–246 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gronau D.: Über die multiplikative Translationsgleichung und idempotente Potenzreihenvektoren. Aequat. Math. 28(3), 312–320 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Haneczok J.: Conjugacy type problems in the ring of formal power series. Grazer Math. Ber. 353, 96 (2009)

    Google Scholar 

  7. Jabłoński W., Reich L.: On the solutions of the translation equation in rings of formal power series. Abh. Math. Sem. Univ. Hamburg 75, 179–201 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Reich, L.: On Families of Commuting Formal Power Series. Ber. Math.-Statist. Sekt. Forschungsgesellsch. Joanneum 285–296, Ber. No. 294, 18 pp. (1988)

  9. Reich L., Schwaiger J.: Über die analytische Iterierbarkeit formaler Potenzreihenvektoren. Osterreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 184, 599–617 (1975)

    MathSciNet  Google Scholar 

  10. Reich, L.: Iteration of automorphisms of formal power series rings and of complete local rings. In: European Conference on Iteration Theory (Caldes de Malavella, 1987), pp. 26–41. World Scientific Publication, Teaneck, NJ (1989)

  11. Scheinberg St.: Power series in one variable. J. Math. Anal. Appl. 31, 321–333 (1970)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Fripertinger.

Additional information

Herrn Professor János Aczél zu seinem 85. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fripertinger, H., Reich, L. The formal translation equation for iteration groups of type II. Aequat. Math. 79, 111–156 (2010). https://doi.org/10.1007/s00010-010-0003-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-010-0003-8

Mathematics Subject Classification (2000)

Keywords

Navigation