Skip to main content
Log in

Non-autonomous Evolution Equations of Parabolic Type with Non-instantaneous Impulses

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the Cauchy problem to a class of non-autonomous evolution equations of parabolic type with non-instantaneous impulses in Banach spaces, where the operators in linear part (possibly unbounded) depend on time t and generate an evolution family. New existence result of piecewise continuous mild solutions is established under more weaker conditions. At last, as a sample of application, the abstract result is applied to a class of non-autonomous partial differential equation of parabolic type with non-instantaneous impulses. The result obtained in this paper is a supplement to the existing literature and essentially extends some existing results in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equ. 246, 3834–3863 (2009)

    Article  MathSciNet  Google Scholar 

  2. Acquistapace, P.: Evolution operators and strong solution of abstract parabolic equations. Differ. Integr. Equ. 1, 433–457 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Acquistapace, P., Terreni, B.: A unified approach to abstract linear parabolic equations. Rend. Semin. Mat. Univ. Padova 78, 47–107 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Ahmed, N.U.: Measure solutions for impulsive evolution equations with measurable vector fields. J. Math. Anal. Appl. 319, 74–93 (2006)

    Article  MathSciNet  Google Scholar 

  5. Amann, H.: Parabolic evolution equations and nonlinear boundary conditions. J. Differ. Equ. 72, 201–269 (1988)

    Article  MathSciNet  Google Scholar 

  6. Banas̀, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. In: Lecture Notes in Pure and Applied Mathematics, Volume 60, Marcel Dekker, New York (1980)

  7. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclutions, Contemp. Math. Appl., vol. 2. Hindawi Publ. Corp, London (2006)

    Book  Google Scholar 

  8. Chen, P., Li, Y.: Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces. Nonlinear Anal. 74, 3578–3588 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chen, P., Li, Y., Yang, H.: Perturbation method for nonlocal impulsive evolution equations. Nonlinear Anal. Hybrid Syst. 8, 22–30 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chen, P., Li, Y., Zhang, X.: Double perturbations for impulsive differential equations in Banach spaces. Taiwanese J. Math. 20, 1065–1077 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chen, P., Zhang, X., Li, Y.: Iterative method for a new class of evolution equations with non-instantaneous impulses. Taiwanese J. Math. 21, 913–942 (2017)

    Article  MathSciNet  Google Scholar 

  12. Chen, P., Zhang, X., Li, Y.: Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73, 794–803 (2017)

    Article  MathSciNet  Google Scholar 

  13. Chen, P., Zhang, X., Li, Y.: A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Commun. Pure Appl. Anal. 17, 1975–1992 (2018)

    Article  MathSciNet  Google Scholar 

  14. Chen P., Zhang X., Li Y.: Non-autonomous evolution equation of mixed type with nonlocal initial conditions, J. Pseudo-Differ. Oper. Appl. (2018). https://doi.org/10.1007/s11868-018-0257-9

  15. Chen P., Zhang X., Li Y.: Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control. Syst. (2018). https://doi.org/10.1007/s10883-018-9423-x

  16. Colao, V., Mugliam, L., Xu, H.: Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay. Annali di Matematica 195, 697–716 (2016)

    Article  MathSciNet  Google Scholar 

  17. Fan, Z., Li, G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal. 258, 1709–1727 (2010)

    Article  MathSciNet  Google Scholar 

  18. Fitzgibbon, W.E.: Semilinear functional equations in Banach space. J. Differ. Equ. 29, 1–14 (1978)

    Article  MathSciNet  Google Scholar 

  19. Fu, X.: Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions. Electron. J. Differ. Equ. 110, 15 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Fu, X., Zhang, Y.: Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions. Acta Math. Sci. Ser. B Engl. Ed. 33, 747–757 (2013)

    Article  MathSciNet  Google Scholar 

  21. Gautam, G.R., Dabas, J.: Mild solutions for a class of neutral fractional functional differential equations with not instantaneous impulses. Appl. Math. Comput. 259, 480–489 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Guo, D.: Existence of positive solutions for n th-order nonlinear impulsive singular integro-differential equations in Banach spaces. Nonlinear Anal. 68, 2727–2740 (2008)

    Article  MathSciNet  Google Scholar 

  23. Hao, X., Liu, L.: Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces. Math. Meth. Appl. Sci. 40, 4832–4841 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math, vol. 840. Springer, New York (1981)

    Book  Google Scholar 

  25. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)

    Article  MathSciNet  Google Scholar 

  26. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  Google Scholar 

  27. Li, Y., Liu, Z.: Monotone iterative technique for addressing impulsive integro-differential equtions in Banach spaces. Nonlinear Anal. 66, 83–92 (2007)

    Article  MathSciNet  Google Scholar 

  28. Liang, J., Liu, J.H., Xiao, T.J.: Nonlocal Cauchy problems for nonautonomous evolution equations. Commun. Pure Appl. Anal. 5, 529–535 (2006)

    Article  MathSciNet  Google Scholar 

  29. Liang, J., Liu, J.H., Xiao, T.J.: Nonlocal impulsive problems for integro-differential equations. Math. Comput. Model. 49, 798–804 (2009)

    Article  Google Scholar 

  30. Liang, J., Liu, J.H., Xiao, T.J.: Periodic solutions of delay impulsive differential equations. Nonlinear Anal. 74, 6835–6842 (2011)

    Article  MathSciNet  Google Scholar 

  31. Liu, S., Debbouche, A., Wang, J.: ILC method for solving approximate controllability of fractional differential equations with noninstantaneous impulses. J. Comput. Appl. Math. 339, 343–355 (2018)

    Article  MathSciNet  Google Scholar 

  32. Liu, S., Wang, J.: Optimal controls of systems governed by semilinear fractional differential equations with not instantaneous impulses. J. Optim. Theory Appl. 174, 455–473 (2017)

    Article  MathSciNet  Google Scholar 

  33. Liu, J., Zhao, Z.: Multiple solutions for impulsive problems with non-autonomous perturbations. Appl. Math. Lett. 64, 143–149 (2017)

    Article  MathSciNet  Google Scholar 

  34. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  35. Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Tanabe, H.: Functional Analytic Methods for Partial Differential Equations. Marcel Dekker, New York, USA (1997)

    MATH  Google Scholar 

  37. Wang, J.: Stability of noninstantaneous impulsive evolution equations. Appl. Math. Lett. 73, 157–162 (2017)

    Article  MathSciNet  Google Scholar 

  38. Wang, R.N., Ezzinbi, K., Zhu, P.X.: Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions. J. Integr. Equ. Appl. 26, 275–299 (2014)

    Article  MathSciNet  Google Scholar 

  39. Wang, R.N., Zhu, P.X.: Non-autonomous evolution inclusions with nonlocal history conditions: global integral solutions. Nonlinear Anal. 85, 180–191 (2013)

    Article  MathSciNet  Google Scholar 

  40. Yu, X., Wang, J.: Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 22, 980–989 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zhang, X., Li, Y., Chen, P.: Existence of extremal mild solutions for the initial value problem of evolution equations with non-instantaneous impulses. J. Fixed Point Theory Appl. 19, 3013–3027 (2017)

    Article  MathSciNet  Google Scholar 

  42. Zhu, B., Liu, L., Wu, Y.: Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations. Fract. Calc. Appl. Anal. 20, 1338–1355 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by National Natural Science Foundation of China (No. 11501455), National Natural Science Foundation of China (No. 11661071) and Doctoral Research Fund of Northwest Normal University (No. 6014/0002020209).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Zhang, X. & Li, Y. Non-autonomous Evolution Equations of Parabolic Type with Non-instantaneous Impulses. Mediterr. J. Math. 16, 118 (2019). https://doi.org/10.1007/s00009-019-1384-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1384-0

Keywords

Mathematics Subject Classification

Navigation