Skip to main content
Log in

A Uniformly Convergent Euler Matrix Method for Telegraph Equations Having Constant Coefficients

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper contributes a novel framework to obtain the numerical solution of second-order linear hyperbolic telegraph equations. Using special properties of the Euler polynomials for evaluating integral and derivatives, we convert the main problems into their associated Volterra integro-differential equations. The error bound of approximation is also given. Some numerical examples are given to demonstrate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arfken G.: Mathematical Methods for Physicists. 3rd edn. Academic Press, San Diego (1985)

    Google Scholar 

  2. Bashier E.M., Patidar K.: A fitted numerical method for a system of partial delay differential equations. Comput. Math. Appl. 61, 1475–1492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berwal N.: Haar wavelet method for numerical solution of telegraph equations. Ital. J. Pure Appl. Math. 30, 317–328 (2013)

    MathSciNet  Google Scholar 

  4. Biazar J., Ebrahimi H.: An approximation to the solution of hyperbolic equations by Adomian decomposition method and comparison with characteristic method. Appl. Math. Comput. 163, 633–638 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biazar J., Eslami M.: Analytic solution for Telegraph equation by differential transform method. Phys. Lett. A 374, 2904–2906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bohme G.: Non-Newtonian Fluid Mechanics. North-Holland, New York (1987)

    Google Scholar 

  7. Bulbul B., Sezer M.: Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients. Int. J. Comput. Math. 88, 533–544 (2011)

    Article  MathSciNet  Google Scholar 

  8. Cheon G.S.: A note on the Bernoulli and Euler polynomials. Appl. Math. Lett. 16, 365–368 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chow E., Saad Y.: Approximate inverse techniques for block-partitioned matrices. SIAM J. Sci. Comput. 18, 1657–1675 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Costabile F.A., Dell’Accio F.: Expansions over a rectangle of real functions in Bernoulli polynomials and applications. BIT 41, 451–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan M., Ghesmati A.: Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method. Eng. Anal. Bound. Elem. 34, 51–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan M., Shokri A.: A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions. Numer. Methods Partial Differ. Equ. 25, 494–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan M., Shokri A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Partial Differ. Equ. 24, 1080–1093 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dosti M., Nazemi A.: Septic B-spline collocation method for solving one-dimensional hyperbolic telegraph equation. World Acad. Sci. Eng. Technol. 5, 8–24 (2011)

    Google Scholar 

  15. Hesameddini E., Asadolahifard E.: The sinc-collocation method for solving the telegraph equation. J. Comput. Eng. Inf. 1, 13–17 (2013)

    Google Scholar 

  16. Javidi M., Nyamoradi N.: Numerical solution of telegraph equation by using LT inversion technique. Int. J. Adv. Math. Sci. 1(2), 64–77 (2013)

    MathSciNet  Google Scholar 

  17. Jeffrey A.: Applied Partial Differential Equations. Academic Press, New York (2002)

    Google Scholar 

  18. Krylov V.I.: Approximate Calculation of Integrals. Dover Publications, Mineola (1962)

    MATH  Google Scholar 

  19. Mirzaee F., Bimesl S.: Application of Euler matrix method for solving linear and a class of nonlinear Fredholm integro-differential equations. Mediter. J. Math. 11, 999–1018 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mirzaee F., Bimesl S.: A new approach to numerical solution of second-order linear hyperbolic partial differential equations arising from physics and engineering. Res. Phys. 3, 241–247 (2013)

    Google Scholar 

  21. Mirzaee F., Bimesl S.: A new Euler matrix method for solving systems of linear Volterra integral equations with variable coefficients. J. Egypt. Math. Soc. 22, 238–248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohebbi A., Dehghan M.: High order compact solution of the one-space dimensional linear hyperbolic equation. Numer. Methods Partial Differ. Equ. 24(5), 1222–1235 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pascal H.: Pressure wave propagation in a fluid owing through a porous medium and problems related to interpretation of Stoneley’s wave attenuation in acoustical well logging. Int. J. Eng. Sci. 24, 1553–1570 (1986)

    Article  MATH  Google Scholar 

  24. Pozar D.M.: Microwave Engineering. Addison-Wesley, New York (1990)

    Google Scholar 

  25. Saad Y.: Iterative Methods for Sparse Linear Systems. 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  26. Sheth S.S.: Similarity solution of the telegraph equation to oceanic diffusion. Int. J. Appl. Math. Mech. 8(14), 88–104 (2012)

    Google Scholar 

  27. Yousefi S.A.: Legendre multiwavelet Galerkin method for solving the hyperbolic Telegraph equation. Numer. Methods Partial Differ. Equ. 26(3), 535–543 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Mirzaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaee, F., Bimesl, S. A Uniformly Convergent Euler Matrix Method for Telegraph Equations Having Constant Coefficients. Mediterr. J. Math. 13, 497–515 (2016). https://doi.org/10.1007/s00009-014-0486-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-014-0486-y

Mathematics Subject Classification

Keywords

Navigation