Skip to main content
Log in

Fractional and Hypersingular Operators in Variable Exponent Spaces on Metric Measure Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove the continuity of potential type operators and hypersingular operators in variable Lebesgue and Sobolev spaces on a metric measure space (Χ, d, µ). Two variants of such operators are considered, according to the regularity admitted on the measure µ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida A.: Inversion of the Riesz potential operator on Lebesgue spaces with variable exponent. Fract. Calc. Appl. Anal. 6, 311–327 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Almeida A., Samko S.: Characterization of Riesz and Bessel potentials on variable Lebesgue spaces. J. Funct. Spaces Appl. 4, 113–144 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Almeida A., Samko S.: Pointwise inequalities in variable Sobolev spaces and applications. Z. Anal. Anwend. 26(no. 2), 179–193 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Almeida A., Hasanov J., Samko S.: Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 15(no. 2), 195–208 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Almeida A., Samko S.: Embeddings of variable Hajłasz-Sobolev spaces into Hölder spaces of variable order. J. Math. Anal. Appl. 353, 489–496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bojarski B., Hajłasz P.: Pointwise inequalities for Sobolev functions and some applications. Studia Math. 106(no. 1), 77–92 (1993)

    MATH  MathSciNet  Google Scholar 

  7. R.R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certaines espaces homegenes, Lecture Notes in Mathematics 242, Springer-Verlag, Berlin, 1971.

  8. Coifman R.R., Weiss G.: Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83(no. 4), 569–645 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cruz-Uribe D., Fiorenza A., Martell J.M., Pérez C.: The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)

    MathSciNet  Google Scholar 

  10. Diening L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p(·) and W k,p(·). Math. Nachr. 268, 31–43 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in: FSDONA 2004 Proceedings, P. Drábek, J. Rákosník eds., Math. Inst. Acad. Sci. Czech Rep., Prague, 2005, 38–58.

  12. Edmunds D.E., Meskhi A.: Potential type operators in L p(x) spaces. Z. Anal. Anwendungen 21, 681–690 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Edmunds D.E., Kokilashvili V., Meskhi A.: Bounded and Compact Integral Operators, Mathematics and its Applications 543. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  14. Futamura T., Mizuta Y., Shimomura T.: Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31(no. 2), 495–522 (2006)

    MATH  MathSciNet  Google Scholar 

  15. García-Cuerva J., Gatto A.E.: Boundedness properties of fractional integral operators associated to non-doubling measures. Studia Math. 162, 245–261 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. A.E., Gatto, On fractional calculus associated to doubling and non-doubling measures, in: Harmonic analysis: Calderon-Zygmund and beyond, J.M. Ash et al. eds., Contemp. Math. 411, Amer. Math. Soc., Providence, RI, 2006, 15–37.

  17. Gatto A.E., Segovia C., Vagi S.: On fractional differentiation on spaces of homogeneous type. Rev. Mat. Iberoamericana 12(no. 1), 1–35 (1996)

    MathSciNet  Google Scholar 

  18. I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight Theory for Integral Transforms on Spaces of Homogeneous Type, Pitman Monographs and Surveys in Pure and Applied Mathematics 92, Longman Scientific and Technical, Harlow, 1998.

  19. Hajłasz P.: Sobolev spaces on arbitrary metric spaces. Potential Anal. 5, 403–415 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Hajłasz P., Kinnunen J.: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoamericana 14(no. 3), 601–622 (1998)

    MATH  MathSciNet  Google Scholar 

  21. P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145, no. 688, 2000.

  22. Hajłasz P., Martio O.: Traces of Sobolev functions on fractal type sets and characterization of extension domains. J. Funct. Anal. 143, 221–246 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Harjulehto P., Hästö P., Latvala V.: Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254(no. 3), 591–609 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Harjulehto P., Hästö P., Pere M.: Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator. Real Anal. Exchange 30, 87–104 (2004/05)

    MathSciNet  Google Scholar 

  25. Harjulehto P., Hästö P., Pere M.: Variable exponent Sobolev spaces on metric measure spaces. Funct. Approx. Comment. Math. 36, 79–94 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Heinonen J.: Lectures on Analysis on Metric Spaces. Springer-Verlag, New York (2001)

    MATH  Google Scholar 

  27. Khabazi M.: The maximal operator in spaces of homogeneous type. Proc. A. Razmadze Math. Inst. 138, 17–25 (2005)

    MATH  MathSciNet  Google Scholar 

  28. Kinnunen J., Martio O.: Hardy’s inequalities for Sobolev functions. Math. Res. Lett. 4(no. 4), 489–500 (1997)

    MATH  MathSciNet  Google Scholar 

  29. V. Kokilashvili, On a progress in the theory of integral operators in weighted Banach function spaces, in: FSDONA 2004 Proceedings, P. Drábek, J. Rákosník eds., Math. Inst. Acad. Sci. Czech Rep., Prague, 2005, 152–175.

  30. Kokilashvili V., Meskhi A.: Fractional integrals on measure spaces. Fract. Calc. Appl. Anal. 4, 1–24 (2001)

    MATH  MathSciNet  Google Scholar 

  31. Kokilashvili V., Meskhi A.: On some weighted inequalities for fractional integrals on nonhomogeneous spaces. Z. Anal. Anwendungen 24, 871–885 (2005)

    MathSciNet  Google Scholar 

  32. Kokilashvili V., Meskhi A.: Weighted criteria for generalized fractional maximal functions and potentials in Lebesgue spaces with variable exponent. Integral Transforms Spec. Funct. 18, 609–628 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kokilashvili V., Samko S.: On Sobolev Theorem for Riesz type potentials in the Lebesgue spaces with variable exponent. Z. Anal. Anwendungen 22, 899–910 (2003)

    MathSciNet  Google Scholar 

  34. Kokilashvili V., Samko S.: Maximal and fractional operators in weighted L p(x) spaces. Rev. Mat. Iberoamericana 20, 493–515 (2004)

    MATH  MathSciNet  Google Scholar 

  35. Kokilashvili V., Samko S.: The maximal operator in weighted variable spaces on metric measure spaces. Proc. A. Razmadze Math. Inst. 144, 137–144 (2007)

    MATH  MathSciNet  Google Scholar 

  36. Kokilashvili V., Samko S: The maximal operator in weighted variable spaces on metric spaces. Georgian Math. J. 15(4), 683–712 (2008)

    MATH  MathSciNet  Google Scholar 

  37. Kokilashvili V., Samko S.: Boundedness of maximal operators and potential operators on Carleson curves in Lebesgue spaces with variable exponent. Acta Math. Sin. 24(11), 1775–1800 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kokilashvili V., Samko S.: A general approach to weighted boundedness of operators of harmonic analysis in variable exponent Lebesgue spaces. Proc. A. Razmadze Math. Inst. 145, 109–116 (2007)

    MATH  MathSciNet  Google Scholar 

  39. Kokilashvili V., Samko S.: Operators of harmonic analysis in weighted spaces with non-standard growth. J. Math. Anal. Appl., 352(1), 15–34 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kovǎcǐk O., Rákosník J.: On spaces L p(x) and W k,p(x). Czechoslovak Math. J. 41(116), 592–618 (1991)

    MathSciNet  Google Scholar 

  41. Mizuta Y., Shimomura T.: Continuity of Sobolev functions of variable exponent on metric spaces. Proc. Japan Acad. Ser. A Math. Sci. 80, 96–99 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mizuta Y., Shimomura T.: Sobolev’s inequality for Riesz potentials with variable exponent satisfying a log-Hölder condition at infinity. J.Math. Anal. Appl. 311(1), 268–288 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  43. Nakai E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Studia Math. 176, 1–19 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ross B., Samko S.: Fractional integration operator of variable order in the spaces H λ. Internat. J. Math. Math. Sci. 18(4), 777–788 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  45. Samko S.: Convolution and potential type operators in L p(x) (\({\mathbb{R}^n}\)). Integral Transforms Spec. Funct. 7, 261–284 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  46. Samko S.: Fractional integration and differentiation of variable order. Anal. Math. 21(3), 213–236 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  47. S.G. Samko, Hypersingular Integrals and Their Applications, Analytical Methods and Special Functions 4, Taylor & Francis Ltd., London, 2002

  48. Samko S.: On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct. 16, 461–482 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. Samko S., Kilbas A., Marichev O.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Almeida.

Additional information

This research was supported in part by INTAS Grant Ref. No. 06-1000017-8792 through the project Variable Exponent Analysis. The first author was also supported by Unidade de Investigação “Matemática e Aplicações” (UIMA) of University of Aveiro and the second author was also partially supported by “Centro de Análise Funcional” (CEAF) of Superior Technical Institute, Lisbon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, A., Samko, S. Fractional and Hypersingular Operators in Variable Exponent Spaces on Metric Measure Spaces. Mediterr. J. Math. 6, 215–232 (2009). https://doi.org/10.1007/s00009-009-0006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-009-0006-7

Mathematics Subject Classification (2000)

Keywords

Navigation