Skip to main content
Log in

A General Geometric Fourier Transform Convolution Theorem

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The large variety of Fourier transforms in geometric algebras inspired the straight forward definition of “A General Geometric Fourier Transform” in Bujack et al., Proc. of ICCA9, covering most versions in the literature. We showed which constraints are additionally necessary to obtain certain features like linearity, a scaling, or a shift theorem. In this paper we extend the former results by a convolution theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. William Kingdon Clifford: Applications of Grassmann’s Extensive Algebra. American Journal of Mathematics 1(4), 350–358

    Article  MathSciNet  Google Scholar 

  2. Eckhard Hitzer, Rafal Ablamowicz: Geometric Roots of –1 in Clifford Algebras Cl p,q with p + q ≤ 4. Advances in Applied Clifford Algebras 21(1), 121–144 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eckhard M. S. Hitzer, Jacques Helmstetter and Rafal Ablamowicz, Square Roots of −1 in Real Clifford Algebras. In K. Gürlebeck, editor, Proceedings of the 9th International Conference on Clifford Algebras and their Applications, Bauhaus-University Weimar, Germany, 2011.

  4. Bernard Jancewicz: Trivector fourier transformation and electromagnetic field. Journal of Mathematical Physics 31(8), 1847–1852 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Julia Ebling, Visualization and Analysis of Flow Fields using Clifford Convolution. PhD thesis, University of Leipzig, Germany, 2006.

  6. Eckhard Hitzer, Bahri Mawardi: Clifford Fourier Transform on Multivector Fields and Uncertainty Principles for Dimensions n = 2 (mod 4) and n = 3 (mod 4). Advances in Applied Clifford Algebras 18(3), 715–736 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frank Sommen: Hypercomplex Fourier and Laplace Transforms I. Illinois Journal of Mathematics 26(2), 332–352 (1982)

    MathSciNet  Google Scholar 

  8. Thomas Bülow, Hypercomplex Spectral Signal Representations for Image Processing and Analysis. Inst. f. Informatik u. Prakt. Math. der Christian- Albrechts-Universität zu Kiel, 1999.

  9. Todd A. Ell, Quaternion-Fourier Transforms for Analysis of Two-Dimensional Linear Time-Invariant Partial Differential Systems. In Proceedings of the 32nd IEEE Conference on Decision and Control, volume 2, San Antonio, TX , USA, 1993, pages 1830–1841.

  10. Eckhard Hitzer: Quaternion fourier transform on quaternion fields and generalizations. Advances in Applied Clifford Algebras 17(3), 497–517 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Thomas Batard, Michel Berthier and Christophe Saint-Jean, Clifford Fourier Transform for Color Image Processing. In E. Bayro-Corrochano and G. Scheuermann, editors, Geometric Algebra Computing: In Engineering and Computer Science, Springer, London, UK 2010, pages 135–162.

  12. Fred Brackx, Nele De Schepper and Frank Sommen, The Cylindrical Fourier Transform. In E. Bayro-Corrochano and G. Scheuermann, editors, Geometric Algebra Computing: In Engineering and Computer Science, Springer, London, UK 2010, pages 107–119.

  13. Michael Felsberg, Low-Level Image Processing with the Structure Multivector. PhD thesis, University of Kiel, Germany, 2002.

  14. Todd A. Ell and Steven J. Sangwine, The Discrete Fourier Transforms of a Colour Image. Blackledge, J. M. and Turner, M. J., Image Processing II: Mathematical Methods, Algorithms and Applications 2000, 430-441.

  15. Ell T.A., Sangwine S.J.: Hypercomplex fourier transforms of color images. Image Processing, IEEE Transactions on 16(1), 22–35 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  16. Roxana Bujack, Gerik Scheuermann and Eckhard M. S. Hitzer, A General Geometric Fourier Transform. In K. Gürlebeck, editor, Proceedings of the 9th International Conference on Clifford Algebras and their Applications, Bauhaus- University Weimar, Germany, 2011.

  17. David Hestenes, Garret Sobczyk: Clifford Algebra to Geometric Calculus. D. Reidel Publishing Group, Dordrecht, Netherlands (1984)

    MATH  Google Scholar 

  18. David Hestenes: New Foundations for Classical Mechanics. Kluwer Academic Publishers, Dordrecht, Netherlands (1986)

    MATH  Google Scholar 

  19. Eckhard M. S. Hitzer, Angles Between Subspaces. In V. Skala, editor,Workshop Proceedings of Computer Graphics, Computer Vision and Mathematics, Brno University of Technology, Czech Republic, 2010. UNION Agency.

  20. Eckhard Hitzer: Angles between subspaces computed in clifford algebra. AIP Conference Proceedings 1281(1), 1476–1479 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana Bujack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujack, R., Scheuermann, G. & Hitzer, E. A General Geometric Fourier Transform Convolution Theorem. Adv. Appl. Clifford Algebras 23, 15–38 (2013). https://doi.org/10.1007/s00006-012-0338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-012-0338-4

Keywords

Navigation